1. Field of the Invention
The present invention relates to a compressing device that compresses a gas.
2. Description of the Related Art
In recent years, there has been proposed a hydrogen station that supplies a hydrogen gas to a fuel-cell vehicle. The hydrogen station uses a compressing device, which supplies a hydrogen gas in a compressed state, in order to highly efficiently charge a hydrogen gas to the fuel-cell vehicle. The compressing device includes a compressor that compresses a hydrogen gas and a heat exchanger that cools the hydrogen gas which increases in temperature by the compression of the compressor. As the heat exchanger, for example, a plate-type heat exchanger disclosed in JP 2000-283668 A is proposed.
The plate-type heat exchanger is formed as a stacked body in which a plurality of plates are stacked, and a flow passageway circulating a fluid is formed between the stacked plates. Then, the heat exchanger exchanges heat between the fluids respectively flowing in the flow passageways adjacent to each other in the plate stacking direction.
Incidentally, the compressing device needs a plurality of pipes connecting the compressor to the heat exchanger. Incidentally, there is a concern in which the attachment strength of an instrumentation device such as a pressure gauge or a safety valve attached to a pipe may be degraded due to the vibration of the pipe when the compressing device is driven. Further, a pipe and a branch joint used to attach the instrumentation device and extending from the pipe are needed. In addition, the number of components increases, and the number of leakage inspection positions increases.
The present invention is made in view of the above-described problems, and an object thereof is to strongly attach the instrumentation device to the compressing device.
In order to attain the above-described object, a compressing device according to the present invention includes: a compressor that includes a compressing unit for compressing a gas; and a heat exchanger, wherein the heat exchanger includes a cooling unit that cools the gas compressed by the compressing unit, a connection path that connects the compressing unit to the cooling unit, and a connection path branch portion that is branched from a part of the connection path, the connection path branch portion including an attachment portion to which an instrumentation device is directly attached and which is provided in a first surface of the heat exchanger, the first surface being different from a second surface facing the compressor.
According to the compressing device, it is possible to strongly attach the instrumentation device compared to the compressing device in which the instrumentation device is attached to the pipe connecting the heat exchanger to the compressor. Further, it is possible to decrease the size of the compressing device by decreasing the number of the pipes.
In the compressing device, the heat exchanger may further include a supply path that leads a gas from a gas supply source to the compressor and a supply path branch portion that is branched from the supply path, and the supply path branch portion may include a supply path attachment portion to which a supply path instrumentation device is directly attached and which is provided in the first surface.
Further, in the compressing device, the heat exchanger may further include a discharge path that leads a gas compressed by the compressing device to a demand device and a discharge path branch portion that is branched from the discharge path, and the discharge path branch portion may include a discharge path attachment portion to which a discharge path instrumentation device is directly attached and which is provided in the first surface.
According to such a configuration, it is possible to further decrease the number of the instrumentation device attached to the pipe.
In the compressing device, the instrumentation device may be at least one of a pressure gauge and a safety valve.
In the compressing device, the compressor may include a plurality of the compressing units that are disposed in series, and the heat exchanger may include a plurality of the cooling units that cool the gas compressed by the plurality of compressing units, a plurality of the connection paths that connect the plurality of compressing units to the plurality of cooling units, and a single or a plurality of the connection path branch portions that are branched from at least a part of the plurality of connection paths.
In the compressing device, the heat exchanger may be disposed at the upper side of the compressor, and the first surface may be the upper surface of the heat exchanger.
In the compressing device, the heat exchanger may include a plurality of gas flow passageway groups in which the gas flows from the compressor and a plurality of cooling medium flow passageway groups in which a cooling medium flows to cool the gas flowing in the gas flow passageway groups, and the plurality of gas flow passageway groups and the plurality of cooling medium flow passageway groups may be alternately stacked.
According to this configuration, it is possible to further decrease the size of the compressing device.
In the compressing device, the compressor may include a suction valve that suctions the gas into the compressing unit, a discharge valve that discharges the gas from the compressing unit to the cooling unit, and a valve accommodation chamber that is disposed between the compressing unit and the heat exchanger and accommodates the suction valve and the discharge valve.
According to this configuration, it is possible to further decrease the size of the compressing device.
According to the present invention, it is possible to strongly attach the instrumentation device to the compressing device.
The compressor 2 includes a first compressing unit 6 that compresses the hydrogen gas and a second compressing unit 8 that further compresses the hydrogen gas compressed by the first compressing unit 6. The heat exchanger 4 includes a first cooling unit 10 that cools the hydrogen gas discharged from the first compressing unit 6 and a second cooling unit 12 that cools the hydrogen gas discharged from the second compressing unit 8. In the compressing device 1, the first compressing unit 6, the first cooling unit 10, the second compressing unit 8, and the second cooling unit 12 are connected by one flow passageway 14. As will be described later, the first compressing unit 6 and the second compressing unit 8 are actually formed inside one compressor 2 and the first cooling unit 10 and the second cooling unit 12 are actually formed inside one heat exchanger 4. Further, the flow passageway 14 is formed inside the heat exchanger 4. In the description below, a portion of the flow passageway 14 that leads the hydrogen gas from a hydrogen gas supply source to the first compressing unit 6 is referred to as a “supply path 15”, and a portion thereof that leads the hydrogen gas from the second cooling unit 12 to a demand device is referred to as a “discharge path 16”. Further, each of a portion that connects the first compressing unit 6 to the first cooling unit 10, a portion that connects the first cooling unit 10 to the second compressing unit 8, and a portion that connects the second compressing unit 8 to the second cooling unit 12 is referred to as a “connection path 17”.
In the compressor 2, the first compressing unit 6 is formed by the first cylinder chamber 18a and the first piston portion 19a, and the second compressing unit 8 is formed by the second cylinder chamber 18b and the second piston portion 19b. In this way, the compressor 2 is a multi-stage-type compressor in which the compressing units 6 and 8 are connected in series. When the piston 19 is connected to a driving mechanism (not illustrated) and moves in a reciprocating manner inside the cylinder portion 18, the hydrogen gas is compressed by each of the first compressing unit 6 and the second compressing unit 8.
The first cooling unit 10 includes a plurality of first cooling medium flow passageway groups 58 that extend in the X direction, a plurality of first gas flow passageway groups 60 that extend in the Y direction, a plurality of gas distributing units 62 that extend in the X direction, and a plurality of gas collecting units 64 that extend in the X direction. Furthermore,
Each of the first gas flow passageway groups 60 is formed by a predetermined number of first gas flow passageways 60a disposed in the X direction. The hydrogen gas flows in the first gas flow passageways 60a. The plurality of first gas flow passageway groups 60 and the plurality of first cooling medium flow passageway groups 58 are alternately stacked in the Z direction. The gas distributing units 62 connect the plurality of first gas flow passageways 60a at the (+Y-side) ends of the first gas flow passageway groups 60. The gas collecting units 64 connect the plurality of first gas flow passageways 60a at the (−Y-side) ends of the first gas flow passageway groups 60. In the first cooling unit 10, the hydrogen gas flowing through the first gas flow passageway groups 60 is cooled while exchanging heat with the water flowing in the first cooling medium flow passageway groups 58.
The second cooling unit 12 has substantially the same structure as that of the first cooling unit 10, and includes a plurality of second cooling medium flow passageway groups 66 that extend in the X direction, a plurality of second gas flow passageway groups 68 that extend in the Y direction, a plurality of gas distributing units 70 that extend in the X direction, and a plurality of gas collecting units 72 that extend in the X direction. Each of the second cooling medium flow passageway groups 66 is formed by a predetermined number of second cooling medium flow passageways 66a disposed in the Y direction. Each of the second gas flow passageway groups 68 is formed by a predetermined number of second gas flow passageways 68a disposed in the X direction. The plurality of second gas flow passageway groups 68 and the plurality of second cooling medium flow passageway groups 66 are alternately stacked in the Z direction. The gas distributing units 70 connect the plurality of second gas flow passageways 68a at the (−Y-side) ends of the second gas flow passageway groups 68. The gas collecting units 72 connect the plurality of second gas flow passageways 68a at the (+Y-side) ends of the second gas flow passageway groups 68. Even in the second cooling unit 12, the hydrogen gas flowing in the second gas flow passageway group 68 exchanges heat with the water flowing in the second cooling medium flow passageway group 66.
As described above, the flow passageway 14 is provided inside the heat exchanger 4. The supply path 15 extends from the right side surface of the heat exchanger 4 toward a lower surface 4b and is connected to the first suction path 30 of the first valve accommodation chamber 20 of
The connection path 17 (hereinafter, referred to as a “first connection path 17a”) that connects the first cooling unit 10 to the first compressing unit 6 of
The connection path 17 (hereinafter, referred to as a “second connection path 17b”) that connects the first cooling unit 10 to the second compressing unit 8 of
The connection path 17 (hereinafter, referred to as a “third connection path 17c”) (connecting the second cooling unit 12 to the second compressing unit 8) extends upward from the lower surface 4b of the heat exchanger 4. The opening of the third connection path 17c provided in the lower surface 4b is connected to the second discharge path 52 of the second valve accommodation chamber 40 of
The discharge path 16 extends in the (−Y) direction from the right side surface of the heat exchanger 4 and is connected to the second gas flow passageway group 68. The gas collecting unit 72 also exists at a part of the discharge path 16. The discharge path 16 is provided with a plurality of branch portions 16a that are branched from a part of the path toward the upper surface 4a of the heat exchanger 4. Hereinafter, the branch portion is referred to as the “discharge path branch portion 16a”. The discharge path branch portion 16a is opened to the upper surface 4a, and the opening portion is provided with an attachment portion 78 to which the instrumentation device 74 is attached.
As described above, when the compressing device 1 is driven, the hydrogen gas is led from the supply source (see
In the compressing device 1, since the flow passageway 14 connecting the compressing units 6 and 8 to the cooling units 10 and 12 of the heat exchanger 4 is provided inside the heat exchanger 4 instead of the pipe, the number of the pipes may be decreased, and hence the size of the compressing device 1 may be decreased. Further, the leakage of the hydrogen gas from the pipe may be prevented.
While the compressing device 1 according to the first embodiment of the present invention has been described, the instrumentation device 74 is directly attached to the heat exchanger 4 in the compressing device 1. In this way, since the heat exchanger 4 serves as a so-called connecting block, the instrumentation device 74 may be strongly attached, and hence the breakage of the instrumentation device 74 or the attachment strength degradation caused by the vibration of the pipe may be prevented compared to the compressing device in which the instrumentation device is attached onto the pipe. Further, since the pipe and the branch joint used to attach the instrumentation device 74 to the pipe are not needed, the number of components may be decreased. As a result, the number of the leakage inspection positions may be decreased. Since the supply path branch portion 15a, the connection path branch portion 17d, and the discharge path branch portion 16a are provided inside the flow passageway 14, it is possible to easily provide the attachment portions 76 to 78 to which the instrumentation device 74 is attached.
Since the heat exchanger 4 has a structure in which the attachment portions 76 to 78 are disposed in the upper surface 4a of the heat exchanger 4, that is, the surface opposite to the surface facing the compressor 2 in the heat exchanger 4, it is possible to easily ensure a space that is used to process the supply path branch portion 15a, the connection path branch portion 17d, and the discharge path branch portion 16a in the heat exchanger 4.
In the compressing device 1, the pressure gauge 74b and the safety valve 74a are attached to each of the supply path branch portion 15a in which the hydrogen gas to be compressed flows, the connection path branch portion 17d of the second connection path 17b in which the hydrogen gas just cooled by the first cooling unit 10 flows, and the discharge path branch portion 16a in which the hydrogen gas cooled by the second cooling unit 12 flows. Accordingly, it is possible to prevent an increase in the size of the configuration of the instrumentation device 74 compared to the case where the instrumentation device is attached to the other portions of the flow passageway 14 in which the high-temperature hydrogen gas flows. Furthermore, only one of the pressure gauge 74b and the safety valve 74a may be attached to each of the branch portions 15a, 17d, and 16a.
While the embodiment of the present invention has been described, the present invention is not limited to the above-described embodiment, and may be modified into various forms.
For example, the attachment portions of the supply path branch portion, the discharge path branch portion, and the connection path branch portion may not be essentially provided in the upper surfaces as long as the attachment portions are provided in the surfaces different from the lower surfaces of the heat exchanger facing the compressor. The heat exchanger does not need to essentially contact the compressor. Even in this case, the instrumentation device may be strongly attached by providing the attachment portion in the heat exchanger. In the above-described embodiment, the connection path branch portion may be provided so as to be branched from the first and third connection paths in which the high-temperature hydrogen gas flows and the heat-resistant instrumentation device may be attached to the attachment portion of the connection path branch portion.
The compressing device may have a structure in which the heat exchanger is disposed at the lower side or the lateral side of the compressor. For example, as illustrated in
The heat exchanger 4 is not limited to the micro channel heat exchanger. For example, another plate-type heat exchanger may be used or a heat exchanger other than the plate-type heat exchanger may be used.
A method of attaching the instrumentation device to the heat exchanger may be applied to the compressing device that includes one or more compressing units or may be applied to the compressing device that includes three or more compressing units. The method may be applied to another compressing device such as a screw-type compressing device or a turbo-type compressing device. The compressing device of the embodiment may be used for a gas such as a helium gas or a natural gas lighter than air other than the hydrogen gas or may be used to compress a carbon dioxide gas.
Number | Date | Country | Kind |
---|---|---|---|
2013-091104 | Apr 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2192654 | Simons | Mar 1940 | A |
5899669 | Van Grimberge | May 1999 | A |
7584624 | Hwang | Sep 2009 | B2 |
20040018632 | Shabana et al. | Jan 2004 | A1 |
20080060788 | Kong | Mar 2008 | A1 |
20100278665 | Katano et al. | Nov 2010 | A1 |
20100312035 | Ruettinger | Dec 2010 | A1 |
20110052430 | Dehnen et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
2000-283668 | Oct 2000 | JP |
2006-90422 | Apr 2006 | JP |
2007-239956 | Sep 2007 | JP |
10-0434933 | Sep 2004 | KR |
Entry |
---|
The Extended European Search Report issued Oct. 21, 2014, in Application No. / Patent No. 14160828.1-1608. |
Number | Date | Country | |
---|---|---|---|
20140318747 A1 | Oct 2014 | US |