The invention relates to a compressed gas container. In addition, the invention relates to a method for manufacturing a compressed gas container. Finally, the invention relates to the use of a compressed gas container according to the invention and to a compressed gas container manufactured by the method according to the invention.
Compressed gas containers, for example, for storing hydrogen or compressed natural gas, in particular, in vehicles, are known in the general state of the art. The current latest state of the art in this case is defined by a so-called type IV pressure vessel, which consists of a metallic connection element, an inner casing, the so-called inner liner, made of plastic, as well as an outer jacket made of fiber-reinforced plastic, typically of carbon fibers and a bonding matrix. This structure allows high pressures of, for example, 70 MPa nominal pressure in the case of hydrogen. The disadvantage of these structures is that a compressed gas container of this type is subject to high thermal and mechanical loads during subsequent operation, in particular when filled with hydrogen. One problem that occurs in this case, in particular also because the inner liner can never be designed to be sealed 100 percent against the diffusion of hydrogen, is that hydrogen penetrates through the inner liner and bubbles form between the inner liner and the casing made of the fiber-reinforced plastic. This is highly undesirable, since it reduces the available storage volume in particular. Moreover, when the vessel is refilled with hydrogen, plastic material may be forced through the casing made of fiber-reinforced plastic material by the continually enlarging inner liner, so that hydrogen escapes into the environment and, for example, triggers an alarm and/or a safety-critical hydrogen/oxygen mixture forms.
Such a type-IV pressure vessel is described, for example, in DE 10 2010 033 623 A1 The pressure vessel described therein has a particular structure, in which the inner liner consists of multiple layers of different plastics which, however, makes the compressed gas container extremely costly to manufacture.
In general, the inner liner not only serves to encase the gas to be stored in a diffusion-resistant manner, but may also be used as a mold for winding or weaving the casing made of fiber-reinforced plastic. In alternative manufacturing methods, this is dispensed with and a lost core is inserted. Thus, a compressed gas container is described in US 2013/0105501 A1, in which a plastic film for forming the inner liner is first wound on a lost core before this layer is surrounded by a fiber-reinforced matrix as a mechanical support layer. The alternative structure having a wound inner layer, i.e., a type of wound inner liner notwithstanding, this too is a type-IV pressure vessel, which ultimately also has the disadvantages cited above. The document states that in this way the wound inner liner can be designed with a particularly tight seal, but for physical reasons alone, this is never 100 percent successful when storing hydrogen, so that this structure as well exhibits the cited disadvantages.
The object of the present invention then is to specify a compressed gas container and a method for the manufacture thereof, which are an improvement over the prior art and which, in particular, avoid the disadvantages cited above.
The compressed gas container according to the invention, like the compressed gas container in the prior art, has a casing surrounding a storage volume, which includes a matrix and reinforcing fibers. According to the invention, however, a liner is dispensed with. Instead, in the compressed gas container according to the invention, the composition of the matrix between the region of the casing facing the storage volume and the region of the casing facing the surroundings of the casing changes at least once. As a result, different properties of the matrix can be implemented in one single casing. This makes it possible to dispense with the liner and thus to circumvent the problems and disadvantages typically accompanying the inner liner. According to the previously applied nomenclature, such a compressed gas container could also be referred to as a type-IV compressed gas container. It is made of a single casing, which combines all necessary properties in one single casing through at least a one-time change in the composition of the matrix over the thickness of the casing.
According to one advantageous refinement of the compressed gas container according to the invention, it is provided that the matrix is optimally formed with respect to a diffusion sealing in the region facing the storage volume against the gas to be stored and with respect to the mechanical bonding properties of the fibers through the matrix in the region facing the surroundings. Thus, the material of the matrix surrounding the reinforcing fibers is formed with a particularly tight seal in the inner region, in the region facing the storage volume, and has especially good mechanical properties in the outer region, i.e., in the region facing the surroundings, in order to ensure a safe and reliable bonding of the fibers to one another, wherein the seal against the gas can be disregarded because the gas can be detained as much as possible by the region situated further inward which, as one of the physical possibilities, is maximally diffusion-resistant. Such a compressed gas container can be manufactured at a very minimal cost because the complicated manufacture of the liner can be dispensed with. By omitting the liner, corresponding weak points, such as the formation of gas bubbles between the liner and the outer casing are also consistently avoided, since the layer of the matrix that supplies the diffusion sealing is permanently bonded to the overlying layers of the matrix and to the fibers extending through both layers, so that a very compact and mechanically reliable structure is formed. As a result, the structure enables an increased long-term stability. It also allows for a much more flexible manufacture of the compressed gas container than is the case with previous structures, since by dispensing with the inner lining, which is costly to manufacture anyway, complex tank shapes become very easily possible, for example, tubular tank designs, curved tank designs and the like. These can be optimally integrated in existing installation spaces, for example, in vehicles.
According to one advantageous refinement of the idea, carbon fibers may be used as reinforcing fibers. According to another very advantageous embodiment of the idea, the matrix may be formed based on polyurethane in its region facing the storage volume. Such a polyurethane, in particular, a thermoplastic polyurethane, which cures accordingly during the manufacture of the fiber-reinforced casing, exhibits the highest sealing properties even against critical gases such as, for example, hydrogen, which is easily volatile. The use of such polyurethanes is therefore particularly advantageous in the compressed gas container according to the invention.
Another very favorable embodiment of the compressed gas container according to the invention provides that the casing also includes a metal connection element, with which the casing is securely connected. Such a metal connection element, also referred to as a boss, may therefore be directly integrated, as in conventional compressed gas containers, in particular, by connecting this to the single casing. According to a very advantageous refinement of this idea, it may be provided in this case that mechanical retaining structures and/or a coating for improving adhesion to the connection element are provided in the region in contact with the casing. Such a coating, in particular, in combination with a mechanical roughening, for example, the provision of nubs or the like, enable an ideal adhesion, since this adhesion can be formed, on the one hand chemically with the matrix and on the other hand by a mechanical form-locking connection with the reinforcing fibers, which can be inserted, for example, woven into the structures if these are present, or wound in between them.
The method for manufacturing a compressed gas container according to the invention having a storage volume surrounded by a casing provides that the casing is formed from reinforcing fibers and at least one cured matrix material. According to the invention, the method provides that the reinforcing fibers are impregnated with the uncured matrix material and are directly wound and/or woven around a lost core and a connecting area of a connection element, wherein the composition of the matrix material is changed at least once as the thickness of the casing is increased. In this way, it is possible to manufacture such a vessel very easily and efficiently and very flexibly with respect to the shape of what is later the compressed gas container. By changing the composition of the matrix material across the thickness of the casing, it is possible to very easily and efficiently obtain, in particular, the properties in the compressed gas container according to the invention already described above.
In one advantageous refinement of the method according to the invention, it can be further provided that the different composition of the matrix material is obtained by a variation of the ratio of the otherwise identical starting materials for the matrix. In particular, the same starting materials for manufacturing the matrix can be used over the entire thickness of the easing. This makes the structure particularly simple and efficient during manufacturing. Thus, for example, resin systems based on isocyanates and polyolenes may be used for a polyurethane matrix. These are blended in a continuous process during wetting or just prior to wetting of the reinforcing fibers. By selecting the ratio of components during blending, it is possible to adjust the physical properties of the resin system within a comparatively wide range. By specifically controlling the mixing of the matrix components, i.e., the ratio of the starting materials to one another, it is possible in this way to achieve a specific variation of the properties of the casing during the winding or weaving around the lost core, it is possible, in particular, to optimize the inner layers with respect to their barrier properties, i.e., in particular, with respect to the diffusion sealing against the later to be stored gas. The outer layers may be optimized with. respect to their mechanical properties, i.e., in such a way that the fibers are particularly firmly bonded to one another and therefore a very good and reliable mechanical structure is formed, which has a high load capacity.
As previously indicated above, a compressed gas container according to the invention or a compressed gas container manufactured by the method according to the invention can be manufactured, in particular, both highly flexibly with respect to its shape and also very cost-effectively and at the same time reliably and safely. This makes the compressed gas container according to the invention or the compressed gas container manufactured by the method according to the invention particularly suitable for applications in high volumes, i.e., in particular, storage applications in vehicles driven by hydrogen or compressed natural gas. The high reliability and safety plays a decisive role, in particular, in such applications. At the same time a further important advantage results in that the shape of the vessel may be very flexibly adapted. As a result, existing hollow spaces in the vehicle may be utilized in an installation space-optimizing manner, resulting in an increase in the range of the vehicle by the compressed gas container according to the invention or by a compressed gas container manufactured by the method according to the invention. Thus, the particularly preferred use of the compressed gas container according to the invention or of a compressed gas container manufactured by the method according to the invention is its application in a vehicle, in which it stores gaseous fuel.
Additional advantageous embodiments of the compressed gas container according to the invention as well as its method of manufacture also result from the exemplary embodiment, which is described below with reference to the figures.
A detail of a compressed gas container I in an exploded view is apparent in the representation of
The manufacture of the compressed gas container 1 is exemplarily indicated in
In the representation of
The further course of the manufacturing process is apparent in the representation of
In addition to the use described herein of two different matrix materials in the supply containers 8a, 8b, it would of course also be conceivable and possible to use the same starting materials for the matrix, which are mixed in different ratios. Such a structure allows, in particular, a continuous change of properties, i.e., a continuous transition of the mixing ratio of the matrix material from the inside of the casing 2 to its outer side, so that a greater stability and an improved mechanical strength of the casing 2 may be achieved by foregoing the sudden change of properties.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 016 023.8 | Oct 2014 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/001852 | 9/16/2015 | WO | 00 |