Compounds and compositions for delivering active agents

Information

  • Patent Grant
  • 5939381
  • Patent Number
    5,939,381
  • Date Filed
    Friday, February 7, 1997
    27 years ago
  • Date Issued
    Tuesday, August 17, 1999
    25 years ago
Abstract
Carrier compounds and compositions therewith which are useful in the delivery of active agents are provided. Methods of administration and preparation are provided as well.
Description

FIELD OF THE INVENTION
The present invention relates to compounds for delivering active agents, and particularly biologically or chemically active agents. These compounds are used as carriers to facilitate the delivery of a cargo to a target. The carrier compounds are well suited to form non-covalent mixtures with biologically-active agents for oral administration to animals. Methods for the preparation administration of such compositions are also disclosed.
BACKGROUND OF THE INVENTION
Conventional means for delivering active agents are often severely limited by biological, chemical, and physical barriers. Typically, these barriers are imposed by the environment through which delivery occurs, the environment of the target for delivery, or the target itself. Biologically or chemically active agents are particularly vulnerable to such barriers.
For example in the delivery to animals of biologically active or chemically active pharmacological and therapeutic agents, barriers are imposed by the body. Examples of physical barriers are the skin and various organ membranes that must be traversed before reaching a target. Chemical barriers include, but are not limited to, pH variations, lipid bi-layers, and degrading enzymes.
These barriers are of particular significance in the design of oral delivery systems. Oral delivery of many biologically or chemically active agents would be the route of choice for administration to animals if not for biological, chemical, and physical barriers such as varying pH in the gastro-intestinal (GI) tract, powerful digestive enzymes, and active agent impermeable gastro-intestinal membranes. Among the numerous agents which are not typically amenable to oral administration are biologically or chemically active peptides, such as calcitonin and insulin; polysaccharides, and in particular mucopolysaccharides including, but not limited to, heparin; heparinoids; antibiotics; and other organic substances. These agents are rapidly rendered ineffective or are destroyed in the gastro-intestinal tract by acid hydrolysis, enzymes, or the like.
Earlier methods for orally administering vulnerable pharmacological agents have relied on the co-administration of adjuvants (e.g., resorcinols and non-ionic surfactants such as polyoxyethylene oleyl ether and n-hexadecylpolyethylene ether) to increase artificially the permeability of the intestinal walls, as well as the co-administration of enzymatic inhibitors (e.g., pancreatic trypsin inhibitors, diisopropylfluorophosphate (DFF) and trasylol) to inhibit enzymatic degradation.
Liposomes have also been described as drug delivery systems for insulin and heparin. See, for example, U.S. Pat. No. 4,239,754; Patel et al. (1976), FEBS Letters, Vol. 62, pg. 60; and Hashimoto et al. (1979), Endocrinology Japan, Vol. 26, pg. 337.
However, broad spectrum use of such drug delivery systems is precluded because: (1) the systems require toxic amounts of adjuvants or inhibitors; (2) suitable low molecular weight cargos, i.e. active agents, are not available; (3) the systems exhibit poor stability and inadequate shelf life; (4) the systems are difficult to manufacture; (5) the systems fail to protect the active agent (cargo); (6) the systems adversely alter the active agent; or (7) the systems fail to allow or promote absorption of the active agent.
More recently, microspheres of artificial polymers of mixed amino acids (proteinoids) have been used to deliver pharmaceuticals. For example, U.S. Pat. No. 4,925,673 describes drug-containing proteinoid microsphere carriers as well as methods for their preparation and use. These proteinoid microspheres are useful for the delivery of a number of active agents.
There is still a need in the art for simple, inexpensive delivery systems which are easily prepared and which can deliver a broad range of active agents.
SUMMARY OF THE INVENTION
Compounds and compositions which are useful in the delivery of active agents are provided. These compositions include at least one active agent, preferably a biologically or chemically active agent, and at least one of the following compounds 1-193, or salts thereof. ##STR1##
Compositions comprising the carrier compounds discussed above and active agents are effective in delivering active agents to selected biological systems.
DETAILED DESCRIPTION OF THE INVENTION
The specific compositions of the present invention include an active agent and a carrier. These compositions may be used to deliver various active agents through various biological, chemical, and physical barriers and are particularly suited for delivering active agents which are subject to environmental degradation. The compositions of the subject invention are particularly useful for delivering or administering biologically or chemically active agents to any animals such as birds including, but not limited to, chickens; mammals, such as primates and particularly humans; and insects.
Other advantages of the present invention include the use of easy to prepare, inexpensive raw materials. The compositions and the formulation methods of the present invention are cost effective, simple to perform, and amenable to industrial scale up for commercial production.
Subcutaneous, sublingual, and intranasal coadministration of an active agent, such as, for example, recombinant human growth hormone (rhGH); salmon calcitonin; heparin, including, but not limited to, low molecular weight heparin; parathyroid hormone; and compounds in compositions as described herein result in an increased bioavailability of the active agent compared to administration of the active agent alone.
Active Agents
Active agents suitable for use in the present invention include biologically or chemically active agents, chemically active agents, including, but not limited to, fragrances, as well as other active agents such as, for example, cosmetics.
Biologically or chemically active agents include, but are not limited to, pesticides, pharmacological agents, and therapeutic agents. For example, biologically or chemically active agents suitable for use in the present invention include, but are not limited to, peptides, and particularly small peptides; hormones, and particularly hormones which by themselves do not or only a fraction of the administered dose passes through the gastro-intestinal mucosa and/or are susceptible to chemical cleavage by acids and enzymes in the gastro-intestinal tract; polysaccharides, and particularly mixtures of muco-polysaccharides; carbohydrates; lipids; or any combination thereof. Further examples include, but are not limited to, human growth hormones; bovine growth hormones; growth releasing hormones; interferons; interleukin-1; insulin; heparin, and particularly low molecular weight heparin; calcitonin; erythropoietin; atrial naturetic factor; antigens; monoclonal antibodies; somatostatin; adrenocorticotropin, gonadotropin releasing hormone; oxytocin; vasopressin; cromolyn sodium (sodium or disodium chromoglycate); vancomycin; desferrioxamine (DFO); parathyroid hormone anti-microbials, including, but not limited to anti-fungal agents; or any combination thereof.
Carriers
Although compounds 1-193 above have been found to act as carriers for the oral delivery of biologically or chemically active agents, special mention is made of compounds 9, 35, 64, 67, 79, 102, 109, 111, 117, 122, 136, and 141, above.
Properties of compounds 1-193 are listed in Table 1, below.
TABLE 1__________________________________________________________________________Carrier PropertiesAnal. Calculated For Found MeltingCompound C H N S C H N S Point (.degree.C.)__________________________________________________________________________1 48.8 4.70 4.40 48.81 4.64 4.392 64.73 7.97 10.06 64.54 7.81 10.193 55.33 5.80 4.03 55.40 5.79 3.96 69-714 62.64 6.06 5.62 62.75 6.08 5.51 151-1545 65.16 6.11 13.40 65.29 6.03 13.29 144-1456 54.70 3.24 3.75 54.29 3.24 3.54 165-1697 69.00 6.11 4.47 69.09 6.24 4.43 126-1298 65.51 7.90 4.78 65.60 8.25 4.83 89-909 68.99 6.11 4.47 69.01 6.08 4.47 104-10710 52.74 4.42 7.69 52.91 4.45 7.49 142-14511 48.83 5.85 8.14 48.95 5.89 8.02 120-12212 69.71 6.47 4.28 69.56 6.47 4.38 144-14613 65.51 7.90 4.77 65.23 7.88 4.72 72.5-74.514 60.17 5.36 4.39 10.04 60.09 5.36 4.35 9.99 155-15615 52.38 4.79 11.11 52.45 4.94 11.08 220-22216 67.60 5.95 3.94 67.34 6.01 3.91 219-22217 68.09 6.53 3.78 67.77 6.24 3.81 130-13318 54.13 5.30 10.52 54.12 5.24 10.54 192.5-195.519 55.26 4.21 7.16 54.48 4.32 6.86 >280 dec20 65.51 7.90 4.77 65.52 7.90 4.77 75-8021 58.85 7.21 15.84 58.86 7.16 15.69 120-12222 63.15 5.30 14.73 63.30 5.43 14.18 197-20123 64.04 5.66 7.86 64.17 5.67 7.75 188-19024 69.91 6.88 8.46 69.98 6.79 8.58 131-13425 58.36 4.56 12.76 58.20 4.63 12.61 138-14126 56.98 3.94 7.82 56.39 3.92 7.74 221-22327 55.33 5.80 4.03 55.47 6.10 4.04 70-722829 65.74 7.58 4.79 65.51 7.89 4.78 52-5530 64.50 7.57 5.02 64.07 7.81 5.40 70-7431 54.70 5.17 3.99 54.50 4.99 3.95 173-17432 58.63 5.94 9.12 58.73 6.20 10.34 125-12933 69.00 6.10 4.47 69.18 6.08 4.54 100-10234 63.99 5.37 9.33 63.46 5.35 9.06 218-221c35 65.5 7.90 4.78 65.37 8.00 4.66 96-97C36 68.22 5.72 4.68 67.88 5.65 4.55 134-13737 63.14 7.23 6.69 63.15 7.29 6.58 53.5-5638 60.00 7.14 10.00 59.78 7.31 9.94 135-13839 61.67 4.41 10.29 61.69 4.41 10.12 >22540 55.39 4.65 7.18 55.52 4.77 7.30 162.5-16641 56.10 6.52 20.14 55.66 6.71 19.69 129-13142 65.24 6.39 4.23 65.42 6.16 3.78 130-133.543 70.59 7.96 4.84 70.35 8.13 4.79 111-11344 68.37 4.88 3.99 68.61 4.89 3.79 120-12345 70.59 7.96 4.84 70.48 7.97 4.71 108-11046 60.75 6.37 5.90 60.97 6.18 5.80 100.5-10347 64.50 7.57 5.02 64.42 7.58 5.01 97-10048 64.86 5.98 7.56 64.50 6.01 7.52 165-16949 72.18 3.76 0.00 72.13 3.84 0.00 >22550 72.51 8.76 4.23 72.39 8.84 4.12 120-12251 64.50 7.58 5.01 64.75 7.65 4.69 200.5-20452 7.74 4.33 7.82 4.30 88-8953 65.24 6.39 4.23 65.15 6.46 4.23 93-9754 60.49 6.77 4.70 60.54 6.76 4.65 114-11655 64.04 7.17 4.98 63.90 7.11 4.93 105-10656 61.00 7.17 4.74 60.49 6.92 4.65 146-14857 63.14 7.79 4.33 63.22 7.82 4.36 59-6158 63.14 7.79 4.33 63.17 7.86 4.26 102-10459 63.14 7.79 4.33 63.35 7.68 4.20 89-9060 60.15 6.64 3.69 59.84 6.66 3.64 112-11361 65.53 8.85 6.65 65.34 8.73 6.67 89-9262 61.00 7.17 4.74 60.94 7.12 4.49 104-10863 66.43 8.20 4.56 66.29 8.23 4.36 77-7864 65.51 7.90 4.77 65.52 8.06 4.54 97-9865 69.59 9.28 4.77 69.64 9.35 4.86 62-6566 68.41 8.04 5.32 68.41 8.06 5.28 88-8967 62.12 7.49 4.53 61.94 7.45 4.43 98-9968 64.04 7.17 4.98 64.07 7.16 4.95 106-10769 52.64 5.89 4.09 52.63 5.85 4.03 109-11070 63.15 7.74 4.33 63.26 7.90 4.14 97-10071 52.64 5.89 4.09 52.67 5.99 3.97 114-11572 46.31 5.18 3.61 46.25 4.86 3.52 143-14473 49.89 3.94 3.42 49.92 3.85 3.39 170-17174 72.19 5.48 4.01 71.51 5.33 3.75 18075 66.46 6.16 4.08 66.47 6.26 4.06 168.5-17176 67.37 5.26 4.91 67.31 5.25 5.07 130-13377 65.65 5.78 4.26 65.49 6.04 4.26 179-18378 49.89 3.94 3.42 49.8 3.71 3.29 237-23879 65.65 5.78 4.26 65.21 6.05 4.24 156-15880 56.38 4.45 3.87 56.4 4.21 3.91 130-13181 56.38 4.45 3.87 56.46 4.5 3.84 197-19882 56.6 7.49 4.4 56.3 7.49 4.14 58-6283 57.03 8.2 3.91 57.17 7.8 3.7 138-14084 57.58 7.11 3.95 57.52 7.7 3.9485 56.38 4.45 3.87 56.31 4.25 3.64 230-23186 57.42 6.42 4.46 57.14 6.45 4.2 116-11787 61 7.17 4.74 61.18 7.05 4.65 108-10988 62.12 7.49 4.53 62.34 7.21 4.39 107-10989 58.63 6.76 4.27 58.53 6.81 4.2 117-11890 66.46 6.16 4.08 66.18 6.15 3.84 100-10491 62.16 5.21 4.03 61.93 4.97 3.86 183-18592 62.16 5.21 4.03 62.2 5.14 3.98 167-17093 58.63 6.76 4.27 58.64 6.83 4.19 106-10894 65.65 5.81 4.25 65.56 5.64 4.2 153-15695 49.89 3.94 3.42 49.9 3.81 3.18 216-21796 69.82 7.64 5.09 69.91 7.66 5.02 129-13197 46.31 5.18 3.61 46.54 4.95 3.64 122-12398 56.8 6.55 8.28 56.69 6.67 8.199 56.8 6.55 8.28 57.37 6.57 8.33 117-118100 60.33 5.06 7.82 59.98 4.97 7.67 207-209101 66.46 6.16 4.08 66.37 6.32 3.96 126-128102 50.29 5.63 3.91 50.14 5.7 3.76 129-131103 70.93 5.95 6.89 70.94 6.44 6.89104 65.84 6.14 8.53 65.94 6.19 8.54 228-231105 64.96 5.77 8.91 64.89 5.82 8.82106 66.65 6.48 8.18 66.39 6.49 8.05 140-142107 66.47 6.12 4.07 66.5 6.26 4.08 140-142108 60.33 5.06 7.82 60.32 4.99 7.78 150-151109 57.41 6.42 4.46 57.07 6.44 4.39 121-123110 44.46 4.97 3.46 133-135111 69.28 7.03 4.25 68.86 7.07 4.11 147-149112 55.55 6.22 8.64 55.27 5.99 8.5 120-121113 53.99 4.26 3.7 53.98 4.25 3.63 210 decom114 57.49 7.39 4.74 57.72 7.57 4.43 80-83115 65.5 7.9 4.77 64.97 7.79 4.75 90-92116 65.5 7.9 4.77 65.11 8.03 4.71 125-127117 71.26 8.3 4.2 70.6 7.89 4.83 94-96118 56.29 4.17 7.72 56.23 4.01 7.6 173-175119 47.89 3.81 3.29 47.52 3.71 3.16 236-237120 55.7 6.55 13 55.71 6.58 13.05 123-5121 57.98 5.81 7.95 57.9 7.11 7.82 131-133122 51.74 5.5 4.02 51.41 5.43 3.61 118-119.5123 41.22 4.38 3.2 41.45 4.36 2.94 143-144.5124 57.06 6.06 4.44 57.02 6.12 4.35 57-58125 61.18 4.83 4.2 60.71 4.76 3.89 214 decom126 55.55 6.22 8.64 55.4 6.24 8.53 150-151127 65.17 4.83 4.47 65.27 4.87 4.48 208-209128 73.03 8.99 4.06 72.92 9.36 4.1 99-101129 72.25 5.44 4 72.14 5.24 4.01 216-217130 52.56 5.58 8.17 52.66 5.44 8.21 96-100131 56.28 6.41 9.38 56.32 6.42 9.28 98-100132 52.56 5.58 8.17 52.46 5.65 7.86 150-153133 69.89 4.89 4.53 69.64 5 4.54 136-9134 71.68 5.2 4.2 71.24 5.1 4.13 251-253135 65.64 5.78 4.25 65.3 5.91 4.04 79-83136 33.92 3.61 2.64 34.48 3.84 2.48 164-165137 57.06 6.06 4.44 57.09 6.17 4.45 88-89138 69.79 7.69 5.09 69.68 7.78 5.08 102-3139 69.28 7.04 4.25 68.99 7 4.1 107-108140 66.42 6.62 4.84 66.2 6.49 4.81 88-9141 58.62 6.76 4.27 58.66 6.93 4.18 134-135142 63.38 7.21 5.28 63.22 7.28 5.24 71-73143 56.29 4.17 7.72 56.19 4.04 7.65 156-160144 71.13 7.88 3.77 70.39 7.91 3.64 95-97145 58.44 6.06 8.02 58.25 6.38 7.84 165-8146 54.22 5.79 5.75 54.26 5.65 5.69 77-78.5147 54.22 5.79 5.75 54.21 5.85 5.61 80-81148 58.78 4.93 40.3 58.64 4.89 3.97 172-173149 56.19 4.72 3.85 56.31 4.67 3.86 177150 66.46 4.65 4.31 66.41 4.56 4.23 158-160151 58.61 7.24 5.69 58.79 7.35 5.66152 54.22 5.79 5.75 54.21 5.72 5.62 54-55153 60.85 4.25 7.89 60.27 4.37 7.89 >260154 62.5 7.3 10.14 64.77 7.27 9.9 187-190155 55.4 6.5 3.6 55.56 6.51 3.5 114-116156 45.85 4.9 4.86 46.06 4.78 4.71 67-68156 48.8 4.7 4.4 48.81 4.64 4.39 144-146157 50.3 5.1 4.2 50.25 5.12 3.99 141-143158 55.5 4.1 3.8 55.55 3.88 3.75 190-192159 64.97 6.9 5.05 64.7 6.82 5.02 171-174160 54.3 3.7 4 54.31 3.58 3.83 222-224161 56.4 6.7 3.5 56.69 6.98 3.11 76-78162 63.63 6.47 5.3 64.76 6.84 4.74 188-191163 48.91 4.48 5.19 48.89 4.31 5.10 88.5-90164 66.66 10.04 5.18 66.69 10.77 5.16 67.5-70.5165 39.42 4.21 4.18 39.19 4.35 3.88 oil166 53.05 5.19 5.16 53.06 5.03 4.86 151-152167 65.53 7.85 4.78 65.4 7.84 4.57 85-89168 68.99 6.11 4.47 68.62 5.87 4.49 162-6169 69.71 6.47 4.28 69.67 6.58 4.50 132.5-135170 61.21 7.53 9.52 61.21 7.68 9.46 134-135171 62.14 7.44 4.53 61.96 7.52 4.57 101-104172 58.63 6.71 6.22 58.15 6.83 6.04173 52.96 3.26 4.12 52.96 3.28 4.02 225-227174 57.42 6.42 4.46 57.3 6.38 4.39 119-120175 68.99 6.11 4.47 68.84 6.08 4.51 131-4176 66.43 8.2 4.56 66.42 8.16 4.51 109-110177 62.14 6.82 5.57 61.96 6.66 5.52 127-128178 51.00 4.56 3.97 51.09 4.61 3.93179 67.36 5.30 4.90 67.26 5.24 4.91 185-186180 66.43 8.20 4.56 66.32 8.60 5.12 51.5-55181 69.92 6.79 8.58 67.02 6.93 8.20 81-84182 66.46 8.14 4.56 66.43 8.34 4.47 82-84183 62.13 4.89 22.64 62.05 4.88 22.45 271-272184 68.16 7.32 6.36 67.73 7.44 6.70 114-117185 71.30 5.98 5.73 71.10 5.97 5.74 146-149186 68.16 7.32 6.36 67.94 7.31 6.41 105-108187 65.51 7.90 4.77 65.35 7.63 4.59 102-103188 64.50 7.58 5.01 64.19 7.69 4.83 133-134189 64.5 7.58 5.01 64.5 7.57 4.90 116-118190 61.15 7.71 3.97 61.27 7.79 4.08 124-127191 65.5 7.9 4.77 65.32 7.94 4.7 114-115192 56.77 6.51 8.28 56.83 6.76 8.21 141-143193 60.29 4.74 8.79 60.17 4.58 8.74 202-205194 48.8 4.7 4.4 48.81 4.64 4.39 144-146__________________________________________________________________________
These carrier compounds or poly amino acids, and peptides, including acids, may be used to deliver active agents including, but not limited to, biologically or chemically active agents such as for example, pharmacological and therapeutic agents.
An amino acid is any carboxylic acid having at least one free amine group and includes naturally occurring and synthetic amino acids.
Poly amino acids are either peptides or two or more amino acids linked by a bond formed by other groups which can be linked, e.g. an ester, anhydride, or an anhydride linkage.
Peptides are two or more amino acids joined by a peptide bond. Peptides can vary in length from dipeptides with two amino acids to poly peptides with several hundred amino acids. See Chambers Biological Dictionary, editor Peter M. B. Walker, Cambridge, England: Chambers Cambridge, 1989, page 215. Special mention is made of di-peptides, tri-peptides, tetra-peptides, and penta-peptides.
Salts such as, for example, sodium salt of these carrier compounds can be used as well.
Many of the compounds described herein are derived from amino acids.
Many of the compounds of the present invention can be readily prepared from amino acids including, but not limited to, aminocaprylic acid, butyrylhydroxaminic acid, aminophenylbutyric acid, aminophenylhexanoic acid, aminophenylpropionic acid, amino salicylic acid, aminophenylsuccinic acid, aminononanic acid, aminonicotinic acid, amino valenic acid, aminophenylacetic acid, aminocaproic acid, aminoundecanoic acid, aminoheptanoic acid, aminohydroxybenzoic acid, and aminodecanoic acid by methods within the skill of those in the art based upon the present disclosure and the methods described in U.S. patent application Ser. Nos. 60/017,902, filed Mar. 29, 1996; 08/414,654, filed Mar. 31, 1995; 08/335,148, filed Oct. 25, 1994; and 60/003,111, filed Sep. 1, 1995.
For example, these compounds may be prepared by reacting the single acid with the appropriate agent which reacts with free amino moiety present in the amino acids to form amides. Protecting groups may be used to avoid unwanted side reactions as would be known to those skilled in the art.
The carrier compound may be purified by recrystallization or by fractionation on solid column supports. Suitable recrystallization solvent systems include acetonitrile, methanol and tetrahydrofuran. Fractionation may be performed on a suitable solid column supports such as alumina, using methanol/n-propanol mixtures as the mobile phase; reverse phase column supports using trifluoroacetic acid/acetonitrile mixtures as the mobile phase; and ion exchange chromatography using water as the mobile phase. When anion exchange chromatography is performed, preferably a subsequent 0-500 mM sodium chloride gradient is employed.
Delivery Systems
The compositions of the present invention may include one or more active agents.
In one embodiment, compounds or salts of compounds 1-193 or poly amino acids or peptides that include at least one of these compounds or salts may be used directly as a delivery carrier by simply mixing one or more compound or salt, poly amino acid or peptide with the active agent prior to administration.
The administration mixtures are prepared by mixing an aqueous solution of the carrier with an aqueous solution of the active ingredient, just prior to administration. Alternatively, the carrier and the biologically or chemically active ingredient can be admixed during the manufacturing process. The solutions may optionally contain additives such as phosphate buffer salts, citric acid, acetic acid, gelatin, and gum acacia.
Stabilizing additives may be incorporated into the carrier solution. With some drugs, the presence of such additives promotes the stability and dispersibility of the agent in solution.
The stabilizing additives may be employed at a concentration ranging between about 0.1 and 5% (W/V), preferably about 0.5% (W/V). Suitable, but non-limiting, examples of stabilizing additives include gum acacia, gelatin, methyl cellulose, polyethylene glycol, carboxylic acids and salts thereof, and polylysine. The preferred stabilizing additives are gum acacia, gelatin and methyl cellulose.
The amount of active agent is an amount effective to accomplish the purpose of the particular active agent. The amount in the composition typically is a pharmacologically, biologically, therapeutically, or chemically effective amount. However, the amount can be less than a pharmacologically, biologically, therapeutically, or chemically effective amount when the composition is used in a dosage unit form, such as a capsule, a tablet or a liquid, because the dosage unit form may contain a multiplicity of carrier/biologically or chemically active agent compositions or may contain a divided pharmacologically, biologically, therapeutically, or chemically effective amount. The total effective amounts can then be administered in cumulative units containing, in total, pharmacologically, biologically, therapeutically or chemically active amounts of biologically or pharmacologically active agent.
The total amount of active agent, and particularly biologically or chemically active agent, to be used can be determined by those skilled in the art. However, it has surprisingly been found that with some biologically or chemically active agents, the use of the presently disclosed carriers provides extremely efficient delivery, particularly in oral, intranasal, sublingual, intraduodenal, or subcutaneous systems. Therefore, lower amounts of biologically or chemically active agent than those used in prior dosage unit forms or delivery systems can be administered to the subject, while still achieving the same blood levels and therapeutic effects.
The amount of carrier in the present composition is a delivery effective amount and can be determined for any particular carrier or biologically or chemically active agent by methods known to those skilled in the art.
Dosage unit forms can also include any of excipients; diluents; disintegrants; lubricants; plasticizers; colorants; and dosing vehicles, including, but not limited to water, 1,2-propane diol, ethanol, olive oil, or any combination thereof.
Administration of the present compositions or dosage unit forms preferably is oral or by intraduodenal injection.
The delivery compositions of the present invention may also include one or more enzyme inhibitors. Such enzyme inhibitors include, but are not limited to, compounds such as actinonin or epiactinonin and derivatives thereof. These compounds have the formulas below: ##STR2## Derivatives of these compounds are disclosed in U.S. Pat. No. 5,206,384. Actinonin derivatives have the formula: ##STR3## wherein R.sup.5 is sulfoxymethyl or carboxyl or a substituted carboxy group selected from carboxamide, hydroxyaminocarbonyl and alkoxycarbonyl groups; and R.sup.6 is hydroxyl, alkoxy, hydroxyamino or sulfoxyamino group. Other enzyme inhibitors include, but are not limited to, aprotinin (Trasylol) and Bowman-Birk inhibitor.
The compounds and compositions of the subject invention are useful for administering biologically or chemically active agents to any animals such as birds; mammals, such as primates and particularly humans; and insects. The system is particularly advantageous for delivering chemically or biologically or chemically active agents which would otherwise be destroyed or rendered less effective by conditions encountered before the active agent its target zone (i.e. the area in which the active agent of the delivery composition are to be released) and within the body of the animal to which they are administered. Particularly, the compounds and compositions of the present invention are useful in orally administering active agents, especially those which are not ordinarily orally deliverable.





DESCRIPTION OF THE PREFERRED EMBODIMENTS
The following examples illustrate the invention without limitation. All parts are given by weight unless otherwise indicated.
EXAMPLE 1
Carrier Preparation
General Preparations of Carriers. The following procedures were used to prepare the compounds described herein. Many of the compounds were prepared by reaction of the appropriate amino acid with the appropriate acid chloride. The preparation of compound 79 is given as a representative example of the compounds prepared in this manner.
Preparation of Compound 79. Method A. A 1 L round bottom flask fitted with a magnetic stirrer was charged with 3-(4-aminophenyl)propionic acid (46.3 g, 0.28 moles, 1.17 equiv.) and 2 M aqueous sodium hydroxide (300 mL). 2,3-dimethoxybenzoylchloride (48.0 g, 0.24 moles, 1.00 equiv.) was added portionwise over 1 h to the stirred solution. After the addition, the reaction was stirred for 2.5 h at ambient temperature, and the pH of the solution was kept at ca 10 by the addition of 10 M sodium hydroxide. The solution was then acidified with 1 M hydrochloric acid (3.times.100 mL), water (100 mL), and air dried. It was redissolved in boiling acetone (ca 500 mL), decolorized with activated charcoal (3 g), and filtered. Water (1.5 L) was added to the filtrate to induce the formation of a brown oil. The brown oil solidified upon stirring at room temperature for 10 min. The crude solid was collected by filtration and recrystallized from 70% methanol-water (v/v) to afford compound 79 as a tan solid (39.5) g, 50%).
Compounds 1, 5, 30, 31, 33, 36, 53-66, 68, 69, 71-74, 78, 80-88, 95, 97-99, 102, 108-110, 112-115, 119, 121-126, 136, 137, 139, 141, 144, 146, 147, 151, 152, 155-158, 160, 161, 163, 165, 166, 170, 172-174, 176, 177, 184-186, 188, 189, 191 and 192 were also prepared by this process.
Preparation of Compound 79. Method B. A 2 L three-neck round bottom flask was fitted with a magnetic stirrer and two addition funnels under an argon atmosphere. A suspension of 3-(4-aminophenyl)propionic acid (46.3 g, 0.28 moles, 1.17 equiv.) in ethyl acetate (700 mL) was added to the flask. A solution of 2,3-dimethoxybenzoylchloride (48.0 g, 0.24 moles, 1.00 equiv.) in ethyl acetate (250 mL) was charged to one of the addition funnels and added dropwise over 1 h. Triethylamine (28.20 g, 0.28 moles, 1.00 equiv.) was subsequently charged to the second funnel and added dropwise over 15 min. The reaction was stirred at ambient temperature for 3 h, and the solvent was evaporated in vacuo giving a residual brown oil. Water (600 mL) was added to the residue followed by sodium hydroxide (2 M, 500 mL), and the mixture was stirred at ambient temperature for 3 hours. The resultant brown solution was acidified with 2 M hydrochloric acid (ca 1 L). After cooling the mixture in an ice bath for 1 h, a yellow solid formed and was collected by filtration. The solid was washed with water (3.times.1.5 L) and recrystallized from 50% ethanol-water (v/v) to give compound 79 as a tan solid (59.2 g, 68%).
Compounds 18, 32, 37, 41, 168, 175, and 183 were also prepared by this process.
Preparation of Compound 79. Method C. A 2 L round bottom flask equipped with a magnetic stirrer and a reflux condenser was charged with a suspension of 3-(4-aminophenyl)propionic acid (46.3 g, 0.28 moles, 1.17 equiv.) in dichloromethane (560 mL). Chlorotrimethylsilane (62.36 g, 0.57 moles, 2.05 equiv.) was added in one portion, and the mixture was heated to reflux for 1 h under argon. The reaction was allowed to cool to room temperature and was placed in an ice bath (internal temperature <10.degree. C.). The reflux condenser was replaced with an addition funnel containing triethylamine (42.50 g, 0.42 moles, 1.50 equiv.). The triethylamine was added dropwise over 15 min, and a yellow solid formed during the addition. The funnel was replaced by another addition funnel containing a solution of 2,3-dimethoxybenzoylchloride (48.0 g, 0.24 moles, 1.00 equiv. in dichloromethane (100 mL). The solution was added dropwise over 30 min. The reaction was stirred in the ice bath for another 30 min and at ambient temperature for 1 h. The dichloromethane was evaporated in vacuo to give a brown oil. The brown oil was cooled in an ice bath, and an ice-cold solution of 2 M sodium hydroxide (700 mL) was added. The ice bath was removed, and the reaction was stirred for 2 h to afford a clear brown solution. The solution was acidified with 2 M sulfuric acid (400 mL) and stored at ca 5.degree. C. for 1 hour. A yellow solid formed and was collected by filtration. The solid was washed with water (3.times.100 mL) and recrystallized from 50% ethanol-water (v/v) to afford compound 79 as tan needles (64.7 g, 82%).
Compounds 2-4, 6-17, 19-29, 34, 38-40, 42-48, 50-52, 67, 70, 75-77, 89-94, 96, 100, 101, 107, 111, 116-118, 127-132, 134, 135, 193, 142, 143, 148, 149, 159, 162, 164, 169, 178-182, 187, and 190 were also prepared by this process.
Preparation of Compound 35. A solution of O-acetylsalicyloyl chloride (24.68 g, 124 mmol, 1 equiv) in tetrahydrofuran (300 mL) was cooled in an ice bath. Triethylamine (25 g, 249 mmol, 2 equiv) was added dropwise via an additional funnel. The methyl 9-aminononanoate hydrochloride was dissolved in DMF (190 mL, slightly warm to dissolve), charged to an addition funnel and added dropwise to the above mixture. The reaction was stirred in the ice-bath for 20 min and at room temperature for 2 h. Evaporation of the THF under reduced pressure gave a pink DMF solution. The pink solution was cooled in an ice-bath, and 2 M aqueous sodium hydroxide (300 mL) was added. After being stirred at room temperature for 12 h, the mixture was acidified with 2 M hydrochloric acid (500 mL). The solution was cooled in an ice-bath, and a solid formed. The solid was collected by filtration and was recrystallized from 50% ethanol/water to give compound 35 (32 g, 87%) as an off-white solid.
Preparation of Compound 49. 1-(2-hydroxyphenyl)-3-(4-methyl benzoate)-1,3-propane dione (3.00 g, 0.0101 mil.) is placed in a 100 ml round bottomed flask fitted with argon purge, magnetic stir bar and cold water condenser. Glacial acetic acid (20 mls) and concentrated sulfuric acid (5 mls) were added, and heating of the reaction mixture was initiated. The reaction mixture was allowed to heat at reflux for 6 h before heating was discontinued. The reaction mixture was allowed to come to room temperature, and then was poured into 100 mls of ice/water. This was stirred for approximately 1/2 h before the mixture was filtered, and a brown solid was isolated. The brown solid was recrystallized twice from acetic acid, yielding compound 49 as a tan solid (1.44 g, 53.8%).
Preparation of Compound 167. 2-coumaranone (4.21 g, 0.0314 mol) was dissolved, with stirring, in acetonitrile (75 mls) in a 250 ml round bottomed flask fitted with a magnetic stir bar, argon purge and cold water condenser. Triethylamine (3.18 g, 0.0314 mol) and 8-aminocaprylic acid (5.00 g, 0.0314 mol) were added, and a tan slurry was formed. Heating was started, and the reaction mixture was allowed to reflux overnight. After heating overnight, thin layer chromatography of the reaction mixture (50% ethyl acetate/50% hexane) indicated that the reaction had gone to completion. Heating was stopped, the reaction mixture was allowed to cool to room temperature, and was concentrated in vacuo. The resulting residue was taken up in methylene chloride, and was washed with two, 100 ml portions of 1N hydrochloric acid solution. The methylene chloride layer was dried with sodium sulfate and was concentrated in vacuo. The resulting tan solid was allowed to dry in vacuo overnight, yielding compound 167 as a tan solid (8.35 g, 70.4%).
Preparation of Compound 171. 1,4-benzodioxan-2-one (3.93 g, 0.0262 mol) was dissolved, with stirring, in acetonitrile (70 mls) in a 250 ml round bottomed flask fitted with a magnetic stir bar, argon purge and cold water condenser. Triethylamine (2.64 g, 0.0262 mol) and 8-aminocaprylic acid (500 g, 0.0262 mol) were added and a tan slurry was formed. Heating was started, and the reaction mixture was allowed to reflux for approximately 3 hours. At this time, thin layer chromatography of the reaction mixture (50% ethyl acetate/50% hexane) indicated that the reaction had gone to completion. Heating was discontinued, and the reaction mixture was allowed to cool to room temperature and was concentrated in vacuo. The resulting residue was taken up in methylene chloride and was washed with a 100 ml portion of 1N hydrochloric acid solution. At this time, a tan solid was noted to precipitate, and it was isolated by filtration. This tan solid was washed further with an additional 100 ml portion of 1 N hydrochloric acid solution, and then with 100 ml of water. The resulting tan solid was allowed to dry in vacuo overnight yielding Compound 171 as a tan solid (7.73 g, 95.6%).
Preparation of Compound 120. A solution of 3.00 g (18.3 mmol) of 2-nitrophenylisocyanate and 5 mL of tetrahydrofuran was dropwise over 10 min to an ice bath-cooled solution of 2.08 g (13.1 mmol) of 8-aminocaprylic acid, 1.40 mL of 10 N NaOH and 40 mL of water. The reaction mixture was stirred an additional 30 min, warmed to 25.degree. C. and treated with 3% HCl solution until the pH was 5. The yellow precipitate was filtered off and rinsed with 100 ml of water. The yellow solid was recrystallized in 2-propanol and water to give 3.7 g of compound 120 as pale yellow crystals.
Compounds 104-106 were also prepared by this procedure.
Preparation of Compound 133. A suspension of 2.40 g (16.3 mmol) and 2.80 g (15.6 mmol) of 4-(4aminophenyl)butyric acid in 20 mL of propylene glycol, 2.40 mL (1.74 g, 17.3 mmol) of triethylamine and 10 mg (0.08 mmol) of dimethylaminopyridine was heated to 140.degree. C. The mixture became a clear solution after 5 min at 140.degree. C. After stirring for 330 min, the reaction mixture was cooled to 25.degree. C. and diluted with 20 mL of water. The solid phthalimide which had formed was filtered off. The filtrate was acidified with 3% HCl solution. The resulting solid was filtered off and was recrystallized from 2-propanol and water to give 0.62 g of compound 133 as a tan solid.
Preparation of Compound 138. A solution of 1.73 g (12.9 mmol) of phthalic dialdehyde, 2.04 g 8-aminocaprylic acid and 20 mL of acetic acid was heated to reflux for 10 min. The reaction mixture was cooled to 40.degree. C., diluted with water and extracted with CH.sub.2 Cl.sub.2 (2.times.20 mL). The organic phase was washed with water and brine, dried over Na.sub.2 SO.sub.4 and evaporated. The residue was dissolved in ether and extracted with 2N NaOH. The layers were separated. The aqueous layer was made acidic with 3% HCl and extracted with CH.sub.2 Cl.sub.2. The organic phase was dried over Na.sub.2 SO.sub.4 and evaporated. The yellow residue was crystallized from acetonitrile and water to give 1.25 g of compound 138 as a yellow solid.
Preparation of Compound 140. A mixture of 1.40 g (9.48 mmol) of phthalic anhydride and 1.51 g (9.48 mmol) of 8-aminocaprylic acid was heated to 150.degree. C. for 5 min. Upon cooling, 2.61 g of solid compound 140 was received.
Compound 150 was also prepared by this procedure.
Preparation of Compound 145. A suspension of 2.11 g (10.1 mmol) ethyl carbamoylanthranilic acid and 5 mL of CH.sub.2 Cl.sub.2 was treated with 2.20 mL of oxalyl chloride. After stirring for 1 h the volatiles were stripped off. At that same time, a suspension of 1.60 g (10.1 mmol) of 8-aminocaprylic acid and 15 mL of CH.sub.2 Cl.sub.2 was treated with 2.60 mL (2.23 g, 20.5 mmol) of TMSCl. This mixture was heated to reflux for 90 min, cooled in an ice bath and treated with 4.30 mL (3.12 g, 30.9 mmol) of triethylamine. Five min later, a slurry of the residue from the oxalyl chloride reaction in 20 mL of CH.sub.2 Cl.sub.2 was added. The reaction mixture was warmed to 25.degree. C. and stirred overnight. Upon acidification of the mixture with 3% HCl, a white solid formed. The solid was filtered off and recrystallized from EtOH and water to give 1.88 g of compound 145.
Compound 153 was also prepared by this procedure.
Preparation of Compound 154. A suspension of 4.02 g(25.6 mmol) of trans-4-aminomethylcyclohexane-carboxylic acid, 4.18 g (25.6 mmol) of isatoic anhydride, 20 mL of CH.sub.2 Cl.sub.2, 20 mL of dioxane, and 4 mL of water was heated to reflux for 12 h. The solution was cooled to 25.degree. C. and extracted with ether (4.times.20 mL). The organic layer was dried over Na.sub.2 SO.sub.4 and concentrated. The resulting solid was recrystallized from EtOH and water to give 4.95 g of compound 154.
Compound 103 is available from Aldrich Chemical Company, Inc., Milwaukee, Wis.
EXAMPLE 2
Parathyroid Hormone Dosing Solutions
Intracolonic ("IC") dosing compositions containing 100 mg/kg of carrier and 25 .mu.g/kg of parathyroid hormone in 25% aqueous propylene glycol or oral gavage "PO") dosing solution containing 400 mg/kg of carrier and 100 .mu.g/kg of parathyroid hormone in water, were prepared with carriers 9, 33, 35, 77, 79, 109, 110, 123, 136, 141, and 169. The dosing solutions are designated P-carrier number-DS.
Comparative Example 2A
Parathyroid Hormone Dosing Solutions
An intracolonic dosing composition containing 100 mg/kg of a carrier having the formula ##STR4## and 25 .mu.g/kg of parathyroid hormone in 25% aqueous propylene glycol was prepared. The dosing solution is identified as P-9A-DS.
EXAMPLE 3
In vivo Parathyroid Hormone Delivery
Male Sprague-Dawley rats weighing between 200-250 g were fasted for 24 hours and were administered ketamine (44 mg/kg) and chlorpromazine (1.5 mg/kg) 15 minutes prior to dosing. The rats were administered one of dosing solutions P-9-DS, P-33-DS, P-35-DS, P-77-DS, P-79-DS, and P-141-DS by oral gavage ("PO") or intra-colonic instillation ("IC"). Blood samples were collected serially from the tail artery for serum determination of parathyroid hormone concentration. Serum parathyroid hormone concentrations were quantified by a parathyroid hormone immunoaccuracy test host.
Results are illustrated in Table 2, below.
COMPARATIVE EXAMPLE 3A
In vivo Parathyroid Hormone Delivery
The procedure of Example 3 was followed substituting dosing solution P-9A-DS for dosing solution P-9-DS. Results are illustrated in Table 2, below.
COMPARATIVE EXAMPLE 3B
In vivo Parathyroid Hormone Delivery
The procedure of Example 3 was followed with a dosing solution (at a dose of 25 .mu.g/kg of parathyroid hormone (intra-colonic) or 100 .mu.g/kg of parathyroid hormone (oral)), P-.O slashed.A-DS, that omitted the carrier.
Results are illustrated in Table 2, below.
TABLE 2______________________________________In vivo Parathyroid Hormone Delivery Mean Peak Serum �PTH! .+-.Dosing Solution Standard Deviation (pg/ml)______________________________________P-9-DS 155 .+-. 105 (IC)P-33-DS 58 .+-. 18 (IC)P-35-DS 50 .+-. 27 (IC)P-77-DS 358 .+-. 274 (PO)P-79-DS 521 .+-. 128 (PO)P-109-DS 128 .+-. 25 (IC)P-110-DS 35 .+-. 11 (IC)P-123-DS 49 .+-. 22 (IC)P-136-DS 106 .+-. 72 (IC)P-141-DS 120 .+-. 120 (PO)P-169-DS 19 .+-. 33 (IC)P-9A-DS 116 .+-. 48 (IC)P-.0.A-DS 11 .+-. 2 (PO), 27 .+-. 27 (IC)______________________________________
EXAMPLE 4
Recombinant Human Growth Hormone Dosing Solutions
Intracolonic dosing compositions containing 25 mg/kg of carrier and 1 mg/kg of rHGH in phosphate buffer or oral gavage dosing solutions containing 600 mg/kg of carrier and 3 mg/kg of rHGH in phosphate buffer were prepared with carriers 9, 35, 36, 47, 62, 64, 67, 77, 79, 90, 94, 107, 109, 136, and 141.
The dosing solutions are designated R- carrier number-DS.
COMPARATIVE EXAMPLE 4A
Recombinant Human Growth Hormone Dosing Solutions
An intracolonic dosing solution was prepared according to the procedure of Example 4, substituting a carrier having the formula ##STR5## for the carrier. This dosing solution is designated as R-35A-DS.
COMPARATIVE EXAMPLE 4B
Recombinant Human Growth Hormone Dosing Solutions
An intracolonic dosing solution was prepared according to the procedure of Example 4, substituting a carrier having the formula ##STR6## for the carrier. This dosing solution is designated as R-35B-DS.
COMPARATIVE EXAMPLE 4C
Recombinant Human Growth Hormone Dosing Solutions
An intracolonic dosing solution was prepared according to the procedure of Example 4, substituting a carrier having the formula ##STR7## for the carrier. This dosing solution is designated as R-9A-DS.
EXAMPLE 5
In Vivo Recombinant Human Growth Hormone Delivery
Male Sprague-Dawley rats weighing 200-250 g were fasted for 24 hours and administered ketamine (44 mg/kg) and chlorpromazine (1.5 mg/kg) 15 minutes prior to dosing. The rats were administered one of the dosing solutions of Example 3 by either oral gavage or intracolonic instillation. Blood samples were collected serially from the tail artery for determination of serum rHGH concentrations. Serum rHGH concentrations were quantified by an rHGH immunoassay test kit.
Results are illustrated in Table 3, below.
COMPARATIVE EXAMPLE 5A
In Vivo Recombinant Human Growth Hormone Delivery
The procedure of Example 5 was followed, substituting the dosing solutions of Comparative Examples 3A-3C for the dosing solutions. Results are illustrated in Table 3, below.
COMPARATIVE EXAMPLE 5B
In Vivo Recombinant Human Growth Hormone Delivery
The procedure of Example 5 was followed, with dosing solutions of active agent (at a dose of 1 mg of rHGH/kg (intracolonic) or 3 mg of rHGH/kg (oral) and no carrier. These dosing solutions are designated R-.O slashed.D-DS and R-.O slashed.E-DS, respectively. Results are illustrated in Table 3, below.
TABLE 3______________________________________In Vivo Recombinant Human Growth Hormone Delivery Mean Peak Serum �rHGH! .+-.Dosing Solution Standard Deviation (ng/ml)______________________________________R-9-DS 125 .+-. 34 (IC)R-35-DS 41 .+-. 46 (IC) 108 .+-. 56 (IC)R-36-DS 28 .+-. 11 (IC)R-47-DS 0 (IC)R-62-DS 11 .+-. 12 (IC)R-64-DS 72 .+-. 22 (PO)R-67-DS 19 .+-. 22 (PO) 88 .+-. 24 (IC)R-77-DS 34 .+-. 10 (PO)R-79-DS 62 .+-. 51 (PO)R-90-DS 9 .+-. 13 (PO)R-94-DS 39 .+-. 35 (PO)R-107-DS 0 .+-. 0 (PO)R-109-DS 128 .+-. 25 (C)R-136-DS 106 .+-. 72 (IC)R-141-DS 95 .+-. 14 (IC)R-35A-DS 17 .+-. 3 (IC)R-35B-DS 42 .+-. 28 (IC)R-9A-DS 55 .+-. 17 (IC)R-.0.D-DS 0 .+-. 0 (IC)R-.0.E-DS 0 .+-. 0 (IC)______________________________________
EXAMPLE 6
In Vivo Interferon Delivery
An intracolonic dosing composition containing 50 mg/kg of carrier 9 and 250 .mu.g/kg of interferon in 50% propylene glycol was prepared. Rats were administered the dosing composition by intracolonic instillation. Delivery was evaluated by use of an ELISA assay for human interferon a from Biosource, Inc. Mean peak serum interferon concentration was 2611.+-.695.
COMPARATIVE EXAMPLE 6A
In Vivo Interferon Delivery
Rats were administered, orally and by intracolonic instillation, dosing solutions of 1 mg/kg of interferon and no carrier. Delivery was evaluated according to the procedure of Example 6. Mean peak serum interferon concentration was 1951.+-.1857 (PO) and 79.+-.100 (IC).
EXAMPLE 7
Heparin Dosing Solutions
Intracolonic dosing compositions containing 50 mg/kg of carrier and 25 mg/kg of heparin in 25% aqueous propylene glycol or oral gavage dosing solutions containing 300 mg/kg of carrier and 100 mg/kg of heparin in 25% aqueous propylene glycol were prepared with carriers 9, 35, 47, 50, 58, 62, 64, 67, 76, 96, 102, 109, 110, 111, 117, 122, 123, 139, 141, 144, and 169. The dosing solutions are designated H-carrier number-DS.
COMPARATIVE EXAMPLE 7A
Heparin Dosing Solutions
Comparative intracolonic dosing compositions were prepared according to the procedure of Example 7, substituting the following carriers for the carrier. ##STR8##
These dosing solutions are designated H-35A-DS, H-35B-DS, and H-109A-DS, respectively.
EXAMPLE 8
In Vivo Evaluation of Heparin in Rats
The dosing solutions of Example 7 were administered to fasted rats either by oral gavage or intracolonic instillation.
Blood samples were collected by cardiac puncture following the administration of ketamine (44 mg/kg). Heparin activity was determined by utilizing the activated partial thromboplastin time (APTT) according to the method of Henry, J. B., Clinical Diagnosis and Management by Laboratory Methods; Philadelphia, Pa.; W. B. Saunders (1979).
Results are in illustrated in Table 4, below.
COMPARATIVE EXAMPLE 8A
In Vivo Evaluation of Heparin in Rats
The dosing solutions of Comparative Example 7A were administered to fasted rats by intracolonic instillation. Blood samples were collected and heparin activity was determined by the method of Example 8.
Results are illustrated in Table 4, below.
COMPARATIVE EXAMPLE 8B
In Vivo Evaluation of Heparin in Rats
An intracolonic dosing solution of 25 mg/kg of heparin and an oral gavage dosing solution of 100 mg/kg of heparin were administered to fasted rats. These dosage solutions were designated H-.O slashed.A-DS and H-.O slashed.B-DS, respectively.
Blood samples were collected, and heparin activity was determined by the methods of Example 8.
Results are illustrated in Table 4, below.
TABLE 4______________________________________In Vivo Evaluation of Heparin in RatsDosing Solution Heparin APTT (sec)______________________________________H-9-DS 48 .+-. 18 (IC)H-35-DS 54 .+-. 27 (PO), 177 .+-. 85 (IC)H-47-DS 30 .+-. 14 (IC)H-50-DS 40 .+-. 22 (IC)H-58-DS 24 .+-. 4 (IC)H-62-DS 37 .+-. 13 (IC)H-64-DS 59 .+-. 28 (PO), 168 .+-. 75 (IC)H-67-DS 76 .+-. 36 (IC)H-76-DS 63 .+-. 27 (PO)H-96-DS 36 .+-. 8 (IC)H-102-DS 111 .+-. 108 (IC)H-109-DS 56 .+-. 28 (IC)H-110-DS 37 .+-. 9 (IC)H-111-DS 71 .+-. 39 (IC)H-117-DS 140 .+-. 128 (IC)H-122-DS 49 .+-. 21 (IC), 207 .+-. 7 (PO)H-123-DS 42 .+-. 14 (PO)H-139-DS 31 .+-. 11 (IC)H-141-DS 59 .+-. 26 (IC)H-144-DS 26 .+-. 3 (IC)H-35A-DS 61 .+-. 29 (IC)H-35B-DS 51 .+-. 30 (IC)H-169-DS 23 .+-. 2 (IC)H-.0.A-DS 23 .+-. 2 (PO)H-.0.B-DS 33 .+-. 6 (IC)______________________________________
The above mentioned patents, applications, test methods, and publications are hereby incorporated by reference in their entirety.
Many variations of the present invention will suggest themselves to those skilled in the art in light of the above detailed description. All such obvious variations are within the full intended scope of the appended claims.
Claims
  • 1. A composition comprising:
  • (A) at least one active agent; and
  • (B) a compound having the following formula ##STR9## or a salt thereof.
  • 2. A composition as defined in claim 1, wherein said active agent is selected from the group consisting of a biologically active agent, a chemically active agent, and a combination thereof.
  • 3. A composition as defined in claim 2, wherein said biologically active agent comprises at least one peptide, mucopolysaccharide, carbohydrate, or lipid.
  • 4. A composition as defined in claim 2, wherein said biologically active agent is selected from the group consisting of human growth hormone, bovine growth hormone, growth hormone-releasing hormone, an interferon, interleukin-II, insulin, heparin, low molecular weight heparin, calcitonin, erythropoietin, atrial naturetic factor, an antigen, a monoclonal antibody, somatostatin, adrenocorticotropin, gonadotropin releasing hormone, oxytocin, vasopressin, cromolyn sodium, vancomycin, parathyroid hormone, desferrioxamine (DFO), and any combination thereof.
  • 5. A composition as defined in claim 4, wherein said biologically active agent comprises an interferon, interleukin-II, insulin, heparin, low molecular weight heparin, calcitonin, oxytocin, vasopressin, vancomycin, DFO, parathyroid hormone, and combinations thereof.
  • 6. A composition as defined in claim 2, wherein said biologically active agent comprises parathyroid hormone.
  • 7. A composition as defined in claim 2, wherein said biologically active agent comprises recombinant human growth hormone.
  • 8. A composition as defined on claim 2, wherein said biologically active agent comprises interferon.
  • 9. A composition as defined in claim 2, wherein said biologically active agent comprises heparin.
  • 10. A composition as defined in claim 2, wherein said biologically active agent comprises low molecular weight heparin.
  • 11. A composition comprising:
  • (A) at least one active agent; and
  • (B) a carrier comprising a compound having the following formula: ##STR10## or a salt thereof, wherein said carrier is a poly(amino acid).
  • 12. A composition as defined in claim 11, wherein said poly(amino acid) is a polypeptide.
  • 13. A dosage unit form comprising:
  • (A) a composition as defined in claim 1; and
  • (B) (a) an excipient
  • (b) a diluent,
  • (c) a disintegrant,
  • (d) a lubricant,
  • (e) a plasticizer,
  • (f) a colorant,
  • (g) a dosing vehicle, or
  • (h) any combination thereof.
  • 14. A dosage unit form as defined in claim 13, wherein said active agent is selected from the group consisting of a biologically active agent, a chemically active agent, and a combination thereof.
  • 15. A dosage unit form as defined in claim 14, wherein said biologically active agent comprises at least one peptide, mucopolysaccharide, carbohydrate, or lipid.
  • 16. A dosage unit form as defined in claim 14, wherein said biologically active agent is selected from the group consisting of human growth hormone, bovine growth hormone, growth hormone-releasing hormone, an interferon, interleukin-II, insulin, heparin, low molecular weight heparin, calcitonin, erythropoietin, atrial naturetic factor, an antigen, a monoclonal antibody, somatostatin, adrenocorticotropin, gonadotropin releasing hormone, oxytocin, vasopressin, cromolyn sodium, vancomycin, parathyroid hormone, desferrioxamine (DFO), and any combination thereof.
  • 17. A dosage unit form as defined in claim 16, wherein said biologically active agent comprises an interferon, interleukin-II, insulin, heparin, low molecular weight heparin, calcitonin, oxytocin, vasopressin, vancomycin, DFO, parathyroid hormone, and combinations thereof.
  • 18. A dosage unit form as defined in claim 13, wherein said biologically active agent comprises parathyroid hormone.
  • 19. A dosage unit form as defined in claim 13, wherein said biologically active agent comprises recombinant human growth hormone.
  • 20. A dosage unit form as defined on claim 13, wherein said biologically active agent comprises interferon.
  • 21. A dosage unit form as defined in claim 13, wherein said biologically active agent comprises heparin.
  • 22. A dosage unit form as defined in claim 13, wherein said biologically active agent comprises low molecular weight heparin.
  • 23. A dosage unit form as defined in claim 13, comprising a tablet, a capsule, or a liquid.
  • 24. A dosage unit form as defined in claim 23, wherein said dosing vehicle is selected from the group consisting of water, 1,2-propane diol, ethanol, or any combination thereof.
  • 25. A method for administering a biologically-active agent to an animal in need of said agent, said method comprising administering orally to said animal a composition as defined in claim 2.
  • 26. A compound having the formula ##STR11## or a salt thereof.
  • 27. A method for preparing a composition, said method comprising mixing:
  • (A) at least one active agent;
  • (B) at least one compound as defined in claim 26; and
  • (C) optionally, a dosing vehicle.
US Referenced Citations (137)
Number Name Date Kind
RE24899 Green Nov 1960
2671451 Bolger Mar 1954
2828206 Rosenberg Mar 1958
2862918 Meyer et al. Dec 1958
2868740 Luce Jan 1959
2971916 Schleicher et al. Feb 1961
3016308 Macaulay Jan 1962
3052655 Fox et al. Sep 1962
3057344 Abella et al. Oct 1962
3076790 Fox et al. Feb 1963
3170802 Fukushima Feb 1965
3190837 Brynko et al. Jun 1965
3474777 Figge et al. Oct 1969
3491093 Pachter et al. Jan 1970
3565559 Sato Feb 1971
3567650 Bakan Mar 1971
3574832 Engel et al. Apr 1971
3576758 Emrick Apr 1971
3687926 Arima et al. Aug 1972
3725113 Chang Apr 1973
3748277 Wagner Jul 1973
3794561 Matsukawa et al. Feb 1974
3795739 Birkmayer et al. Mar 1974
3816404 Kablaoui et al. Jun 1974
3822348 Higashi et al. Jul 1974
3849550 Teitelbaum Nov 1974
3933873 Love et al. Jan 1976
3937668 Zolle Feb 1976
3939253 Bodor et al. Feb 1976
3956172 Saeki et al. May 1976
3962416 Katzen Jun 1976
3976773 Curran Aug 1976
4035507 Bodor et al. Jul 1977
4048268 Ludwig Sep 1977
4061466 Sjoholm et al. Dec 1977
4117801 Dannelly et al. Oct 1978
4147767 Yapel Apr 1979
4183849 Hansen Jan 1980
4199561 Roth et al. Apr 1980
4217370 Rawlings et al. Aug 1980
4239635 Rieder Dec 1980
4272506 Schwarzberg Jun 1981
4289759 Heavner et al. Sep 1981
4345588 Widder et al. Aug 1982
4348384 Horikoshi et al. Sep 1982
4351337 Sidman Sep 1982
4352883 Lim Oct 1982
4357259 Senyei et al. Nov 1982
4388304 Nyeki et al. Jun 1983
4393192 Curatolo et al. Jul 1983
4402856 Schnoring et al. Sep 1983
4402968 Martin Sep 1983
4405598 Brown Sep 1983
4442090 Kakeya et al. Apr 1984
4446138 Pack May 1984
4450150 Sidman May 1984
4460563 Calanchi Jul 1984
4462839 McGinley et al. Jul 1984
4462991 Higuchi et al. Jul 1984
4473620 Wu et al. Sep 1984
4483807 Asano Nov 1984
4492684 Goosen et al. Jan 1985
4518433 McGinley et al. May 1985
4590265 Bogan et al. May 1986
4608278 Frank Aug 1986
4613500 Suzuki et al. Sep 1986
4647455 De Bold Mar 1987
4666641 Fickat et al. May 1987
4671954 Goldberg Jun 1987
4673566 Goosen et al. Jun 1987
4690786 Ninomiya et al. Sep 1987
4692284 Braden Sep 1987
4703042 Bodor Oct 1987
4708952 Salatinjants Nov 1987
4745161 Saudek et al. May 1988
4753804 Iaccheri et al. Jun 1988
4757007 Satoh Jul 1988
4757024 Roper Jul 1988
4757066 Shiokari et al. Jul 1988
4766012 Valenti Aug 1988
4774320 Tagliabue et al. Sep 1988
4789734 Pierschbacher Dec 1988
4835312 Itoh et al. May 1989
4837381 Steber et al. Jun 1989
4844904 Hamaguchi et al. Jul 1989
4873087 Morishita et al. Oct 1989
4886663 Houghten Dec 1989
4895725 Kantor et al. Jan 1990
4897444 Brynes et al. Jan 1990
4900730 Miyauchi Feb 1990
4908233 Takizawa et al. Mar 1990
4919939 Baker Apr 1990
4925673 Steiner May 1990
4963364 Fox et al. Oct 1990
4976968 Steiner Dec 1990
4983402 Steiner Jan 1991
4996292 Fox et al. Feb 1991
5019400 Gombotz et al. May 1991
5023374 Simon Jun 1991
5039481 Pacifici et al. Aug 1991
5041291 Bader et al. Aug 1991
5055300 Gupta Oct 1991
5066487 Morelle et al. Nov 1991
5067961 Kelman et al. Nov 1991
5069936 Yen Dec 1991
5077278 Hafner et al. Dec 1991
5100669 Hyon et al. Mar 1992
5100918 Sunshine et al. Mar 1992
5122367 Ron et al. Jun 1992
5126147 Silvestri et al. Jun 1992
5137892 Chu et al. Aug 1992
5186947 Goettsche et al. Feb 1993
5204099 Barbier et al. Apr 1993
5206384 Shibahara et al. Apr 1993
5216124 Hansen, Jr. et al. Jun 1993
5244653 Berke et al. Sep 1993
5250236 Gasco Oct 1993
5271934 Goldberg et al. Dec 1993
5271961 Mathiowitz et al. Dec 1993
5278148 Branca et al. Jan 1994
5310535 Kruper, Jr. et al. May 1994
5328992 Peter et al. Jul 1994
5352461 Feldstein et al. Oct 1994
5384133 Boyes et al. Jan 1995
5389377 Chagnon et al. Feb 1995
5389379 Dirix et al. Feb 1995
5401516 Milstein et al. Mar 1995
5418010 Janda et al. May 1995
5443841 Milstein et al. Aug 1995
5447728 Milstein et al. Sep 1995
5451410 Milstein et al. Sep 1995
5536813 Charpenel et al. Jul 1996
5540939 Milstein et al. Jul 1996
5541155 Leone-Bay et al. Jul 1996
5578323 Milstein et al. Nov 1996
5601846 Milstein et al. Feb 1997
5705529 Matyus et al. Jan 1998
Foreign Referenced Citations (1)
Number Date Country
1077842 Aug 1976 CAX