The present disclosure relates to a compressor, and particularly, to a discharge valve assembly for a compressor.
This section provides background information related to the present disclosure and is not necessarily prior art.
Compressors are used in a variety of industrial, commercial and residential applications to circulate a working fluid within a climate-control system (e.g., a refrigeration system, an air conditioning system, a heat-pump system, a chiller system, etc.) to provide a desired cooling and/or heating effect. A typical climate-control system may include a fluid circuit having an outdoor heat exchanger, an indoor heat exchanger, an expansion device disposed between the indoor and outdoor heat exchangers, and a compressor circulating a working fluid (e.g., refrigerant or carbon dioxide) between the indoor and outdoor heat exchangers. Efficient and reliable operation of the compressor is desirable to ensure that the climate-control system in which the compressor is installed is capable of effectively and efficiently providing a cooling and/or heating effect on demand.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
The present disclosure provides a compressor that may include a shell, a non-orbiting scroll, an orbiting scroll, a driveshaft, a discharge valve member, and a valve backer. The shell may define a discharge chamber. The non-orbiting scroll may be disposed within the discharge chamber and includes a first end plate and a first spiral wrap extending from the first end plate. The orbiting scroll may be disposed within the discharge chamber and includes a second end plate and a second spiral wrap extending from the second end plate. The first and second spiral wraps mesh with each other to define a plurality of fluid pockets therebetween. The second end plate includes a discharge passage extending therethrough. The driveshaft drives the orbiting scroll and rotates relative to the orbiting scroll. The discharge valve member may be attached to the second end plate and movable between an open position allowing fluid flow from the discharge passage to the discharge chamber and a closed position restricting fluid flow from the discharge passage to the discharge chamber. The valve backer may be disposed on an end of the driveshaft and may be rotatable with the driveshaft relative to the orbiting scroll and the discharge valve member. The valve backer may force the discharge valve member into the closed position during a first portion of a rotation of the driveshaft and may allow the discharge valve member to move into the open position during a second portion of the rotation of the driveshaft.
In some configurations, the valve backer includes an axial end surface having a tip portion and a recessed portion. The tip portion is disposed closer to the second end plate than the recessed portion.
In some configurations, the discharge valve member includes a fixed portion and a movable portion. The movable portion may be deflectable relative to the fixed portion between the open and closed positions.
In some configurations, the tip portion of the valve backer contacts the movable portion and retains the movable portion in contact with a valve seat during the first portion of the rotation of the driveshaft. The recessed portion may be axially aligned with the movable portion during the second portion of the rotation of the driveshaft.
In some configurations, the valve backer includes a recess that at least partially receives an eccentric crank pin of the driveshaft.
In some configurations, the compressor includes a spring disposed within the recess and contacting the valve backer and an axial end of the eccentric crank pin.
In some configurations, the valve backer and the eccentric crank pin are disposed within an annular hub of the orbiting scroll. The annular hub extends from the second end plate in a direction opposite the second spiral wrap.
The fluid pockets defined by the first and second spiral wraps move from a radially outermost position, to a radially intermediate position, to a radially innermost position. In some configurations, the discharge passage receives fluid from the fluid pocket at the radially innermost position.
In some configurations, the valve backer is rotationally fixed relative to the driveshaft.
In some configurations, the valve backer and the driveshaft are separate and discrete components that are attached to each other. In other configurations, the valve backer could be integrally formed with the driveshaft.
The present disclosure also provides a compressor that may include a non-orbiting scroll, an orbiting scroll, a driveshaft, a discharge valve member, and a valve backer. The non-orbiting scroll includes a first end plate and a first spiral wrap extending from the first end plate. The orbiting scroll includes a second end plate and a second spiral wrap extending from the second end plate. The first and second spiral wraps mesh with each other to define a plurality of fluid pockets therebetween. The second end plate includes a discharge passage extending therethrough. The driveshaft drives the orbiting scroll and rotates relative to the orbiting scroll. The discharge valve member may be movable between an open position allowing fluid flow through the discharge passage and a closed position restricting fluid flow through the discharge passage. The valve backer may be movable relative to the discharge valve member and the second end plate to force the discharge valve member into the closed position during a first portion of a rotation of the driveshaft and allow the discharge valve member to move into the open position during a second portion of the rotation of the driveshaft.
In some configurations, the valve backer is rotationally fixed relative to the driveshaft.
In some configurations, the valve backer includes an axial end surface having a tip portion and a recessed portion. The tip portion is disposed closer to the second end plate than the recessed portion.
In some configurations, the discharge valve member includes a fixed portion and a movable portion. The movable portion may be deflectable relative to the fixed portion between the open and closed positions.
In some configurations, the tip portion of the valve backer contacts the movable portion and retains the movable portion in contact with a valve seat during the first portion of the rotation of the driveshaft. The recessed portion may be axially aligned with the movable portion during the second portion of the rotation of the driveshaft.
In some configurations, the valve backer includes a recess that at least partially receives an eccentric crank pin of the driveshaft.
In some configurations, the compressor includes a spring disposed within the recess and contacting the valve backer and an axial end of the eccentric crank pin.
In some configurations, the valve backer and the eccentric crank pin are disposed within an annular hub of the orbiting scroll. The annular hub extends from the second end plate in a direction opposite the second spiral wrap.
The fluid pockets defined by the first and second spiral wraps move from a radially outermost position, to a radially intermediate position, to a radially innermost position. In some configurations, the discharge passage receives fluid from a fluid pocket at the radially innermost position.
In some configurations, the valve backer and the driveshaft are separate and discrete components that are attached to each other. In other configurations, the valve backer could be integrally formed with the driveshaft.
The present disclosure also provides a compressor that may include a non-orbiting scroll, an orbiting scroll, a driveshaft, and a discharge valve member. The non-orbiting scroll includes a first end plate and a first spiral wrap extending from the first end plate. The orbiting scroll includes a second end plate and a second spiral wrap extending from the second end plate. The first and second spiral wraps mesh with each other to define a plurality of fluid pockets therebetween. The second end plate includes a discharge passage that is open to one of the fluid pockets and extends through the second end plate. The driveshaft drives the orbiting scroll. The discharge valve member may be movable between an open position allowing fluid flow from the discharge passage to a discharge chamber and a closed position restricting fluid flow from the discharge passage to the discharge chamber. The discharge valve member may move into the open position in response to a pressure differential between the one of the fluid pockets and the discharge chamber rising above a predetermined value. Movement of the discharge valve member into the closed position may be based on a rotational position of the driveshaft and is independent of the pressure differential between the one of the fluid pockets and the discharge chamber.
In some configurations, the compressor includes a valve backer rotationally fixed relative to the driveshaft and movable relative to the discharge valve member and the second end plate to force the discharge valve member into the closed position during a first portion of a rotation of the driveshaft and allow the discharge valve member to move into the open position during a second portion of the rotation of the driveshaft.
In some configurations, the valve backer includes an axial end surface having a tip portion and a recessed portion.
In some configurations, the tip portion is disposed closer to the second end plate than the recessed portion.
In some configurations, the discharge valve member includes a fixed portion and a movable portion.
In some configurations, the movable portion is deflectable relative to the fixed portion between the open and closed positions.
In some configurations, the tip portion of the valve backer contacts the movable portion and retains the movable portion in contact with a valve seat during the first portion of the rotation of the driveshaft. The recessed portion may be axially aligned with the movable portion during the second portion of the rotation of the driveshaft.
In some configurations, the valve backer and the driveshaft are separate and discrete components that are attached to each other. In other configurations, the valve backer could be integrally formed with the driveshaft.
The fluid pockets defined by the first and second spiral wraps move from a radially outermost position, to a radially intermediate position, to a radially innermost position. In some configurations, the discharge passage receives fluid from the fluid pocket at the radially innermost position.
The present disclosure also provides a compressor that may include a shell, a non-orbiting scroll, an orbiting scroll, and a discharge valve member. The shell may define a discharge chamber. The non-orbiting scroll may be disposed within the discharge chamber and includes a first end plate and a first spiral wrap extending from the first end plate. The orbiting scroll may be disposed within the discharge chamber and includes a second end plate and a second spiral wrap extending from the second end plate. The first and second spiral wraps mesh with each other to define a plurality of fluid pockets therebetween. The second end plate includes a discharge passage extending therethrough. The discharge valve member may be attached to the second end plate and may be movable between an open position allowing fluid flow from the discharge passage to the discharge chamber and a closed position restricting fluid flow from the discharge passage to the discharge chamber.
In some configurations, the discharge valve member moves into the open position in response to a pressure differential between the one of the fluid pockets and the discharge chamber rising above a predetermined value. Movement of the discharge valve member into the closed position may be based on a rotational position of a driveshaft (e.g., a driveshaft driving the orbiting scroll) and may be independent of the pressure differential between the one of the fluid pockets and the discharge chamber.
In some configurations, the compressor includes a valve backer rotationally fixed relative to the driveshaft and movable relative to the discharge valve member and the second end plate to force the discharge valve member into the closed position during a first portion of a rotation of the driveshaft and allow the discharge valve member to move into the open position during a second portion of the rotation of the driveshaft.
In some configurations, the valve backer includes an axial end surface having a tip portion and a recessed portion.
In some configurations, the tip portion is disposed closer to the second end plate than the recessed portion.
In some configurations, the discharge valve member includes a fixed portion and a movable portion.
In some configurations, the movable portion is deflectable relative to the fixed portion between the open and closed positions.
In some configurations, the tip portion of the valve backer contacts the movable portion and retains the movable portion in contact with a valve seat during the first portion of the rotation of the driveshaft.
In some configurations, the recessed portion is axially aligned with the movable portion during the second portion of the rotation of the driveshaft.
The fluid pockets defined by the first and second spiral wraps move from a radially outermost position, to a radially intermediate position, to a radially innermost position. In some configurations, the discharge passage receives fluid from the fluid pocket at the radially innermost position.
In some configurations, the compressor includes a driveshaft driving the orbiting scroll and rotating relative to the orbiting scroll. The discharge valve member may contact the driveshaft in the open position.
In some configurations, the discharge valve member includes a fixed portion and a movable portion. The movable portion is deflectable relative to the fixed portion between the open and closed positions. The movable portion contacts the driveshaft in the open position.
In some configurations, the movable portion contacts an axial end of the driveshaft in the open position.
In some configurations, the movable portion contacts an axial end of an eccentric crank pin of the driveshaft in the open position.
In some configurations, a surface that rotates relative to the orbiting scroll during operation of the compressor contacts the discharge valve member at least intermittently. In some configurations, the surface is an axial end surface of a crank pin of a driveshaft that drives the orbiting scroll. In some configurations, the surface is an axial end surface of a valve backer attached to an end of a driveshaft that drives the orbiting scroll.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
With reference to
The shell assembly 12 may define a high-pressure discharge chamber 24 (containing compressed working fluid) and may include a cylindrical shell 26, a first end cap 28 at one end thereof, and a base or second end cap 30 at another end thereof. A discharge fitting 32 may be attached to the shell assembly 12 and extend through a first opening in the shell assembly 12 to allow working fluid in the discharge chamber 24 to exit the compressor 10. For example, the discharge fitting 32 may extend through the second end cap 30, as shown in
The first and second bearing assemblies 14, 16 may be disposed entirely within the discharge chamber 24. The first bearing assembly 14 may include a first bearing housing 36 and a first bearing 38. The first bearing housing 36 may be fixed to the shell assembly 12. The first bearing housing 36 houses the first bearing 38 and axially supports the compression mechanism 20. The second bearing assembly 16 may include a second bearing housing 40 and a second bearing 42. The second bearing housing 40 is fixed to the shell assembly 12 and supports the second bearing 42.
The motor assembly 18 may be disposed entirely within the discharge chamber 24 and may include a motor stator 44, a rotor 46, and a driveshaft 48. The stator 44 may be fixedly attached (e.g., by press fit) to the shell 26. The rotor 46 may be press fit on the driveshaft 48 and may transmit rotational power to the driveshaft 48. The driveshaft 48 may include a main body 50 and an eccentric crank pin 52 extending from an axial end of the main body 50. The main body 50 is received in the first and second bearings 38, 42 and is rotatably supported by the first and second bearing assemblies 14, 16. Therefore, the first and second bearings 38, 42 define a rotational axis of the driveshaft 48. The crank pin 52 may engage the compression mechanism 20.
The compression mechanism 20 may be disposed entirely within the discharge chamber 24 and may include an orbiting scroll 54 and a non-orbiting scroll 56. The orbiting scroll 54 may include an end plate 58 having a spiral wrap 60 extending from a first side of the end plate 58. An annular hub 62 may extend from a second side of the end plate 58 and may include a cavity 63 in which a drive bearing 64, a drive bushing 66 and the crank pin 52 may be disposed. The drive bushing 66 may be received within the drive bearing 64. The crank pin 52 may be received within the drive bushing 66.
The end plate 58 of the orbiting scroll 54 may also include a discharge passage 67 that may be open to and disposed directly adjacent to the cavity 63. The discharge passage 67 is in communication with the discharge chamber 24 via the cavity 63. The cavity 63 is in communication with the discharge chamber 24 via gaps between the hub 62 and the drive bearing 64, between the drive bearing 64 and drive bushing 66, and/or between the drive bushing 66 and the crank pin 52. In some configurations, cavity 63 is in communication with the discharge chamber 24 via flow passages formed in any one or more of the hub 62, drive bearing 64, or drive bushing 66, for example.
An Oldham coupling 68 may be engaged with the end plate 58 and either the non-orbiting scroll 56 or the first bearing housing 36 to prevent relative rotation between the orbiting and non-orbiting scrolls 54, 56. The annular hub 62 may be axially supported by a thrust surface 70 of the first bearing housing 36. The annular hub 62 may movably engage a seal 72 attached to the first bearing housing 36 to define an intermediate-pressure cavity 73 between the first bearing housing 36 and the orbiting scroll 54.
The non-orbiting scroll 56 may include an end plate 78 and a spiral wrap 80 projecting from the end plate 78. The spiral wrap 80 may meshingly engage the spiral wrap 60 of the orbiting scroll 54, thereby creating a series of moving fluid pockets therebetween. The fluid pockets defined by the spiral wraps 60, 80 may decrease in volume as they move from a radially outer position 82 to a radially intermediate position 84 to a radially innermost position 86 throughout a compression cycle of the compression mechanism 20. The inlet fitting 34 is fluidly coupled with a suction inlet 77 in the end plate 78 and provides suction-pressure working fluid to the fluid pockets at the radially outer positions 82.
In some configurations, the end plate 78 of the non-orbiting scroll 56 may include a discharge passage 88. The discharge passage 67 in the orbiting scroll 54 and the discharge passage 88 in the non-orbiting scroll 56 may be in communication with the fluid pocket at the radially innermost position 86. The discharge passages 67, 88 are in communication with the discharge chamber 24 and provide compressed working fluid to the discharge chamber 24. In some configurations, the non-orbiting scroll 56 does not have the discharge passage 88. In such configurations, the end plate 58 of the orbiting scroll 54 may include multiple discharge passages 67.
As shown in
The discharge valve member 92 may be a reed valve, for example, and may be a relatively thin and resiliently flexible body having a fixed portion 100 and a movable portion 102. The fixed portion 100 may be fixed relative to the valve seat member 90 and the end plate 58. The movable portion 102 may resiliently deflect relative to the fixed portion 100, the valve seat member 90 and the end plate 58 between an open position (
While the discharge valve member 92 is described above as being a reed valve, in some configurations, the discharge valve member 92 could be another type of valve, such as a linearly movable disk, puck or ball, for example.
The retainer ring 94 may be an annular disk-shaped member and may be fixed to the hub 62 and/or the end plate 58. The retainer ring 94 may contact the valve seat member 90 and/or the fixed portion 100 of the discharge valve member 92 to axially retain the valve seat member 90 and the discharge valve member 92 relative to the end plate 58.
During operation of the compressor 10, fluid pressure within the radially innermost fluid pocket 86 may control movement of the discharge valve member 92 between the open and closed positions. That is, when a pressure differential between the radially innermost fluid pocket 86 and the discharge chamber 24 reaches or rises above a predetermined value, the fluid pressure within the radially innermost fluid pocket 86 may deflect the movable portion 102 of the discharge valve member 92 into the open position. When the pressure differential between the radially innermost fluid pocket 86 and the discharge chamber 24 falls below the predetermined value, the movable portion 102 of the discharge valve member 92 may spring back to the closed position.
As shown in
With reference to
Briefly, the compression mechanism 220 includes an orbiting scroll 254 and a non-orbiting scroll 256. Like the orbiting scroll 54, the orbiting scroll 254 includes an end plate 258, a spiral wrap 260 extending from one side of the end plate 258, and an annular hub 262 extending from the opposite side of the end plate 258. A discharge passage 267 extends through the end plate 258. Like the non-orbiting scroll 56, the non-orbiting scroll 256 includes an end plate 278 (
The discharge valve assembly 222 may include a valve seat member 290, a discharge valve member 292, a retainer ring 294, and a valve backer 296. The valve seat member 290 may be a disk-shaped member having an opening 297 in communication with the discharge passage 267 and the discharge chamber 224 (via cavity 263 defined by the hub 262). The valve seat member 290 may be fixedly attached to the end plate 258 of the orbiting scroll 254. The valve seat member 290 may define a valve seat 298 (
The discharge valve member 292 may be a reed valve, for example, and may be a relatively thin and resiliently flexible body having a fixed portion 300 and a movable portion 302. The fixed portion 300 may be fixed relative to the valve seat member 290 and the end plate 258. The movable portion 302 may resiliently deflect relative to the fixed portion 300, the valve seat member 290 and the end plate 258 between an open position (
While the discharge valve member 292 is described above as being a reed valve, in some configurations, the discharge valve member 292 could be another type of valve, such as a linearly movable disk, puck or ball, for example.
The retainer ring 294 may be an annular disk-shaped member and may be fixed to the hub 262 and/or the end plate 258. The retainer ring 294 may contact the valve seat member 290 and/or the fixed portion 300 of the discharge valve member 292 to axially retain the valve seat member 290 and the discharge valve member 292 relative to the end plate 258.
Pins 291 (
The valve backer 296 may be a generally cylindrical member having a first axial end 304 and a second axial end 306. The first axial end 304 may include a recess 308 in which an eccentric crank pin 252 of the driveshaft 248 is received. The crank pin 252 may include a flat surface 310 (
As shown in
While the valve backer 296 and driveshaft 248 are described above and shown in the figures as being separate and discrete components, in some configurations, the valve backer 296 and driveshaft 248 could be integrally formed. That is, the axial end of the crank pin 252 can be shaped to a tip portion and a recessed portion similar to that of the separate and distinct valve backer 296 described above.
During operation of the compressor 210, the driveshaft 248 and the valve backer 296 rotate together relative to the orbiting scroll 254. During a first portion of each 360-degree-rotation of the driveshaft 248 and valve backer 296, the tip portion 316 of the valve backer 296 is radially spaced apart (i.e., spaced apart in a direction perpendicular to the rotational axis of the driveshaft 248) from the opening 297 in the valve seat member 290 and the movable portion 302 of the discharge valve member 292, and the recessed portion 318 of the valve backer 296 is generally aligned with the opening 297 in the valve seat member 290 and the movable portion 302 of the discharge valve member 292, as shown in
During a second portion of each 360-degree-rotation of the driveshaft 248 and valve backer 296, the tip portion 316 of the valve backer 296 is in contact with the movable portion 302 of the discharge valve member 292, which forces the movable portion 302 into the closed position and restricts or prevents the movable portion 302 from moving toward the open position, as shown in
Closing the discharge valve member 292 using the valve backer 296 in the manner described above reduces noise during operation of the compressor 210 and improves the efficiency of the compressor 210. That is, closing the discharge valve member 292 using the valve backer 296 may reduce the closing velocity of the movable portion 302 of the discharge valve member 292, which reduces the noise generated when the movable portion 302 impacts the valve seat 298. Furthermore, closing the discharge valve member 292 using the valve backer 296 may reduce a delay associated with valve closing. That is, the tip portion 316 and recessed portion 318 of the valve backer 296 can be shaped and positioned such that the discharge valve member 292 is closed at an more optimal time, which can reduce backflow through the discharge passage 267 (i.e., reduce flow of working fluid from the discharge chamber 224 to the radially innermost fluid pocket 286). Reducing backflow improves the efficiency of the compressor 210.
The valve backer 296 allows the opening of the discharge valve member 292 to vary depending on operating conditions (i.e., operating pressure ratio) of the compressor 210 and the climate-control system in which the compressor 210 is installed. However, the closing of the discharge valve member 292 with the valve backer 296 is defined by the geometry of the valve backer 296 and the rotational position of the driveshaft 248, and therefore, is independent of operating conditions of the compressor 210 and the climate-control system in which the compressor 210 is installed. The geometry of the valve backer 296 (i.e., the positioning and shapes of the tip portion 316 and recessed portion 318) can be tailored based on scroll geometry to prevent backflow and to suit a given application.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application claims the benefit of U.S. Provisional Application No. 62/455,679, filed on Feb. 7, 2017. The entire disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4058988 | Shaw | Nov 1977 | A |
4216661 | Tojo et al. | Aug 1980 | A |
4382370 | Suefuji et al. | May 1983 | A |
4383805 | Teegarden et al. | May 1983 | A |
4389171 | Eber et al. | Jun 1983 | A |
4466784 | Hiraga | Aug 1984 | A |
4475360 | Suefuji et al. | Oct 1984 | A |
4475875 | Sugimoto et al. | Oct 1984 | A |
4497615 | Griffith | Feb 1985 | A |
4545742 | Schaefer | Oct 1985 | A |
4547138 | Mabe et al. | Oct 1985 | A |
4552518 | Utter | Nov 1985 | A |
4564339 | Nakamura et al. | Jan 1986 | A |
4580949 | Maruyama et al. | Apr 1986 | A |
4609329 | Pillis et al. | Sep 1986 | A |
4650405 | Iwanami et al. | Mar 1987 | A |
4696630 | Sakata et al. | Sep 1987 | A |
4727725 | Nagata et al. | Mar 1988 | A |
4774816 | Uchikawa et al. | Oct 1988 | A |
4818195 | Murayama et al. | Apr 1989 | A |
4824344 | Kimura et al. | Apr 1989 | A |
4838773 | Noboru | Jun 1989 | A |
4842499 | Nishida et al. | Jun 1989 | A |
4846633 | Suzuki et al. | Jul 1989 | A |
4877382 | Caillat et al. | Oct 1989 | A |
4886425 | Itahana et al. | Dec 1989 | A |
4886433 | Maier | Dec 1989 | A |
4898520 | Nieter et al. | Feb 1990 | A |
4927339 | Riffe et al. | May 1990 | A |
4940395 | Yamamoto et al. | Jul 1990 | A |
4954057 | Caillat et al. | Sep 1990 | A |
4990071 | Sugimoto | Feb 1991 | A |
5024589 | Jetzer et al. | Jun 1991 | A |
5040952 | Inoue et al. | Aug 1991 | A |
5040958 | Arata et al. | Aug 1991 | A |
5055010 | Logan | Oct 1991 | A |
5059098 | Suzuki et al. | Oct 1991 | A |
5071323 | Sakashita et al. | Dec 1991 | A |
5074760 | Hirooka et al. | Dec 1991 | A |
5080056 | Kramer et al. | Jan 1992 | A |
5085565 | Barito | Feb 1992 | A |
5098265 | Machida et al. | Mar 1992 | A |
5145346 | Iio et al. | Sep 1992 | A |
5152682 | Morozumi et al. | Oct 1992 | A |
RE34148 | Terauchi et al. | Dec 1992 | E |
5169294 | Barito | Dec 1992 | A |
5171141 | Morozumi et al. | Dec 1992 | A |
5192195 | Iio et al. | Mar 1993 | A |
5193987 | Iio et al. | Mar 1993 | A |
5199862 | Kondo et al. | Apr 1993 | A |
5213489 | Kawahara et al. | May 1993 | A |
5240389 | Oikawa et al. | Aug 1993 | A |
5253489 | Yoshii | Oct 1993 | A |
5304047 | Shibamoto | Apr 1994 | A |
5318424 | Bush et al. | Jun 1994 | A |
5330463 | Hirano | Jul 1994 | A |
5336068 | Sekiya et al. | Aug 1994 | A |
5340287 | Kawahara et al. | Aug 1994 | A |
5356271 | Miura et al. | Oct 1994 | A |
5411384 | Bass et al. | May 1995 | A |
5425626 | Tojo et al. | Jun 1995 | A |
5427512 | Kohsokabe et al. | Jun 1995 | A |
5451146 | Inagaki et al. | Sep 1995 | A |
5458471 | Ni | Oct 1995 | A |
5458472 | Kobayashi et al. | Oct 1995 | A |
5482637 | Rao et al. | Jan 1996 | A |
5511959 | Tojo et al. | Apr 1996 | A |
5547354 | Shimizu et al. | Aug 1996 | A |
5551846 | Taylor et al. | Sep 1996 | A |
5557897 | Kranz et al. | Sep 1996 | A |
5562426 | Watanabe et al. | Oct 1996 | A |
5577897 | Inagaki et al. | Nov 1996 | A |
5607288 | Wallis et al. | Mar 1997 | A |
5611674 | Bass et al. | Mar 1997 | A |
5613841 | Bass et al. | Mar 1997 | A |
5624247 | Nakamura | Apr 1997 | A |
5639225 | Matsuda et al. | Jun 1997 | A |
5640854 | Fogt et al. | Jun 1997 | A |
5649817 | Yamazaki | Jul 1997 | A |
5674058 | Matsuda et al. | Oct 1997 | A |
5678985 | Brooke et al. | Oct 1997 | A |
5707210 | Ramsey et al. | Jan 1998 | A |
5722257 | Ishii et al. | Mar 1998 | A |
5741120 | Bass et al. | Apr 1998 | A |
5775893 | Takao et al. | Jul 1998 | A |
5842843 | Haga | Dec 1998 | A |
5855475 | Fujio et al. | Jan 1999 | A |
5885063 | Makino et al. | Mar 1999 | A |
5888057 | Kitano et al. | Mar 1999 | A |
5938417 | Takao et al. | Aug 1999 | A |
5993171 | Higashiyama | Nov 1999 | A |
5993177 | Terauchi et al. | Nov 1999 | A |
6030192 | Hill et al. | Feb 2000 | A |
6047557 | Pham et al. | Apr 2000 | A |
6068459 | Clarke et al. | May 2000 | A |
6086335 | Bass et al. | Jul 2000 | A |
6093005 | Nakamura | Jul 2000 | A |
6095765 | Khalifa | Aug 2000 | A |
6102671 | Yamamoto et al. | Aug 2000 | A |
6123517 | Brooke et al. | Sep 2000 | A |
6123528 | Sun et al. | Sep 2000 | A |
6132179 | Higashiyama | Oct 2000 | A |
6139287 | Kuroiwa et al. | Oct 2000 | A |
6139291 | Perevozchikov | Oct 2000 | A |
6149401 | Iwanami et al. | Nov 2000 | A |
6152714 | Mitsuya et al. | Nov 2000 | A |
6164940 | Terauchi et al. | Dec 2000 | A |
6174149 | Bush | Jan 2001 | B1 |
6176686 | Wallis et al. | Jan 2001 | B1 |
6179589 | Bass et al. | Jan 2001 | B1 |
6202438 | Barito | Mar 2001 | B1 |
6210120 | Hugenroth et al. | Apr 2001 | B1 |
6213731 | Doepker et al. | Apr 2001 | B1 |
6231316 | Wakisaka et al. | May 2001 | B1 |
6257840 | Ignatiev et al. | Jul 2001 | B1 |
6264444 | Nakane et al. | Jul 2001 | B1 |
6267565 | Seibel et al. | Jul 2001 | B1 |
6273691 | Morimoto et al. | Aug 2001 | B1 |
6280154 | Clendenin et al. | Aug 2001 | B1 |
6290477 | Gigon | Sep 2001 | B1 |
6293767 | Bass | Sep 2001 | B1 |
6293776 | Hahn et al. | Sep 2001 | B1 |
6309194 | Fraser et al. | Oct 2001 | B1 |
6322340 | Itoh et al. | Nov 2001 | B1 |
6338912 | Ban et al. | Jan 2002 | B1 |
6350111 | Perevozchikov et al. | Feb 2002 | B1 |
6361890 | Ban et al. | Mar 2002 | B1 |
6379123 | Makino et al. | Apr 2002 | B1 |
6389837 | Morozumi | May 2002 | B1 |
6412293 | Pham et al. | Jul 2002 | B1 |
6413058 | Williams et al. | Jul 2002 | B1 |
6419457 | Seibel et al. | Jul 2002 | B1 |
6428286 | Shimizu et al. | Aug 2002 | B1 |
6454551 | Kuroki et al. | Sep 2002 | B2 |
6457948 | Pham | Oct 2002 | B1 |
6464481 | Tsubai et al. | Oct 2002 | B2 |
6478550 | Matsuba et al. | Nov 2002 | B2 |
6506036 | Tsubai et al. | Jan 2003 | B2 |
6514060 | Ishiguro et al. | Feb 2003 | B1 |
6537043 | Chen | Mar 2003 | B1 |
6544016 | Gennami et al. | Apr 2003 | B2 |
6558143 | Nakajima et al. | May 2003 | B2 |
6589035 | Tsubono et al. | Jul 2003 | B1 |
6619062 | Shibamoto et al. | Sep 2003 | B1 |
6679683 | Seibel et al. | Jan 2004 | B2 |
6705848 | Scancarello | Mar 2004 | B2 |
6715999 | Ancel et al. | Apr 2004 | B2 |
6746223 | Manole | Jun 2004 | B2 |
6769881 | Lee | Aug 2004 | B2 |
6769888 | Tsubono et al. | Aug 2004 | B2 |
6773242 | Perevozchikov | Aug 2004 | B1 |
6817847 | Agner | Nov 2004 | B2 |
6821092 | Gehret et al. | Nov 2004 | B1 |
6863510 | Cho | Mar 2005 | B2 |
6881046 | Shibamoto et al. | Apr 2005 | B2 |
6884042 | Zili et al. | Apr 2005 | B2 |
6887051 | Sakuda et al. | May 2005 | B2 |
6893229 | Choi et al. | May 2005 | B2 |
6896493 | Chang et al. | May 2005 | B2 |
6896498 | Patel | May 2005 | B1 |
6913448 | Liang et al. | Jul 2005 | B2 |
6984114 | Zili et al. | Jan 2006 | B2 |
7018180 | Koo | Mar 2006 | B2 |
7029251 | Chang et al. | Apr 2006 | B2 |
7118358 | Tsubono et al. | Oct 2006 | B2 |
7137796 | Tsubono et al. | Nov 2006 | B2 |
7160088 | Peyton | Jan 2007 | B2 |
7172395 | Shibamoto et al. | Feb 2007 | B2 |
7207787 | Liang et al. | Apr 2007 | B2 |
7229261 | Morimoto et al. | Jun 2007 | B2 |
7255542 | Lifson et al. | Aug 2007 | B2 |
7261527 | Alexander et al. | Aug 2007 | B2 |
7311740 | Williams et al. | Dec 2007 | B2 |
7344365 | Takeuchi et al. | Mar 2008 | B2 |
RE40257 | Doepker et al. | Apr 2008 | E |
7354259 | Tsubono et al. | Apr 2008 | B2 |
7364416 | Liang et al. | Apr 2008 | B2 |
7371057 | Shin et al. | May 2008 | B2 |
7371059 | Ignatiev et al. | May 2008 | B2 |
RE40399 | Hugenroth et al. | Jun 2008 | E |
RE40400 | Bass et al. | Jun 2008 | E |
7393190 | Lee et al. | Jul 2008 | B2 |
7404706 | Ishikawa et al. | Jul 2008 | B2 |
RE40554 | Bass et al. | Oct 2008 | E |
7510382 | Jeong | Mar 2009 | B2 |
7547202 | Knapke | Jun 2009 | B2 |
7695257 | Joo et al. | Apr 2010 | B2 |
7717687 | Reinhart | May 2010 | B2 |
7771178 | Perevozchikov et al. | Aug 2010 | B2 |
7802972 | Shimizu et al. | Sep 2010 | B2 |
7815423 | Guo et al. | Oct 2010 | B2 |
7891961 | Shimizu et al. | Feb 2011 | B2 |
7896629 | Ignatiev et al. | Mar 2011 | B2 |
RE42371 | Peyton | May 2011 | E |
7956501 | Jun et al. | Jun 2011 | B2 |
7967582 | Akei et al. | Jun 2011 | B2 |
7967583 | Stover et al. | Jun 2011 | B2 |
7972125 | Stover et al. | Jul 2011 | B2 |
7976289 | Masao | Jul 2011 | B2 |
7976295 | Stover et al. | Jul 2011 | B2 |
7988433 | Akei et al. | Aug 2011 | B2 |
8025492 | Seibel et al. | Sep 2011 | B2 |
8303278 | Roof et al. | Nov 2012 | B2 |
8303279 | Hahn | Nov 2012 | B2 |
8308448 | Fields et al. | Nov 2012 | B2 |
8328531 | Milliff et al. | Dec 2012 | B2 |
8393882 | Ignatiev et al. | Mar 2013 | B2 |
8506271 | Seibel et al. | Aug 2013 | B2 |
8517703 | Doepker | Aug 2013 | B2 |
8585382 | Akei et al. | Nov 2013 | B2 |
8616014 | Stover et al. | Dec 2013 | B2 |
8790098 | Stover et al. | Jul 2014 | B2 |
8840384 | Patel et al. | Sep 2014 | B2 |
8857200 | Stover et al. | Oct 2014 | B2 |
8932036 | Monnier et al. | Jan 2015 | B2 |
9127677 | Doepker | Sep 2015 | B2 |
9145891 | Kim et al. | Sep 2015 | B2 |
9249802 | Doepker et al. | Feb 2016 | B2 |
9303642 | Akei et al. | Apr 2016 | B2 |
9435340 | Doepker et al. | Sep 2016 | B2 |
9494157 | Doepker | Nov 2016 | B2 |
9605677 | Heidecker et al. | Mar 2017 | B2 |
9624928 | Yamazaki et al. | Apr 2017 | B2 |
9651043 | Stover et al. | May 2017 | B2 |
9777730 | Doepker et al. | Oct 2017 | B2 |
9790940 | Doepker et al. | Oct 2017 | B2 |
9879674 | Akei et al. | Jan 2018 | B2 |
9989057 | Lochner et al. | Jun 2018 | B2 |
10066622 | Pax et al. | Sep 2018 | B2 |
10087936 | Pax et al. | Oct 2018 | B2 |
10094380 | Doepker et al. | Oct 2018 | B2 |
20010010800 | Kohsokabe et al. | Aug 2001 | A1 |
20020039540 | Kuroki et al. | Apr 2002 | A1 |
20030044296 | Chen | Mar 2003 | A1 |
20030044297 | Gennami | Mar 2003 | A1 |
20030186060 | Rao | Oct 2003 | A1 |
20030228235 | Sowa et al. | Dec 2003 | A1 |
20040126259 | Choi et al. | Jul 2004 | A1 |
20040136854 | Kimura et al. | Jul 2004 | A1 |
20040146419 | Kawaguchi et al. | Jul 2004 | A1 |
20040170509 | Wehrenberg et al. | Sep 2004 | A1 |
20040184932 | Lifson | Sep 2004 | A1 |
20040197204 | Yamanouchi et al. | Oct 2004 | A1 |
20050019177 | Shin et al. | Jan 2005 | A1 |
20050019178 | Shin et al. | Jan 2005 | A1 |
20050053507 | Takeuchi et al. | Mar 2005 | A1 |
20050069444 | Peyton | Mar 2005 | A1 |
20050140232 | Lee et al. | Jun 2005 | A1 |
20050201883 | Clendenin et al. | Sep 2005 | A1 |
20050214148 | Ogawa et al. | Sep 2005 | A1 |
20060099098 | Lee et al. | May 2006 | A1 |
20060138879 | Kusase et al. | Jun 2006 | A1 |
20060198748 | Grassbaugh et al. | Sep 2006 | A1 |
20060228243 | Sun et al. | Oct 2006 | A1 |
20060233657 | Bonear et al. | Oct 2006 | A1 |
20070036661 | Stover | Feb 2007 | A1 |
20070110604 | Peyton | May 2007 | A1 |
20070130973 | Lifson et al. | Jun 2007 | A1 |
20080115357 | Li et al. | May 2008 | A1 |
20080138227 | Knapke | Jun 2008 | A1 |
20080159892 | Huang et al. | Jul 2008 | A1 |
20080159893 | Caillat | Jul 2008 | A1 |
20080196445 | Lifson et al. | Aug 2008 | A1 |
20080223057 | Lifson et al. | Sep 2008 | A1 |
20080226483 | Iwanami et al. | Sep 2008 | A1 |
20080305270 | Uhlianuk et al. | Dec 2008 | A1 |
20090035167 | Sun | Feb 2009 | A1 |
20090068048 | Stover et al. | Mar 2009 | A1 |
20090071183 | Stover et al. | Mar 2009 | A1 |
20090185935 | Seibel et al. | Jul 2009 | A1 |
20090191080 | Ignatiev et al. | Jul 2009 | A1 |
20090297377 | Stover et al. | Dec 2009 | A1 |
20090297378 | Stover et al. | Dec 2009 | A1 |
20090297379 | Stover et al. | Dec 2009 | A1 |
20090297380 | Stover et al. | Dec 2009 | A1 |
20100111741 | Chikano et al. | May 2010 | A1 |
20100135836 | Stover et al. | Jun 2010 | A1 |
20100158731 | Akei et al. | Jun 2010 | A1 |
20100209278 | Tarao et al. | Aug 2010 | A1 |
20100212311 | McQuary et al. | Aug 2010 | A1 |
20100212352 | Kim et al. | Aug 2010 | A1 |
20100254841 | Akei et al. | Oct 2010 | A1 |
20100300659 | Stover et al. | Dec 2010 | A1 |
20100303659 | Stover et al. | Dec 2010 | A1 |
20110135509 | Fields et al. | Jun 2011 | A1 |
20110206548 | Doepker | Aug 2011 | A1 |
20110243777 | Ito et al. | Oct 2011 | A1 |
20110250085 | Stover et al. | Oct 2011 | A1 |
20110293456 | Seibel et al. | Dec 2011 | A1 |
20120009076 | Kim et al. | Jan 2012 | A1 |
20120107163 | Monnier et al. | May 2012 | A1 |
20120183422 | Bahmata | Jul 2012 | A1 |
20120195781 | Stover et al. | Aug 2012 | A1 |
20130078128 | Akei | Mar 2013 | A1 |
20130089448 | Ginies et al. | Apr 2013 | A1 |
20130094987 | Yamashita et al. | Apr 2013 | A1 |
20130121857 | Liang et al. | May 2013 | A1 |
20130302198 | Ginies et al. | Nov 2013 | A1 |
20130309118 | Ginies et al. | Nov 2013 | A1 |
20130315768 | Le Coat et al. | Nov 2013 | A1 |
20140023540 | Heidecker et al. | Jan 2014 | A1 |
20140024563 | Heidecker et al. | Jan 2014 | A1 |
20140037486 | Stover et al. | Feb 2014 | A1 |
20140134030 | Stover et al. | May 2014 | A1 |
20140134031 | Doepker et al. | May 2014 | A1 |
20140147294 | Fargo et al. | May 2014 | A1 |
20140154121 | Doepker | Jun 2014 | A1 |
20140154124 | Doepker et al. | Jun 2014 | A1 |
20150037184 | Rood et al. | Feb 2015 | A1 |
20150086404 | Kiem et al. | Mar 2015 | A1 |
20150192121 | Sung et al. | Jul 2015 | A1 |
20150330386 | Doepker | Nov 2015 | A1 |
20150345493 | Lochner et al. | Dec 2015 | A1 |
20150354719 | van Beek et al. | Dec 2015 | A1 |
20160025093 | Doepker | Jan 2016 | A1 |
20160025094 | Ignatiev et al. | Jan 2016 | A1 |
20160047380 | Kim et al. | Feb 2016 | A1 |
20160053759 | Choi et al. | Feb 2016 | A1 |
20160076543 | Akei et al. | Mar 2016 | A1 |
20160115954 | Doepker et al. | Apr 2016 | A1 |
20160138879 | Matsukado et al. | May 2016 | A1 |
20160201673 | Perevozchikov et al. | Jul 2016 | A1 |
20170002817 | Stover | Jan 2017 | A1 |
20170002818 | Stover | Jan 2017 | A1 |
20170030354 | Stover | Feb 2017 | A1 |
20170241417 | Jin et al. | Aug 2017 | A1 |
20170268510 | Stover et al. | Sep 2017 | A1 |
20170306960 | Pax et al. | Oct 2017 | A1 |
20170314558 | Pax et al. | Nov 2017 | A1 |
20170342978 | Doepker | Nov 2017 | A1 |
20170342983 | Jin et al. | Nov 2017 | A1 |
20170342984 | Jin et al. | Nov 2017 | A1 |
20180023570 | Huang et al. | Jan 2018 | A1 |
20180038369 | Doepker et al. | Feb 2018 | A1 |
20180038370 | Doepker et al. | Feb 2018 | A1 |
20180066656 | Perevozchikov et al. | Mar 2018 | A1 |
20180066657 | Perevozchikov et al. | Mar 2018 | A1 |
20180149155 | Akei et al. | May 2018 | A1 |
20190040861 | Doepker et al. | Feb 2019 | A1 |
20190101120 | Perevozchikov et al. | Apr 2019 | A1 |
20190186491 | Perevozchikov et al. | Jun 2019 | A1 |
20190203709 | Her et al. | Jul 2019 | A1 |
20190353164 | Berning et al. | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
1137614 | Dec 1996 | CN |
1158944 | Sep 1997 | CN |
1158945 | Sep 1997 | CN |
1177681 | Apr 1998 | CN |
1177683 | Apr 1998 | CN |
1259625 | Jul 2000 | CN |
1286358 | Mar 2001 | CN |
1289011 | Mar 2001 | CN |
1339087 | Mar 2002 | CN |
1349053 | May 2002 | CN |
1382912 | Dec 2002 | CN |
1407233 | Apr 2003 | CN |
1517553 | Aug 2004 | CN |
1680720 | Oct 2005 | CN |
1702328 | Nov 2005 | CN |
2747381 | Dec 2005 | CN |
1757925 | Apr 2006 | CN |
1828022 | Sep 2006 | CN |
1854525 | Nov 2006 | CN |
1963214 | May 2007 | CN |
1995756 | Jul 2007 | CN |
101358592 | Feb 2009 | CN |
101684785 | Mar 2010 | CN |
101761479 | Jun 2010 | CN |
101806302 | Aug 2010 | CN |
101910637 | Dec 2010 | CN |
102076963 | May 2011 | CN |
102089525 | Jun 2011 | CN |
102272454 | Dec 2011 | CN |
102400915 | Apr 2012 | CN |
102422024 | Apr 2012 | CN |
102449314 | May 2012 | CN |
102705234 | Oct 2012 | CN |
102762866 | Oct 2012 | CN |
202926640 | May 2013 | CN |
103502644 | Jan 2014 | CN |
103671125 | Mar 2014 | CN |
203962320 | Nov 2014 | CN |
204041454 | Dec 2014 | CN |
104838143 | Aug 2015 | CN |
105317678 | Feb 2016 | CN |
205533207 | Aug 2016 | CN |
205823629 | Dec 2016 | CN |
205876712 | Jan 2017 | CN |
205876713 | Jan 2017 | CN |
205895597 | Jan 2017 | CN |
209621603 | Nov 2019 | CN |
209654225 | Nov 2019 | CN |
3917656 | Nov 1995 | DE |
102011001394 | Sep 2012 | DE |
0747598 | Dec 1996 | EP |
0822335 | Feb 1998 | EP |
1067289 | Jan 2001 | EP |
1087142 | Mar 2001 | EP |
1182353 | Feb 2002 | EP |
1241417 | Sep 2002 | EP |
1371851 | Dec 2003 | EP |
1382854 | Jan 2004 | EP |
2151577 | Feb 2010 | EP |
1927755 | Nov 2013 | EP |
2764347 | Dec 1998 | FR |
2107829 | May 1983 | GB |
S58214689 | Dec 1983 | JP |
S60259794 | Dec 1985 | JP |
S62220789 | Sep 1987 | JP |
S6385277 | Apr 1988 | JP |
S63205482 | Aug 1988 | JP |
H01178789 | Jul 1989 | JP |
H0281982 | Mar 1990 | JP |
H02153282 | Jun 1990 | JP |
H03081588 | Apr 1991 | JP |
03233101 | Oct 1991 | JP |
H04121478 | Apr 1992 | JP |
H04272490 | Sep 1992 | JP |
H0610601 | Jan 1994 | JP |
H0726618 | Mar 1995 | JP |
H7026618 | Mar 1995 | JP |
H07293456 | Nov 1995 | JP |
H08247053 | Sep 1996 | JP |
H8320079 | Dec 1996 | JP |
H08334094 | Dec 1996 | JP |
H09177689 | Jul 1997 | JP |
H11107950 | Apr 1999 | JP |
H11166490 | Jun 1999 | JP |
2951752 | Sep 1999 | JP |
H11324950 | Nov 1999 | JP |
2000104684 | Apr 2000 | JP |
2000161263 | Jun 2000 | JP |
2000329078 | Nov 2000 | JP |
2002202074 | Jul 2002 | JP |
2003074481 | Mar 2003 | JP |
2003074482 | Mar 2003 | JP |
2003106258 | Apr 2003 | JP |
2003214365 | Jul 2003 | JP |
2003227479 | Aug 2003 | JP |
2004239070 | Aug 2004 | JP |
2005264827 | Sep 2005 | JP |
2006083754 | Mar 2006 | JP |
2006183474 | Jul 2006 | JP |
2007154761 | Jun 2007 | JP |
2007228683 | Sep 2007 | JP |
2008248775 | Oct 2008 | JP |
2013104305 | May 2013 | JP |
2013167215 | Aug 2013 | JP |
1019870000015 | May 1985 | KR |
870000015 | Jan 1987 | KR |
20050027402 | Mar 2005 | KR |
20050095246 | Sep 2005 | KR |
100547323 | Jan 2006 | KR |
20100017008 | Feb 2010 | KR |
101192642 | Oct 2012 | KR |
20120115581 | Oct 2012 | KR |
20130094646 | Aug 2013 | KR |
WO-9515025 | Jun 1995 | WO |
WO-0073659 | Dec 2000 | WO |
WO-2007046810 | Apr 2007 | WO |
WO-2008060525 | May 2008 | WO |
WO-2009017741 | Feb 2009 | WO |
WO-2009155099 | Dec 2009 | WO |
WO-2010118140 | Oct 2010 | WO |
WO-2011106422 | Sep 2011 | WO |
WO-2012114455 | Aug 2012 | WO |
WO-2017071641 | May 2017 | WO |
Entry |
---|
Office Action regarding Chinese Patent Application No. 201180010366.1, dated Jun. 4, 2014. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201610516097.0, dated Jun. 27, 2017. Translation provided by Unitalen Attorneys at Law. |
Notice of Allowance regarding U.S. Appl. No. 15/186,092, dated Dec. 20, 2018. |
Office Action regarding Indian Patent Application No. 1306/MUMNP/2015, dated Dec. 31, 2018. |
Notice of Allowance regarding U.S. Appl. No. 15/187,225, dated Jan. 3, 2019. |
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Feb. 1, 2019. Translation provided by Unitalen Attorneys at Law. |
Notice of Allowance regarding U.S. Appl. No. 15/784,458, dated Feb. 7, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/784,540, dated Feb. 7, 2019. |
Search Report regarding European Patent Application No. 18198310.7, dated Feb. 27, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Mar. 19, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/186,092, dated Apr. 19, 2019. |
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Apr. 29, 2019. Translation provided by Unitalen Attorneys at Law. |
Notice of Allowance regarding U.S. Appl. No. 15/187,225, dated May 2, 2019. |
Office Action regarding U.S. Appl. No. 15/587,735, dated May 17, 2019. |
Office Action regarding Chinese Patent Application No. 201811011292.3, dated Jun. 21, 2019. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding European Patent Application No. 11747996.4, dated Jun. 26, 2019. |
U.S. Appl. No. 16/147,920, filed Oct. 1, 2018, Michael M. Perevozchikov et al. |
U.S. Appl. No. 16/154,406, filed Oct. 8, 2018, Roy J. Doepker et al. |
U.S. Appl. No. 16/154,844, filed Oct. 9, 2018, Jeffrey Lee Berning et al. |
U.S. Appl. No. 16/177,902, filed Nov. 1, 2018, Michael M. Perevozchikov et al. |
Luckevich, Mark, “MEMS microvalves: the new valve world.” Valve World, May 2007, pp. 79-83. |
Extended European Search Report regarding Application No. EP07254962, dated Mar. 12, 2008. |
U.S. Office Action regarding U.S. Appl. No. 11/645,288, dated Nov. 30, 2009. |
First China Office Action regarding Application No. 200710160038.5, dated Jul. 8, 2010. Translation provided by Unitalen Attorneys At Law. |
International Search Report regarding Application No. PCT/US2010/030248, dated Nov. 26, 2010. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2010/030248, dated Nov. 26, 2010. |
International Search Report regarding Application No. PCT/US2011/025921, dated Oct. 7, 2011. |
Written Opinion of the International Search Authority regarding Application No. PCT/US2011/025921, dated Oct. 7, 2011. |
China Office Action regarding Application No. 200710160038.5, dated Jan. 31, 2012. Translation provided by Unitalen Attorneys At Law. |
U.S. Office Action regarding U.S. Appl. No. 13/181,065, dated Nov. 9, 2012. |
International Search Report regarding Application No. PCT/US2013/051678, dated Oct. 21, 2013. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/051678, dated Oct. 21, 2013. |
China Office Action regarding Application No. 201080020243.1, dated Nov. 5, 2013. Translation provided by Unitalen Attorneys At Law. |
International Search Report regarding Application No. PCT/US2013/069456, dated Feb. 18, 2014. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/069456, dated Feb. 18, 2014. |
International Search Report regarding Application No. PCT/US2013/069462, dated Feb. 21, 2014. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/069462, dated Feb. 21, 2014. |
International Search Report regarding Application No. PCT/US2013/070992, dated Feb. 25, 2014. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/070992, dated Feb. 25, 2014. |
International Search Report regarding Application No. PCT/US2013/070981, dated Mar. 4, 2014. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/070981, dated Mar. 4, 2014. |
Second Office Action regarding China Application No. 201180010366.1, dated Dec. 31, 2014. Translation provided by Unitalen Attorneys At Law. |
Office Action regarding U.S. Appl. No. 14/081,390, dated Mar. 27, 2015. |
Search Report regarding European Patent Application No. 10762374.6-1608 / 2417356 PCT/US2010030248, dated Jun. 16, 2015. |
Office Action regarding U.S. Appl. No. 14/060,240, dated Aug. 12, 2015. |
International Search Report regarding International Application No. PCT/US2015/033960, dated Sep. 1, 2015. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2015/033960, dated Sep. 1, 2015. |
Office Action regarding U.S. Appl. No. 14/073,293, dated Sep. 25, 2015. |
Restriction Requirement regarding U.S. Appl. No. 14/060,102, dated Oct. 7, 2015. |
Office Action regarding Chinese Patent Application No. 201410461048.2, dated Nov. 30, 2015. Translation provided by Unitalen Attorneys at Law. |
Interview Summary regarding U.S. Appl. No. 14/060,240, dated Dec. 1, 2015. |
Office Action regarding U.S. Appl. No. 14/073,293, dated Jan. 29, 2016. |
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Feb. 25, 2016. Translation provided by Unitalen Attorneys at Law. |
Restriction Requirement regarding U.S. Appl. No. 14/060,102, dated Mar. 16, 2016. |
First Office Action regarding Chinese Application No. 201380059666.8, dated Apr. 5, 2016. Translation provided by Unitalen Attorneys At Law. |
First Office Action regarding Chinese Application No. 201380062614.6, dated Apr. 5, 2016. Translation provided by Unitalen Attorneys At Law. |
Advisory Action regarding U.S. Appl. No. 14/073,293, dated Apr. 18, 2016. |
Office Action regarding Chinese Patent Application No. 201380062657.4, dated May 4, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201380059963.2, dated May 10, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/060,102, dated Jun. 14, 2016. |
Office Action regarding U.S. Appl. No. 14/846,877, dated Jul. 15, 2016. |
Office Action regarding Chinese Patent Application No. 201410461048.2, dated Jul. 26, 2016. Translation provided by Unitalen Attorneys at Law. |
Search Report regarding European Patent Application No. 13858194.7, dated Aug. 3, 2016. |
Search Report regarding European Patent Application No. 13859308.2, dated Aug. 3, 2016. |
Office Action regarding U.S. Appl. No. 14/294,458, dated Aug. 19, 2016. |
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Oct. 21, 2016. Translation provided by Unitalen Attorneys At Law. |
Search Report regarding European Patent Application No. 11747996.4, dated Nov. 7, 2016. |
Office Action regarding Chinese Patent Application No. 201380059666.8, dated Nov. 23, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/060,102, dated Dec. 28, 2016. |
International Search Report regarding International Application No. PCT/CN2016/103763, dated Jan. 25, 2017. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/CN2016/103763, dated Jan. 25, 2017. |
Office Action regarding U.S. Appl. No. 15/156,400, dated Feb. 23, 2017. |
Office Action regarding U.S. Appl. No. 14/294,458, dated Feb. 28, 2017. |
Advisory Action regarding U.S. Appl. No. 14/060,102, dated Mar. 3, 2017. |
Office Action regarding U.S. Appl. No. 14/663,073, dated Apr. 11, 2017. |
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Apr. 24, 2017. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 14/946,824, dated May 10, 2017. |
Advisory Action regarding U.S. Appl. No. 14/294,458, dated Jun. 9, 2017. |
Office Action regarding Chinese Patent Application No. 201610703191.7, dated Jun. 13, 2017. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Indian Patent Application No. 2043/MUMNP/2011, dated Jul. 28, 2017. |
Office Action regarding U.S. Appl. No. 14/294,458, dated Sep. 21, 2017. |
Office Action regarding U.S. Appl. No. 14/757,407, dated Oct. 13, 2017. |
Office Action regarding Chinese Patent Application No. 201610158216.X, dated Oct. 30, 2017. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Nov. 1, 2017. Translation provided by Unitalen Attorneys At Law. |
Office Action regarding Chinese Patent Application No. 201610512702.7, dated Dec. 20, 2017. Partial translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Jan. 9, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201580029636.1, dated Jan. 17, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 15/646,654, dated Feb. 9, 2018. |
Office Action regarding U.S. Appl. No. 15/651,471 dated Feb. 23, 2018. |
Office Action regarding Indian Patent Application No. 1907/MUMNP/2012, dated Feb. 26, 2018. |
Election Requirement regarding U.S. Appl. No. 15/186,092, dated Apr. 3, 2018. |
Election Requirement regarding U.S. Appl. No. 15/784,458, dated Apr. 5, 2018. |
Office Action regarding Korean Patent Application No. 10-2016-7034539, dated Apr. 11, 2018. Translation provided by Y.S. Chang & Associates. |
Office Action regarding U.S. Appl. No. 15/186,151, dated May 3, 2018. |
Office Action regarding Chinese Patent Application No. 201610930347.5, dated May 14, 2018. Translation provided by Unitalen Attorneys at Law. |
Election/Restriction Requirement regarding U.S. Appl. No. 15/187,225, dated May 15, 2018. |
Notice of Allowance regarding U.S. Appl. No. 14/757,407, dated May 24, 2018. |
Office Action regarding Chinese Patent Application No. 201610158216.X, dated Jun. 13, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding European Patent Application No. 13859308.2, dated Jun. 22, 2018. |
Office Action regarding U.S. Appl. No. 15/186,092, dated Jun. 29, 2018. |
Notice of Allowance regarding U.S. Appl. No. 15/646,654, dated Jul. 11, 2018. |
Notice of Allowance regarding U.S. Appl. No. 15/651,471, dated Jul. 11, 2018. |
Office Action regarding U.S. Appl. No. 15/784,540, dated Jul. 17, 2018. |
Office Action regarding U.S. Appl. No. 15/784,458, dated Jul. 19, 2018. |
Election/Restriction Requirement regarding U.S. Appl. No. 15/587,735, dated Jul. 23, 2018. |
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Aug. 1, 2018. Translation provided by Unitalen Attorneys at Law. |
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 15/186,092, dated Aug. 14, 2018. |
Office Action regarding U.S. Appl. No. 15/187,225, dated Aug. 27, 2018. |
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Sep. 5, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Korean Patent Application No. 10-2016-7034539, dated Sep. 6, 2018. Translation provided by Y.S. Chang & Associates. |
Office Action regarding Indian Patent Application No. 1307/MUMNP/2015, dated Sep. 12, 2018. |
Office Action regarding Chinese Patent Application No. 201580029636.1, dated Oct. 8, 2018. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 15/587,735, dated Oct. 9, 2018. |
Office Action regarding U.S. Appl. No. 15/186,151, dated Nov. 1, 2018. |
Office Action regarding Korean Patent Application No. 10-2017-7033995, dated Nov. 29, 2018. Translation provided by KS KORYO International IP Law Firm. |
Office Action regarding Chinese Patent Application No. 201580041209.5, dated Jan. 17, 2018. Translation provided by Unitalen Attorneys at Law. |
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Jul. 25, 2019. |
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Aug. 1, 2019. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201811168307.7, dated Aug. 12, 2019. Translation provided by Unitalen Attorneys at Law. |
Restriction Requirement regarding U.S. Appl. No. 15/682,599, dated Aug. 14, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/587,735, dated Aug. 23, 2019. |
International Search Report regarding International Application No. PCT/US2019/032718, dated Aug. 23, 2019. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2019/032718, dated Aug. 23, 2019. |
Office Action regarding Chinese Patent Application No. 201780055443.2, dated Sep. 2, 2019. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 15/692,844, dated Sep. 20, 2019. |
U.S. Appl. No. 15/682,599, Perevozchikov et al. |
U.S. Appl. No. 15/692,844, Perevozchikov et al. |
Non-Final Office Action for U.S. Appl. No. 11/522,250, dated Aug. 1, 2007. |
Notification of the First Office Action received from the Chinese Patent Office dated Mar. 6, 2009 regarding Application No. 200710153687.2, translated by CCPIT Patent and Trademark Law Office. |
Non-Final Office Action for U.S. Appl. No. 12/103,265, dated May 27, 2009. |
Non-Final Office Action for U.S. Appl. No. 12/103,265, dated Dec. 17, 2009. |
Notice of Grounds for Rejection regarding Korean Patent Application No. 10-2007-0093478 dated Feb. 25, 2010. Translation provided by Y.S. Chang & Associates. |
Final Office Action for U.S. Appl. No. 12/103,265, dated Jun. 15, 2010. |
Final Preliminary Notice of Grounds for Rejection regarding Korean Patent Application No. 10-2007-0093478, dated Aug. 31, 2010. Translation provided by Y.S. Chang & Associates. |
Advisory Action for U.S. Appl. No. 12/103,265, dated Sep. 17, 2010. |
First Office Action regarding Chinese Patent Application No. 201010224582.3, dated Apr. 17, 2012. English translation provided by Unitalen Attorneys at Law. |
First Examination Report regarding India-Patent Application No. 1071/KOL/2007, dated Apr. 27, 2012. |
Non-Final Office Action for U.S. Appl. No. 13/0365,529, dated Aug. 22, 2012. |
International Search Report regarding International Application No. PCT/US2015/042479, dated Oct. 23, 2015. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2015/042479, dated Oct. 23, 2015. |
Restriction Requirement regarding U.S. Appl. No. 14/809,786, dated Aug. 16, 2017. |
International Search Report regarding International Application No. PCT/US2017/050525, dated Dec. 28, 2017. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2017/050525, dated Dec. 28, 2017. |
U.S. Appl. No. 14/809,786, filed Jul. 27, 2015, Kirill M. Ignatiev et al. |
U.S. Appl. No. 15/682,599, filed Aug. 22, 2017, Michael M. Perevozchikov et al. |
U.S. Appl. No. 15/692,844, filed Aug. 31, 2017, Michael M. Perevozchikov et al. |
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Oct. 28, 2019. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding European Patent Application No. 11747996.4, dated Nov. 5, 2019. |
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Nov. 14, 2019. |
Office Action regarding Indian Patent Application No. 2043/MUMNP/2011, dated Nov. 27, 2019. |
Office Action regarding Chinese Patent Application No. 201811480347.5, dated Jan. 10, 2020. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Chinese Patent Application No. 201811541653.5, dated Jan. 10, 2020. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding European Patent Application No. 11747996.4, dated Jan. 14, 2020. |
Office Action regarding U.S. Appl. No. 15/881,016, dated Jan. 23, 2020. |
Office Action regarding U.S. Appl. No. 15/682,599, dated Jan. 24, 2020. |
Notice of Allowance regarding U.S. Appl. No. 15/692,844, dated Feb. 20, 2020. |
Office Action regarding European Patent Application No. 13859308.2, dated Mar. 4, 2020. |
Office Action regarding Chinese Patent Application No. 201811168307.7, dated Mar. 27, 2020. Translation provided by Unitalen Attorneys at Law. |
Non-Final Office Action for U.S. Appl. No. 14/809,786, dated Jan. 11, 2018. |
Number | Date | Country | |
---|---|---|---|
20180223823 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
62455679 | Feb 2017 | US |