Compressor discharge valve assembly

Information

  • Patent Grant
  • 10753352
  • Patent Number
    10,753,352
  • Date Filed
    Tuesday, December 5, 2017
    7 years ago
  • Date Issued
    Tuesday, August 25, 2020
    4 years ago
Abstract
A compressor may include a shell, a non-orbiting scroll, an orbiting scroll, and a discharge valve member. The shell may define a discharge chamber. The non-orbiting scroll may be disposed within the discharge chamber and includes a first end plate and a first spiral wrap extending from the first end plate. The orbiting scroll may be disposed within the discharge chamber and includes a second end plate and a second spiral wrap extending from the second end plate. The first and second spiral wraps mesh with each other to define fluid pockets therebetween. The second end plate includes a discharge passage extending therethrough. The discharge valve member may be attached to the second end plate and may be movable between an open position allowing fluid flow from the discharge passage to the discharge chamber and a closed position restricting fluid flow from the discharge passage to the discharge chamber.
Description
FIELD

The present disclosure relates to a compressor, and particularly, to a discharge valve assembly for a compressor.


BACKGROUND

This section provides background information related to the present disclosure and is not necessarily prior art.


Compressors are used in a variety of industrial, commercial and residential applications to circulate a working fluid within a climate-control system (e.g., a refrigeration system, an air conditioning system, a heat-pump system, a chiller system, etc.) to provide a desired cooling and/or heating effect. A typical climate-control system may include a fluid circuit having an outdoor heat exchanger, an indoor heat exchanger, an expansion device disposed between the indoor and outdoor heat exchangers, and a compressor circulating a working fluid (e.g., refrigerant or carbon dioxide) between the indoor and outdoor heat exchangers. Efficient and reliable operation of the compressor is desirable to ensure that the climate-control system in which the compressor is installed is capable of effectively and efficiently providing a cooling and/or heating effect on demand.


SUMMARY

This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.


The present disclosure provides a compressor that may include a shell, a non-orbiting scroll, an orbiting scroll, a driveshaft, a discharge valve member, and a valve backer. The shell may define a discharge chamber. The non-orbiting scroll may be disposed within the discharge chamber and includes a first end plate and a first spiral wrap extending from the first end plate. The orbiting scroll may be disposed within the discharge chamber and includes a second end plate and a second spiral wrap extending from the second end plate. The first and second spiral wraps mesh with each other to define a plurality of fluid pockets therebetween. The second end plate includes a discharge passage extending therethrough. The driveshaft drives the orbiting scroll and rotates relative to the orbiting scroll. The discharge valve member may be attached to the second end plate and movable between an open position allowing fluid flow from the discharge passage to the discharge chamber and a closed position restricting fluid flow from the discharge passage to the discharge chamber. The valve backer may be disposed on an end of the driveshaft and may be rotatable with the driveshaft relative to the orbiting scroll and the discharge valve member. The valve backer may force the discharge valve member into the closed position during a first portion of a rotation of the driveshaft and may allow the discharge valve member to move into the open position during a second portion of the rotation of the driveshaft.


In some configurations, the valve backer includes an axial end surface having a tip portion and a recessed portion. The tip portion is disposed closer to the second end plate than the recessed portion.


In some configurations, the discharge valve member includes a fixed portion and a movable portion. The movable portion may be deflectable relative to the fixed portion between the open and closed positions.


In some configurations, the tip portion of the valve backer contacts the movable portion and retains the movable portion in contact with a valve seat during the first portion of the rotation of the driveshaft. The recessed portion may be axially aligned with the movable portion during the second portion of the rotation of the driveshaft.


In some configurations, the valve backer includes a recess that at least partially receives an eccentric crank pin of the driveshaft.


In some configurations, the compressor includes a spring disposed within the recess and contacting the valve backer and an axial end of the eccentric crank pin.


In some configurations, the valve backer and the eccentric crank pin are disposed within an annular hub of the orbiting scroll. The annular hub extends from the second end plate in a direction opposite the second spiral wrap.


The fluid pockets defined by the first and second spiral wraps move from a radially outermost position, to a radially intermediate position, to a radially innermost position. In some configurations, the discharge passage receives fluid from the fluid pocket at the radially innermost position.


In some configurations, the valve backer is rotationally fixed relative to the driveshaft.


In some configurations, the valve backer and the driveshaft are separate and discrete components that are attached to each other. In other configurations, the valve backer could be integrally formed with the driveshaft.


The present disclosure also provides a compressor that may include a non-orbiting scroll, an orbiting scroll, a driveshaft, a discharge valve member, and a valve backer. The non-orbiting scroll includes a first end plate and a first spiral wrap extending from the first end plate. The orbiting scroll includes a second end plate and a second spiral wrap extending from the second end plate. The first and second spiral wraps mesh with each other to define a plurality of fluid pockets therebetween. The second end plate includes a discharge passage extending therethrough. The driveshaft drives the orbiting scroll and rotates relative to the orbiting scroll. The discharge valve member may be movable between an open position allowing fluid flow through the discharge passage and a closed position restricting fluid flow through the discharge passage. The valve backer may be movable relative to the discharge valve member and the second end plate to force the discharge valve member into the closed position during a first portion of a rotation of the driveshaft and allow the discharge valve member to move into the open position during a second portion of the rotation of the driveshaft.


In some configurations, the valve backer is rotationally fixed relative to the driveshaft.


In some configurations, the valve backer includes an axial end surface having a tip portion and a recessed portion. The tip portion is disposed closer to the second end plate than the recessed portion.


In some configurations, the discharge valve member includes a fixed portion and a movable portion. The movable portion may be deflectable relative to the fixed portion between the open and closed positions.


In some configurations, the tip portion of the valve backer contacts the movable portion and retains the movable portion in contact with a valve seat during the first portion of the rotation of the driveshaft. The recessed portion may be axially aligned with the movable portion during the second portion of the rotation of the driveshaft.


In some configurations, the valve backer includes a recess that at least partially receives an eccentric crank pin of the driveshaft.


In some configurations, the compressor includes a spring disposed within the recess and contacting the valve backer and an axial end of the eccentric crank pin.


In some configurations, the valve backer and the eccentric crank pin are disposed within an annular hub of the orbiting scroll. The annular hub extends from the second end plate in a direction opposite the second spiral wrap.


The fluid pockets defined by the first and second spiral wraps move from a radially outermost position, to a radially intermediate position, to a radially innermost position. In some configurations, the discharge passage receives fluid from a fluid pocket at the radially innermost position.


In some configurations, the valve backer and the driveshaft are separate and discrete components that are attached to each other. In other configurations, the valve backer could be integrally formed with the driveshaft.


The present disclosure also provides a compressor that may include a non-orbiting scroll, an orbiting scroll, a driveshaft, and a discharge valve member. The non-orbiting scroll includes a first end plate and a first spiral wrap extending from the first end plate. The orbiting scroll includes a second end plate and a second spiral wrap extending from the second end plate. The first and second spiral wraps mesh with each other to define a plurality of fluid pockets therebetween. The second end plate includes a discharge passage that is open to one of the fluid pockets and extends through the second end plate. The driveshaft drives the orbiting scroll. The discharge valve member may be movable between an open position allowing fluid flow from the discharge passage to a discharge chamber and a closed position restricting fluid flow from the discharge passage to the discharge chamber. The discharge valve member may move into the open position in response to a pressure differential between the one of the fluid pockets and the discharge chamber rising above a predetermined value. Movement of the discharge valve member into the closed position may be based on a rotational position of the driveshaft and is independent of the pressure differential between the one of the fluid pockets and the discharge chamber.


In some configurations, the compressor includes a valve backer rotationally fixed relative to the driveshaft and movable relative to the discharge valve member and the second end plate to force the discharge valve member into the closed position during a first portion of a rotation of the driveshaft and allow the discharge valve member to move into the open position during a second portion of the rotation of the driveshaft.


In some configurations, the valve backer includes an axial end surface having a tip portion and a recessed portion.


In some configurations, the tip portion is disposed closer to the second end plate than the recessed portion.


In some configurations, the discharge valve member includes a fixed portion and a movable portion.


In some configurations, the movable portion is deflectable relative to the fixed portion between the open and closed positions.


In some configurations, the tip portion of the valve backer contacts the movable portion and retains the movable portion in contact with a valve seat during the first portion of the rotation of the driveshaft. The recessed portion may be axially aligned with the movable portion during the second portion of the rotation of the driveshaft.


In some configurations, the valve backer and the driveshaft are separate and discrete components that are attached to each other. In other configurations, the valve backer could be integrally formed with the driveshaft.


The fluid pockets defined by the first and second spiral wraps move from a radially outermost position, to a radially intermediate position, to a radially innermost position. In some configurations, the discharge passage receives fluid from the fluid pocket at the radially innermost position.


The present disclosure also provides a compressor that may include a shell, a non-orbiting scroll, an orbiting scroll, and a discharge valve member. The shell may define a discharge chamber. The non-orbiting scroll may be disposed within the discharge chamber and includes a first end plate and a first spiral wrap extending from the first end plate. The orbiting scroll may be disposed within the discharge chamber and includes a second end plate and a second spiral wrap extending from the second end plate. The first and second spiral wraps mesh with each other to define a plurality of fluid pockets therebetween. The second end plate includes a discharge passage extending therethrough. The discharge valve member may be attached to the second end plate and may be movable between an open position allowing fluid flow from the discharge passage to the discharge chamber and a closed position restricting fluid flow from the discharge passage to the discharge chamber.


In some configurations, the discharge valve member moves into the open position in response to a pressure differential between the one of the fluid pockets and the discharge chamber rising above a predetermined value. Movement of the discharge valve member into the closed position may be based on a rotational position of a driveshaft (e.g., a driveshaft driving the orbiting scroll) and may be independent of the pressure differential between the one of the fluid pockets and the discharge chamber.


In some configurations, the compressor includes a valve backer rotationally fixed relative to the driveshaft and movable relative to the discharge valve member and the second end plate to force the discharge valve member into the closed position during a first portion of a rotation of the driveshaft and allow the discharge valve member to move into the open position during a second portion of the rotation of the driveshaft.


In some configurations, the valve backer includes an axial end surface having a tip portion and a recessed portion.


In some configurations, the tip portion is disposed closer to the second end plate than the recessed portion.


In some configurations, the discharge valve member includes a fixed portion and a movable portion.


In some configurations, the movable portion is deflectable relative to the fixed portion between the open and closed positions.


In some configurations, the tip portion of the valve backer contacts the movable portion and retains the movable portion in contact with a valve seat during the first portion of the rotation of the driveshaft.


In some configurations, the recessed portion is axially aligned with the movable portion during the second portion of the rotation of the driveshaft.


The fluid pockets defined by the first and second spiral wraps move from a radially outermost position, to a radially intermediate position, to a radially innermost position. In some configurations, the discharge passage receives fluid from the fluid pocket at the radially innermost position.


In some configurations, the compressor includes a driveshaft driving the orbiting scroll and rotating relative to the orbiting scroll. The discharge valve member may contact the driveshaft in the open position.


In some configurations, the discharge valve member includes a fixed portion and a movable portion. The movable portion is deflectable relative to the fixed portion between the open and closed positions. The movable portion contacts the driveshaft in the open position.


In some configurations, the movable portion contacts an axial end of the driveshaft in the open position.


In some configurations, the movable portion contacts an axial end of an eccentric crank pin of the driveshaft in the open position.


In some configurations, a surface that rotates relative to the orbiting scroll during operation of the compressor contacts the discharge valve member at least intermittently. In some configurations, the surface is an axial end surface of a crank pin of a driveshaft that drives the orbiting scroll. In some configurations, the surface is an axial end surface of a valve backer attached to an end of a driveshaft that drives the orbiting scroll.


Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.





DRAWINGS

The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.



FIG. 1 is a cross-sectional view of a compressor having a discharge valve assembly according to the principles of the present disclosure;



FIG. 2 is a partial cross-sectional view of the compressor of FIG. 1 with a discharge valve member of the discharge valve assembly in an open position;



FIG. 3 is a partial cross-sectional view of the compressor of FIG. 1 with the discharge valve member in a closed position;



FIG. 4 is a partial cross-sectional view of another compressor having discharge valve assembly with a discharge valve member in an open position;



FIG. 5 is a partial cross-sectional view of the compressor and discharge valve assembly of FIG. 4 with the discharge valve member in a closed position; and



FIG. 6 is an exploded view of an orbiting scroll, the discharge valve assembly and driveshaft of the compressor of FIG. 4.





Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.


DETAILED DESCRIPTION

Example embodiments will now be described more fully with reference to the accompanying drawings.


Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.


The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.


When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.


Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.


With reference to FIG. 1, a compressor 10 is provided. As shown in FIG. 1, the compressor 10 may be a high-side scroll compressor including a hermetic shell assembly 12, a first and second bearing assemblies 14, 16, a motor assembly 18, a compression mechanism 20, and a discharge valve assembly 22.


The shell assembly 12 may define a high-pressure discharge chamber 24 (containing compressed working fluid) and may include a cylindrical shell 26, a first end cap 28 at one end thereof, and a base or second end cap 30 at another end thereof. A discharge fitting 32 may be attached to the shell assembly 12 and extend through a first opening in the shell assembly 12 to allow working fluid in the discharge chamber 24 to exit the compressor 10. For example, the discharge fitting 32 may extend through the second end cap 30, as shown in FIG. 1. An inlet fitting 34 may be attached to the shell assembly 12 (e.g., at the first end cap 28) and extend through a second opening in the shell assembly 12. The inlet fitting 34 may extend through a portion of the discharge chamber 24 and is fluidly coupled to a suction inlet of the compression mechanism 20. In this manner, the inlet fitting 34 provides low-pressure (suction-pressure) working fluid to the compression mechanism 20 while fluidly isolating the suction-pressure working fluid within the inlet fitting 34 from the high-pressure (e.g., discharge-pressure) working fluid in the discharge chamber 24.


The first and second bearing assemblies 14, 16 may be disposed entirely within the discharge chamber 24. The first bearing assembly 14 may include a first bearing housing 36 and a first bearing 38. The first bearing housing 36 may be fixed to the shell assembly 12. The first bearing housing 36 houses the first bearing 38 and axially supports the compression mechanism 20. The second bearing assembly 16 may include a second bearing housing 40 and a second bearing 42. The second bearing housing 40 is fixed to the shell assembly 12 and supports the second bearing 42.


The motor assembly 18 may be disposed entirely within the discharge chamber 24 and may include a motor stator 44, a rotor 46, and a driveshaft 48. The stator 44 may be fixedly attached (e.g., by press fit) to the shell 26. The rotor 46 may be press fit on the driveshaft 48 and may transmit rotational power to the driveshaft 48. The driveshaft 48 may include a main body 50 and an eccentric crank pin 52 extending from an axial end of the main body 50. The main body 50 is received in the first and second bearings 38, 42 and is rotatably supported by the first and second bearing assemblies 14, 16. Therefore, the first and second bearings 38, 42 define a rotational axis of the driveshaft 48. The crank pin 52 may engage the compression mechanism 20.


The compression mechanism 20 may be disposed entirely within the discharge chamber 24 and may include an orbiting scroll 54 and a non-orbiting scroll 56. The orbiting scroll 54 may include an end plate 58 having a spiral wrap 60 extending from a first side of the end plate 58. An annular hub 62 may extend from a second side of the end plate 58 and may include a cavity 63 in which a drive bearing 64, a drive bushing 66 and the crank pin 52 may be disposed. The drive bushing 66 may be received within the drive bearing 64. The crank pin 52 may be received within the drive bushing 66.


The end plate 58 of the orbiting scroll 54 may also include a discharge passage 67 that may be open to and disposed directly adjacent to the cavity 63. The discharge passage 67 is in communication with the discharge chamber 24 via the cavity 63. The cavity 63 is in communication with the discharge chamber 24 via gaps between the hub 62 and the drive bearing 64, between the drive bearing 64 and drive bushing 66, and/or between the drive bushing 66 and the crank pin 52. In some configurations, cavity 63 is in communication with the discharge chamber 24 via flow passages formed in any one or more of the hub 62, drive bearing 64, or drive bushing 66, for example.


An Oldham coupling 68 may be engaged with the end plate 58 and either the non-orbiting scroll 56 or the first bearing housing 36 to prevent relative rotation between the orbiting and non-orbiting scrolls 54, 56. The annular hub 62 may be axially supported by a thrust surface 70 of the first bearing housing 36. The annular hub 62 may movably engage a seal 72 attached to the first bearing housing 36 to define an intermediate-pressure cavity 73 between the first bearing housing 36 and the orbiting scroll 54.


The non-orbiting scroll 56 may include an end plate 78 and a spiral wrap 80 projecting from the end plate 78. The spiral wrap 80 may meshingly engage the spiral wrap 60 of the orbiting scroll 54, thereby creating a series of moving fluid pockets therebetween. The fluid pockets defined by the spiral wraps 60, 80 may decrease in volume as they move from a radially outer position 82 to a radially intermediate position 84 to a radially innermost position 86 throughout a compression cycle of the compression mechanism 20. The inlet fitting 34 is fluidly coupled with a suction inlet 77 in the end plate 78 and provides suction-pressure working fluid to the fluid pockets at the radially outer positions 82.


In some configurations, the end plate 78 of the non-orbiting scroll 56 may include a discharge passage 88. The discharge passage 67 in the orbiting scroll 54 and the discharge passage 88 in the non-orbiting scroll 56 may be in communication with the fluid pocket at the radially innermost position 86. The discharge passages 67, 88 are in communication with the discharge chamber 24 and provide compressed working fluid to the discharge chamber 24. In some configurations, the non-orbiting scroll 56 does not have the discharge passage 88. In such configurations, the end plate 58 of the orbiting scroll 54 may include multiple discharge passages 67.


As shown in FIGS. 2 and 3, the discharge valve assembly 22 may be received within the cavity 63 and may be mounted to the end plate 58. The discharge valve assembly 22 controls fluid flow between the discharge chamber 24 and the discharge passage 67. The discharge valve assembly 22 may include a valve seat member 90, a discharge valve member 92, and a retainer ring 94. The valve seat member 90 can be a generally disk-shaped member, for example, and may be fixed to the end plate 58. The valve seat member 90 may include an opening 96 in communication with the discharge passage 67 and the cavity 63. The valve seat member 90 may define a valve seat 98 against which the discharge valve member 92 can selectively seat to restrict fluid flow through the discharge passage 67. In some configurations, the discharge valve member 92 may seat against a valve seat defined by the end plate 58 (i.e., the discharge valve member 92 may seat directly against the end plate 58 to restrict fluid flow through the discharge passage 67).


The discharge valve member 92 may be a reed valve, for example, and may be a relatively thin and resiliently flexible body having a fixed portion 100 and a movable portion 102. The fixed portion 100 may be fixed relative to the valve seat member 90 and the end plate 58. The movable portion 102 may resiliently deflect relative to the fixed portion 100, the valve seat member 90 and the end plate 58 between an open position (FIG. 2) and a closed position (FIG. 3). In the open position, the movable portion 102 of the discharge valve member 92 may be spaced apart from the valve seat 98 to allow fluid flow through the discharge passage 67 (i.e., to allow fluid from the radially innermost fluid pocket 86 to flow through the discharge passage 67 and into the discharge chamber 24). In the closed position, the movable portion 102 of the discharge valve member 92 contacts the valve seat 98 to restrict or prevent fluid flow through the discharge passage 67 (e.g., to restrict or prevent fluid flow from the discharge passage 67 to the radially innermost fluid pocket 86).


While the discharge valve member 92 is described above as being a reed valve, in some configurations, the discharge valve member 92 could be another type of valve, such as a linearly movable disk, puck or ball, for example.


The retainer ring 94 may be an annular disk-shaped member and may be fixed to the hub 62 and/or the end plate 58. The retainer ring 94 may contact the valve seat member 90 and/or the fixed portion 100 of the discharge valve member 92 to axially retain the valve seat member 90 and the discharge valve member 92 relative to the end plate 58.


During operation of the compressor 10, fluid pressure within the radially innermost fluid pocket 86 may control movement of the discharge valve member 92 between the open and closed positions. That is, when a pressure differential between the radially innermost fluid pocket 86 and the discharge chamber 24 reaches or rises above a predetermined value, the fluid pressure within the radially innermost fluid pocket 86 may deflect the movable portion 102 of the discharge valve member 92 into the open position. When the pressure differential between the radially innermost fluid pocket 86 and the discharge chamber 24 falls below the predetermined value, the movable portion 102 of the discharge valve member 92 may spring back to the closed position.


As shown in FIG. 2, the movable portion 102 may contact an axial end 104 and/or a chamfered edge of the axial end 104 of the eccentric crank pin 52 of the driveshaft 48. In this manner, the axial end 104 of the crank pin 52 limits the range of movement of the movable portion 102 of the discharge valve member 92 away from the valve seat 98. Limiting the range of movement of the movable portion 102 away from the valve seat 98 reduces the closing time of the discharge valve member 92 and reduces noise associate with the closing of the discharge valve member 92. Furthermore, since the discharge valve member 92 contacts the axial end 104 of the crank pin 52 in the open position, the discharge valve assembly 22 does not need to have a separate valve backer to limit the range of the motion of the discharge valve member 92. In this manner, the axial height of the hub 62 (i.e., the height along the axis of rotational symmetry of the hub 62) of the orbiting scroll 54 can be reduced since the cavity 63 does not have to be sized to accommodate a valve backer between the axial end 104 of the driveshaft 48 and the end plate 58. Such reduced axial height reduces the overall size of the compressor 10 and also reduces a tipping moment of the orbiting scroll 54. That is, a tendency of the orbiting scroll 54 to tip or tilt relative to the first bearing housing 36, the driveshaft 48 and the non-orbiting scroll 56 while the orbiting scroll 54 orbits is reduced. Reducing the tipping moment of the orbiting scroll 54 may reduce wear on the orbiting and non-orbiting scrolls 54, 56 and/or the first bearing housing 36. Reducing the tipping moment of the orbiting scroll 54 may also improve sealing between the orbiting and non-orbiting scrolls 54, 56 and between the orbiting scroll 54 and the first bearing housing 36.


With reference to FIG. 4-6, another compressor 210 (only partially shown in FIGS. 4-6) is provided. The compressor 210 may include a shell assembly (not shown), first and second bearing assemblies (not shown), a motor assembly (of which, only a driveshaft 248 is shown), a compression mechanism 220, and a discharge valve assembly 222. The structure and function of the shell assembly, bearing assemblies, motor assembly and compression mechanism 220 of the compressor 210 may be similar or identical to that of the shell assembly 12, bearing assemblies 14, 16, motor assembly 18 and compression mechanism 20 described above. Therefore, similar features might not be described again in detail.


Briefly, the compression mechanism 220 includes an orbiting scroll 254 and a non-orbiting scroll 256. Like the orbiting scroll 54, the orbiting scroll 254 includes an end plate 258, a spiral wrap 260 extending from one side of the end plate 258, and an annular hub 262 extending from the opposite side of the end plate 258. A discharge passage 267 extends through the end plate 258. Like the non-orbiting scroll 56, the non-orbiting scroll 256 includes an end plate 278 (FIG. 6) and a spiral wrap 280 (FIGS. 4 and 5) extending from the end plate 278. The spiral wrap 280 of the non-orbiting scroll 256 meshes with the spiral wrap 260 of the orbiting scroll to define fluid pockets that move from a radially outer position 282 to a radially intermediate position 284 to a radially innermost position 286 throughout a compression cycle of the compression mechanism 220. The discharge passage 267 is in communication with the fluid pocket at the radially innermost position 286. As will be described in more detail below, the discharge valve assembly 222 controls fluid flow between the discharge passage 267 and a discharge chamber 224 (similar or identical to discharge chamber 24 described above).


The discharge valve assembly 222 may include a valve seat member 290, a discharge valve member 292, a retainer ring 294, and a valve backer 296. The valve seat member 290 may be a disk-shaped member having an opening 297 in communication with the discharge passage 267 and the discharge chamber 224 (via cavity 263 defined by the hub 262). The valve seat member 290 may be fixedly attached to the end plate 258 of the orbiting scroll 254. The valve seat member 290 may define a valve seat 298 (FIGS. 4 and 5) against which the discharge valve member 292 can selectively seat to restrict fluid flow through the discharge passage 267. In some configurations, the discharge valve member 292 may seat against a valve seat defined by the end plate 258 (i.e., the discharge valve member 292 may seat directly against the end plate 258 to restrict fluid flow through the discharge passage 267).


The discharge valve member 292 may be a reed valve, for example, and may be a relatively thin and resiliently flexible body having a fixed portion 300 and a movable portion 302. The fixed portion 300 may be fixed relative to the valve seat member 290 and the end plate 258. The movable portion 302 may resiliently deflect relative to the fixed portion 300, the valve seat member 290 and the end plate 258 between an open position (FIG. 4) and a closed position (FIG. 5). In the open position, the movable portion 302 of the discharge valve member 292 may be spaced apart from the valve seat 298 to allow fluid flow through the discharge passage 267 (i.e., to allow fluid from the radially innermost fluid pocket 286 to flow through the discharge passage 267 and into the discharge chamber 224). In the closed position, the movable portion 302 of the discharge valve member 292 contacts the valve seat 298 to restrict or prevent fluid flow through the discharge passage 267 (e.g., to restrict or prevent fluid flow from the discharge passage 267 to the radially innermost fluid pocket 286).


While the discharge valve member 292 is described above as being a reed valve, in some configurations, the discharge valve member 292 could be another type of valve, such as a linearly movable disk, puck or ball, for example.


The retainer ring 294 may be an annular disk-shaped member and may be fixed to the hub 262 and/or the end plate 258. The retainer ring 294 may contact the valve seat member 290 and/or the fixed portion 300 of the discharge valve member 292 to axially retain the valve seat member 290 and the discharge valve member 292 relative to the end plate 258.


Pins 291 (FIG. 6) may extend through apertures 293 (FIG. 6) in the fixed portion 300 of the discharge valve member 292, through apertures 295 (FIG. 6) in valve seat member 290, and through apertures (not shown) in the end plate 258. In this manner, the pins 291 rotationally fix the valve seat member 290 and the discharge valve member 292 relative to the end plate 258.


The valve backer 296 may be a generally cylindrical member having a first axial end 304 and a second axial end 306. The first axial end 304 may include a recess 308 in which an eccentric crank pin 252 of the driveshaft 248 is received. The crank pin 252 may include a flat surface 310 (FIG. 6) that engages a corresponding flat surface 312 (FIG. 6) defining the recess 308. Engagement between the flat surfaces 310, 312 rotationally fixes the valve backer 296 to the driveshaft 248 while allowing relative axial movement (i.e., movement in a direction along or parallel to the rotational axis of the driveshaft 248) between the valve backer 296 and the driveshaft 248. One or more springs 314 (e.g., resiliently compressible wave rings) may be disposed within the recess 308 and may contact the valve backer 296 and an axial end of the crank pin 252 to bias the valve backer 296 and the driveshaft 248 in axially opposite directions (e.g., to axially bias the valve backer 296 into contact with the discharge valve member 292).


As shown in FIGS. 4 and 5, the second axial end 306 of the valve backer 296 may include a tip portion 316 and a sloped recessed portion 318. The tip portion 316 may contact the discharge valve member 292. The recessed portion 318 may be axially spaced apart from the fixed portion 300 of discharge valve member 292 and may be axially spaced apart from the movable portion 302 of the discharge valve member 292 at least while the movable portion 302 is in the closed position. In some configurations, the movable portion 302 may contact the recessed portion 318 when the movable portion 302 is in the open position. The recessed portion 318 may be sloped (e.g., angled and/or curved) such that the recessed portion 318 extends axially toward the first axial end 304 of the valve backer 296 as the recessed portion 318 extends radially away from the tip portion 316. In other words, the tip portion 316 is disposed axially closer (i.e., closer in a direction along or parallel to the rotational axis of the driveshaft 248) to the end plate 258 than the recessed portion 318, and the recessed portion 318 slopes away from the end plate 258.


While the valve backer 296 and driveshaft 248 are described above and shown in the figures as being separate and discrete components, in some configurations, the valve backer 296 and driveshaft 248 could be integrally formed. That is, the axial end of the crank pin 252 can be shaped to a tip portion and a recessed portion similar to that of the separate and distinct valve backer 296 described above.


During operation of the compressor 210, the driveshaft 248 and the valve backer 296 rotate together relative to the orbiting scroll 254. During a first portion of each 360-degree-rotation of the driveshaft 248 and valve backer 296, the tip portion 316 of the valve backer 296 is radially spaced apart (i.e., spaced apart in a direction perpendicular to the rotational axis of the driveshaft 248) from the opening 297 in the valve seat member 290 and the movable portion 302 of the discharge valve member 292, and the recessed portion 318 of the valve backer 296 is generally aligned with the opening 297 in the valve seat member 290 and the movable portion 302 of the discharge valve member 292, as shown in FIG. 4. Therefore, during the first portion of the each 360-degree-rotation of the driveshaft 248 and valve backer 296, the recessed portion 318 of the valve backer 296 provides clearance for the movable portion 302 to move from the closed position to the open position, as shown in FIG. 4. The movable portion 302 will move toward the open position during the first portion of the each 360-degree-rotation of the driveshaft 248 and valve backer 296 and when a pressure differential between the radially innermost fluid pocket 286 and the discharge chamber 224 reaches or exceeds a predetermined value (i.e., when the fluid pressure within the radially innermost fluid pocket 286 sufficiently exceeds the fluid pressure within the discharge chamber 224).


During a second portion of each 360-degree-rotation of the driveshaft 248 and valve backer 296, the tip portion 316 of the valve backer 296 is in contact with the movable portion 302 of the discharge valve member 292, which forces the movable portion 302 into the closed position and restricts or prevents the movable portion 302 from moving toward the open position, as shown in FIG. 5. In this manner, the valve backer 296 forces the movable portion 302 of the discharge valve member 292 into the closed position regardless of the pressure differential between the radially innermost fluid pocket 286 and the discharge chamber 224. In other words, the valve backer 296 forces the movable portion 302 to remain in the closed position during the second portion of each 360-degree-rotation of the driveshaft 248 and valve backer 296 even if the fluid pressure within the radially innermost fluid pocket 286 exceeds the fluid pressure within the discharge chamber 224.


Closing the discharge valve member 292 using the valve backer 296 in the manner described above reduces noise during operation of the compressor 210 and improves the efficiency of the compressor 210. That is, closing the discharge valve member 292 using the valve backer 296 may reduce the closing velocity of the movable portion 302 of the discharge valve member 292, which reduces the noise generated when the movable portion 302 impacts the valve seat 298. Furthermore, closing the discharge valve member 292 using the valve backer 296 may reduce a delay associated with valve closing. That is, the tip portion 316 and recessed portion 318 of the valve backer 296 can be shaped and positioned such that the discharge valve member 292 is closed at an more optimal time, which can reduce backflow through the discharge passage 267 (i.e., reduce flow of working fluid from the discharge chamber 224 to the radially innermost fluid pocket 286). Reducing backflow improves the efficiency of the compressor 210.


The valve backer 296 allows the opening of the discharge valve member 292 to vary depending on operating conditions (i.e., operating pressure ratio) of the compressor 210 and the climate-control system in which the compressor 210 is installed. However, the closing of the discharge valve member 292 with the valve backer 296 is defined by the geometry of the valve backer 296 and the rotational position of the driveshaft 248, and therefore, is independent of operating conditions of the compressor 210 and the climate-control system in which the compressor 210 is installed. The geometry of the valve backer 296 (i.e., the positioning and shapes of the tip portion 316 and recessed portion 318) can be tailored based on scroll geometry to prevent backflow and to suit a given application.


The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.

Claims
  • 1. A compressor comprising: a non-orbiting scroll including a first end plate and a first spiral wrap extending from the first end plate;an orbiting scroll including a second end plate and a second spiral wrap extending from the second end plate, the first and second spiral wraps meshing with each other to define a plurality of fluid pockets therebetween, the second end plate including a discharge passage extending therethrough;a driveshaft driving the orbiting scroll;a discharge valve member movable between an open position allowing fluid flow through the discharge passage and a closed position restricting fluid flow through the discharge passage; anda valve backer movable relative to the discharge valve member and the second end plate to force the discharge valve member into the closed position during a first portion of a rotation of the driveshaft and allow the discharge valve member to move into the open position during a second portion of the rotation of the driveshaft.
  • 2. The compressor of claim 1, wherein the valve backer is rotationally fixed relative to the driveshaft.
  • 3. The compressor of claim 1, wherein the valve backer includes an axial end surface having a tip portion and a recessed portion, and wherein the tip portion is disposed closer to the second end plate than the recessed portion.
  • 4. The compressor of claim 3, wherein the discharge valve member includes a fixed portion and a movable portion, and wherein the movable portion is deflectable relative to the fixed portion between the open and closed positions.
  • 5. The compressor of claim 4, wherein the tip portion of the valve backer contacts the movable portion of the discharge valve member and retains the movable portion of the discharge valve member in contact with a valve seat during the first portion of the rotation of the driveshaft, and wherein the recessed portion is axially aligned with the movable portion of the discharge valve member during the second portion of the rotation of the driveshaft.
  • 6. The compressor of claim 1, wherein the valve backer includes a recess that at least partially receives an eccentric crank pin of the driveshaft.
  • 7. The compressor of claim 6, further comprising a spring disposed within the recess and contacting the valve backer and an axial end of the eccentric crank pin.
  • 8. The compressor of claim 7, wherein the valve backer and the eccentric crank pin are disposed within an annular hub of the orbiting scroll, and wherein the annular hub extends from the second end plate in a direction opposite the second spiral wrap.
  • 9. The compressor of claim 1, wherein the fluid pockets defined by the first and second spiral wraps move from a radially outermost position, to a radially intermediate position, to a radially innermost position, and wherein the discharge passage receives fluid from a fluid pocket at the radially innermost position.
  • 10. The compressor of claim 1, wherein the valve backer and the driveshaft are separate and discrete components that are attached to each other.
  • 11. A compressor comprising: a non-orbiting scroll including a first end plate and a first spiral wrap extending from the first end plate;an orbiting scroll including a second end plate and a second spiral wrap extending from the second end plate, the first and second spiral wraps meshing with each other to define a plurality of fluid pockets therebetween, the second end plate including a discharge passage that is open to one of the fluid pockets and extends through the second end plate;a driveshaft driving the orbiting scroll; anda discharge valve member movable between an open position allowing fluid flow from the discharge passage to a discharge chamber and a closed position restricting the fluid flow from the discharge passage to the discharge chamber, wherein the discharge valve member moves into the open position in response to a pressure differential between the one of the fluid pockets and the discharge chamber rising above a predetermined value, and wherein movement of the discharge valve member into the closed position is based on a rotational position of the driveshaft and is independent of the pressure differential between the one of the fluid pockets and the discharge chamber.
  • 12. The compressor of claim 11, further comprising a valve backer rotationally fixed relative to the driveshaft and movable relative to the discharge valve member and the second end plate to force the discharge valve member into the closed position during a first portion of a rotation of the driveshaft and allow the discharge valve member to move into the open position during a second portion of the rotation of the driveshaft.
  • 13. The compressor of claim 12, wherein: the valve backer includes an axial end surface having a tip portion and a recessed portion,the tip portion is disposed closer to the second end plate than the recessed portion,the discharge valve member includes a fixed portion and a movable portion, andthe movable portion is deflectable relative to the fixed portion between the open and closed positions.
  • 14. The compressor of claim 13, wherein the tip portion of the valve backer contacts the movable portion and retains the movable portion in contact with a valve seat during the first portion of the rotation of the driveshaft, and wherein the recessed portion is axially aligned with the movable portion during the second portion of the rotation of the driveshaft.
  • 15. The compressor of claim 14, wherein the valve backer and the driveshaft are separate and discrete components that are attached to each other.
  • 16. The compressor of claim 11, wherein the fluid pockets defined by the first and second spiral wraps move from a radially outermost position, to a radially intermediate position, to a radially innermost position, and wherein the discharge passage receives fluid from a fluid pocket at the radially innermost position.
  • 17. A compressor comprising: a shell defining a discharge chamber;a non-orbiting scroll disposed within the discharge chamber and including a first end plate and a first spiral wrap extending from the first end plate;an orbiting scroll disposed within the discharge chamber and including a second end plate and a second spiral wrap extending from the second end plate, the first and second spiral wraps meshing with each other to define a plurality of fluid pockets therebetween, the second end plate including a discharge passage extending therethrough;a discharge valve member attached to the second end plate and movable between an open position allowing fluid flow from the discharge passage to the discharge chamber and a closed position restricting fluid flow from the discharge passage to the discharge chamber; anda driveshaft driving the orbiting scroll and rotating relative to the orbiting scroll, wherein the discharge valve member contacts the driveshaft in the open position.
  • 18. The compressor of claim 17, wherein the fluid pockets defined by the first and second spiral wraps move from a radially outermost position, to a radially intermediate position, to a radially innermost position, and wherein the discharge passage receives fluid from the fluid pocket at the radially innermost position.
  • 19. The compressor of claim 17, wherein the discharge valve member includes a fixed portion and a movable portion, wherein the movable portion is deflectable relative to the fixed portion between the open and closed positions, and wherein the movable portion contacts the driveshaft in the open position.
  • 20. The compressor of claim 19, wherein the movable portion contacts an axial end of the driveshaft in the open position.
  • 21. The compressor of claim 19, wherein the movable portion contacts an axial end of an eccentric crank pin of the driveshaft in the open position.
  • 22. A compressor comprising: a shell defining a discharge chamber;a non-orbiting scroll disposed within the discharge chamber and including a first end plate and a first spiral wrap extending from the first end plate;an orbiting scroll disposed within the discharge chamber and including a second end plate and a second spiral wrap extending from the second end plate, the first and second spiral wraps meshing with each other to define a plurality of fluid pockets therebetween, the second end plate including a discharge passage extending therethrough; anda discharge valve member attached to the second end plate and movable between an open position allowing fluid flow from the discharge passage to the discharge chamber and a closed position restricting fluid flow from the discharge passage to the discharge chamber,wherein a surface that rotates relative to the orbiting scroll during operation of the compressor contacts the discharge valve member at least intermittently.
  • 23. The compressor of claim 22, wherein the surface is an axial end surface of a crank pin of a driveshaft that drives the orbiting scroll.
  • 24. The compressor of claim 23, wherein movement of the discharge valve member into the closed position is based on a rotational position of the driveshaft and is independent of a pressure differential between the one of the fluid pockets and the discharge chamber.
  • 25. The compressor of claim 22, wherein the surface is an axial end surface of a valve backer attached to an end of a driveshaft that drives the orbiting scroll.
  • 26. The compressor of claim 25, wherein movement of the discharge valve member into the closed position is based on a rotational position of the driveshaft and is independent of a pressure differential between the one of the fluid pockets and the discharge chamber.
  • 27. The compressor of claim 25, wherein the valve backer is rotationally fixed relative to the driveshaft and movable relative to the discharge valve member and the second end plate to force the discharge valve member into the closed position during a first portion of a rotation of the driveshaft and allow the discharge valve member to move into the open position during a second portion of the rotation of the driveshaft.
  • 28. The compressor of claim 27, wherein: the valve backer includes an axial end surface having a tip portion and a recessed portion,the tip portion is disposed closer to the second end plate than the recessed portion,the discharge valve member includes a fixed portion and a movable portion,the movable portion is deflectable relative to the fixed portion between the open and closed positions,the tip portion of the valve backer contacts the movable portion and retains the movable portion in contact with a valve seat during the first portion of the rotation of the driveshaft, and the recessed portion is axially aligned with the movable portion during the second portion of the rotation of the driveshaft.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/455,679, filed on Feb. 7, 2017. The entire disclosure of the above application is incorporated herein by reference.

US Referenced Citations (343)
Number Name Date Kind
4058988 Shaw Nov 1977 A
4216661 Tojo et al. Aug 1980 A
4382370 Suefuji et al. May 1983 A
4383805 Teegarden et al. May 1983 A
4389171 Eber et al. Jun 1983 A
4466784 Hiraga Aug 1984 A
4475360 Suefuji et al. Oct 1984 A
4475875 Sugimoto et al. Oct 1984 A
4497615 Griffith Feb 1985 A
4545742 Schaefer Oct 1985 A
4547138 Mabe et al. Oct 1985 A
4552518 Utter Nov 1985 A
4564339 Nakamura et al. Jan 1986 A
4580949 Maruyama et al. Apr 1986 A
4609329 Pillis et al. Sep 1986 A
4650405 Iwanami et al. Mar 1987 A
4696630 Sakata et al. Sep 1987 A
4727725 Nagata et al. Mar 1988 A
4774816 Uchikawa et al. Oct 1988 A
4818195 Murayama et al. Apr 1989 A
4824344 Kimura et al. Apr 1989 A
4838773 Noboru Jun 1989 A
4842499 Nishida et al. Jun 1989 A
4846633 Suzuki et al. Jul 1989 A
4877382 Caillat et al. Oct 1989 A
4886425 Itahana et al. Dec 1989 A
4886433 Maier Dec 1989 A
4898520 Nieter et al. Feb 1990 A
4927339 Riffe et al. May 1990 A
4940395 Yamamoto et al. Jul 1990 A
4954057 Caillat et al. Sep 1990 A
4990071 Sugimoto Feb 1991 A
5024589 Jetzer et al. Jun 1991 A
5040952 Inoue et al. Aug 1991 A
5040958 Arata et al. Aug 1991 A
5055010 Logan Oct 1991 A
5059098 Suzuki et al. Oct 1991 A
5071323 Sakashita et al. Dec 1991 A
5074760 Hirooka et al. Dec 1991 A
5080056 Kramer et al. Jan 1992 A
5085565 Barito Feb 1992 A
5098265 Machida et al. Mar 1992 A
5145346 Iio et al. Sep 1992 A
5152682 Morozumi et al. Oct 1992 A
RE34148 Terauchi et al. Dec 1992 E
5169294 Barito Dec 1992 A
5171141 Morozumi et al. Dec 1992 A
5192195 Iio et al. Mar 1993 A
5193987 Iio et al. Mar 1993 A
5199862 Kondo et al. Apr 1993 A
5213489 Kawahara et al. May 1993 A
5240389 Oikawa et al. Aug 1993 A
5253489 Yoshii Oct 1993 A
5304047 Shibamoto Apr 1994 A
5318424 Bush et al. Jun 1994 A
5330463 Hirano Jul 1994 A
5336068 Sekiya et al. Aug 1994 A
5340287 Kawahara et al. Aug 1994 A
5356271 Miura et al. Oct 1994 A
5411384 Bass et al. May 1995 A
5425626 Tojo et al. Jun 1995 A
5427512 Kohsokabe et al. Jun 1995 A
5451146 Inagaki et al. Sep 1995 A
5458471 Ni Oct 1995 A
5458472 Kobayashi et al. Oct 1995 A
5482637 Rao et al. Jan 1996 A
5511959 Tojo et al. Apr 1996 A
5547354 Shimizu et al. Aug 1996 A
5551846 Taylor et al. Sep 1996 A
5557897 Kranz et al. Sep 1996 A
5562426 Watanabe et al. Oct 1996 A
5577897 Inagaki et al. Nov 1996 A
5607288 Wallis et al. Mar 1997 A
5611674 Bass et al. Mar 1997 A
5613841 Bass et al. Mar 1997 A
5624247 Nakamura Apr 1997 A
5639225 Matsuda et al. Jun 1997 A
5640854 Fogt et al. Jun 1997 A
5649817 Yamazaki Jul 1997 A
5674058 Matsuda et al. Oct 1997 A
5678985 Brooke et al. Oct 1997 A
5707210 Ramsey et al. Jan 1998 A
5722257 Ishii et al. Mar 1998 A
5741120 Bass et al. Apr 1998 A
5775893 Takao et al. Jul 1998 A
5842843 Haga Dec 1998 A
5855475 Fujio et al. Jan 1999 A
5885063 Makino et al. Mar 1999 A
5888057 Kitano et al. Mar 1999 A
5938417 Takao et al. Aug 1999 A
5993171 Higashiyama Nov 1999 A
5993177 Terauchi et al. Nov 1999 A
6030192 Hill et al. Feb 2000 A
6047557 Pham et al. Apr 2000 A
6068459 Clarke et al. May 2000 A
6086335 Bass et al. Jul 2000 A
6093005 Nakamura Jul 2000 A
6095765 Khalifa Aug 2000 A
6102671 Yamamoto et al. Aug 2000 A
6123517 Brooke et al. Sep 2000 A
6123528 Sun et al. Sep 2000 A
6132179 Higashiyama Oct 2000 A
6139287 Kuroiwa et al. Oct 2000 A
6139291 Perevozchikov Oct 2000 A
6149401 Iwanami et al. Nov 2000 A
6152714 Mitsuya et al. Nov 2000 A
6164940 Terauchi et al. Dec 2000 A
6174149 Bush Jan 2001 B1
6176686 Wallis et al. Jan 2001 B1
6179589 Bass et al. Jan 2001 B1
6202438 Barito Mar 2001 B1
6210120 Hugenroth et al. Apr 2001 B1
6213731 Doepker et al. Apr 2001 B1
6231316 Wakisaka et al. May 2001 B1
6257840 Ignatiev et al. Jul 2001 B1
6264444 Nakane et al. Jul 2001 B1
6267565 Seibel et al. Jul 2001 B1
6273691 Morimoto et al. Aug 2001 B1
6280154 Clendenin et al. Aug 2001 B1
6290477 Gigon Sep 2001 B1
6293767 Bass Sep 2001 B1
6293776 Hahn et al. Sep 2001 B1
6309194 Fraser et al. Oct 2001 B1
6322340 Itoh et al. Nov 2001 B1
6338912 Ban et al. Jan 2002 B1
6350111 Perevozchikov et al. Feb 2002 B1
6361890 Ban et al. Mar 2002 B1
6379123 Makino et al. Apr 2002 B1
6389837 Morozumi May 2002 B1
6412293 Pham et al. Jul 2002 B1
6413058 Williams et al. Jul 2002 B1
6419457 Seibel et al. Jul 2002 B1
6428286 Shimizu et al. Aug 2002 B1
6454551 Kuroki et al. Sep 2002 B2
6457948 Pham Oct 2002 B1
6464481 Tsubai et al. Oct 2002 B2
6478550 Matsuba et al. Nov 2002 B2
6506036 Tsubai et al. Jan 2003 B2
6514060 Ishiguro et al. Feb 2003 B1
6537043 Chen Mar 2003 B1
6544016 Gennami et al. Apr 2003 B2
6558143 Nakajima et al. May 2003 B2
6589035 Tsubono et al. Jul 2003 B1
6619062 Shibamoto et al. Sep 2003 B1
6679683 Seibel et al. Jan 2004 B2
6705848 Scancarello Mar 2004 B2
6715999 Ancel et al. Apr 2004 B2
6746223 Manole Jun 2004 B2
6769881 Lee Aug 2004 B2
6769888 Tsubono et al. Aug 2004 B2
6773242 Perevozchikov Aug 2004 B1
6817847 Agner Nov 2004 B2
6821092 Gehret et al. Nov 2004 B1
6863510 Cho Mar 2005 B2
6881046 Shibamoto et al. Apr 2005 B2
6884042 Zili et al. Apr 2005 B2
6887051 Sakuda et al. May 2005 B2
6893229 Choi et al. May 2005 B2
6896493 Chang et al. May 2005 B2
6896498 Patel May 2005 B1
6913448 Liang et al. Jul 2005 B2
6984114 Zili et al. Jan 2006 B2
7018180 Koo Mar 2006 B2
7029251 Chang et al. Apr 2006 B2
7118358 Tsubono et al. Oct 2006 B2
7137796 Tsubono et al. Nov 2006 B2
7160088 Peyton Jan 2007 B2
7172395 Shibamoto et al. Feb 2007 B2
7207787 Liang et al. Apr 2007 B2
7229261 Morimoto et al. Jun 2007 B2
7255542 Lifson et al. Aug 2007 B2
7261527 Alexander et al. Aug 2007 B2
7311740 Williams et al. Dec 2007 B2
7344365 Takeuchi et al. Mar 2008 B2
RE40257 Doepker et al. Apr 2008 E
7354259 Tsubono et al. Apr 2008 B2
7364416 Liang et al. Apr 2008 B2
7371057 Shin et al. May 2008 B2
7371059 Ignatiev et al. May 2008 B2
RE40399 Hugenroth et al. Jun 2008 E
RE40400 Bass et al. Jun 2008 E
7393190 Lee et al. Jul 2008 B2
7404706 Ishikawa et al. Jul 2008 B2
RE40554 Bass et al. Oct 2008 E
7510382 Jeong Mar 2009 B2
7547202 Knapke Jun 2009 B2
7695257 Joo et al. Apr 2010 B2
7717687 Reinhart May 2010 B2
7771178 Perevozchikov et al. Aug 2010 B2
7802972 Shimizu et al. Sep 2010 B2
7815423 Guo et al. Oct 2010 B2
7891961 Shimizu et al. Feb 2011 B2
7896629 Ignatiev et al. Mar 2011 B2
RE42371 Peyton May 2011 E
7956501 Jun et al. Jun 2011 B2
7967582 Akei et al. Jun 2011 B2
7967583 Stover et al. Jun 2011 B2
7972125 Stover et al. Jul 2011 B2
7976289 Masao Jul 2011 B2
7976295 Stover et al. Jul 2011 B2
7988433 Akei et al. Aug 2011 B2
8025492 Seibel et al. Sep 2011 B2
8303278 Roof et al. Nov 2012 B2
8303279 Hahn Nov 2012 B2
8308448 Fields et al. Nov 2012 B2
8328531 Milliff et al. Dec 2012 B2
8393882 Ignatiev et al. Mar 2013 B2
8506271 Seibel et al. Aug 2013 B2
8517703 Doepker Aug 2013 B2
8585382 Akei et al. Nov 2013 B2
8616014 Stover et al. Dec 2013 B2
8790098 Stover et al. Jul 2014 B2
8840384 Patel et al. Sep 2014 B2
8857200 Stover et al. Oct 2014 B2
8932036 Monnier et al. Jan 2015 B2
9127677 Doepker Sep 2015 B2
9145891 Kim et al. Sep 2015 B2
9249802 Doepker et al. Feb 2016 B2
9303642 Akei et al. Apr 2016 B2
9435340 Doepker et al. Sep 2016 B2
9494157 Doepker Nov 2016 B2
9605677 Heidecker et al. Mar 2017 B2
9624928 Yamazaki et al. Apr 2017 B2
9651043 Stover et al. May 2017 B2
9777730 Doepker et al. Oct 2017 B2
9790940 Doepker et al. Oct 2017 B2
9879674 Akei et al. Jan 2018 B2
9989057 Lochner et al. Jun 2018 B2
10066622 Pax et al. Sep 2018 B2
10087936 Pax et al. Oct 2018 B2
10094380 Doepker et al. Oct 2018 B2
20010010800 Kohsokabe et al. Aug 2001 A1
20020039540 Kuroki et al. Apr 2002 A1
20030044296 Chen Mar 2003 A1
20030044297 Gennami Mar 2003 A1
20030186060 Rao Oct 2003 A1
20030228235 Sowa et al. Dec 2003 A1
20040126259 Choi et al. Jul 2004 A1
20040136854 Kimura et al. Jul 2004 A1
20040146419 Kawaguchi et al. Jul 2004 A1
20040170509 Wehrenberg et al. Sep 2004 A1
20040184932 Lifson Sep 2004 A1
20040197204 Yamanouchi et al. Oct 2004 A1
20050019177 Shin et al. Jan 2005 A1
20050019178 Shin et al. Jan 2005 A1
20050053507 Takeuchi et al. Mar 2005 A1
20050069444 Peyton Mar 2005 A1
20050140232 Lee et al. Jun 2005 A1
20050201883 Clendenin et al. Sep 2005 A1
20050214148 Ogawa et al. Sep 2005 A1
20060099098 Lee et al. May 2006 A1
20060138879 Kusase et al. Jun 2006 A1
20060198748 Grassbaugh et al. Sep 2006 A1
20060228243 Sun et al. Oct 2006 A1
20060233657 Bonear et al. Oct 2006 A1
20070036661 Stover Feb 2007 A1
20070110604 Peyton May 2007 A1
20070130973 Lifson et al. Jun 2007 A1
20080115357 Li et al. May 2008 A1
20080138227 Knapke Jun 2008 A1
20080159892 Huang et al. Jul 2008 A1
20080159893 Caillat Jul 2008 A1
20080196445 Lifson et al. Aug 2008 A1
20080223057 Lifson et al. Sep 2008 A1
20080226483 Iwanami et al. Sep 2008 A1
20080305270 Uhlianuk et al. Dec 2008 A1
20090035167 Sun Feb 2009 A1
20090068048 Stover et al. Mar 2009 A1
20090071183 Stover et al. Mar 2009 A1
20090185935 Seibel et al. Jul 2009 A1
20090191080 Ignatiev et al. Jul 2009 A1
20090297377 Stover et al. Dec 2009 A1
20090297378 Stover et al. Dec 2009 A1
20090297379 Stover et al. Dec 2009 A1
20090297380 Stover et al. Dec 2009 A1
20100111741 Chikano et al. May 2010 A1
20100135836 Stover et al. Jun 2010 A1
20100158731 Akei et al. Jun 2010 A1
20100209278 Tarao et al. Aug 2010 A1
20100212311 McQuary et al. Aug 2010 A1
20100212352 Kim et al. Aug 2010 A1
20100254841 Akei et al. Oct 2010 A1
20100300659 Stover et al. Dec 2010 A1
20100303659 Stover et al. Dec 2010 A1
20110135509 Fields et al. Jun 2011 A1
20110206548 Doepker Aug 2011 A1
20110243777 Ito et al. Oct 2011 A1
20110250085 Stover et al. Oct 2011 A1
20110293456 Seibel et al. Dec 2011 A1
20120009076 Kim et al. Jan 2012 A1
20120107163 Monnier et al. May 2012 A1
20120183422 Bahmata Jul 2012 A1
20120195781 Stover et al. Aug 2012 A1
20130078128 Akei Mar 2013 A1
20130089448 Ginies et al. Apr 2013 A1
20130094987 Yamashita et al. Apr 2013 A1
20130121857 Liang et al. May 2013 A1
20130302198 Ginies et al. Nov 2013 A1
20130309118 Ginies et al. Nov 2013 A1
20130315768 Le Coat et al. Nov 2013 A1
20140023540 Heidecker et al. Jan 2014 A1
20140024563 Heidecker et al. Jan 2014 A1
20140037486 Stover et al. Feb 2014 A1
20140134030 Stover et al. May 2014 A1
20140134031 Doepker et al. May 2014 A1
20140147294 Fargo et al. May 2014 A1
20140154121 Doepker Jun 2014 A1
20140154124 Doepker et al. Jun 2014 A1
20150037184 Rood et al. Feb 2015 A1
20150086404 Kiem et al. Mar 2015 A1
20150192121 Sung et al. Jul 2015 A1
20150330386 Doepker Nov 2015 A1
20150345493 Lochner et al. Dec 2015 A1
20150354719 van Beek et al. Dec 2015 A1
20160025093 Doepker Jan 2016 A1
20160025094 Ignatiev et al. Jan 2016 A1
20160047380 Kim et al. Feb 2016 A1
20160053759 Choi et al. Feb 2016 A1
20160076543 Akei et al. Mar 2016 A1
20160115954 Doepker et al. Apr 2016 A1
20160138879 Matsukado et al. May 2016 A1
20160201673 Perevozchikov et al. Jul 2016 A1
20170002817 Stover Jan 2017 A1
20170002818 Stover Jan 2017 A1
20170030354 Stover Feb 2017 A1
20170241417 Jin et al. Aug 2017 A1
20170268510 Stover et al. Sep 2017 A1
20170306960 Pax et al. Oct 2017 A1
20170314558 Pax et al. Nov 2017 A1
20170342978 Doepker Nov 2017 A1
20170342983 Jin et al. Nov 2017 A1
20170342984 Jin et al. Nov 2017 A1
20180023570 Huang et al. Jan 2018 A1
20180038369 Doepker et al. Feb 2018 A1
20180038370 Doepker et al. Feb 2018 A1
20180066656 Perevozchikov et al. Mar 2018 A1
20180066657 Perevozchikov et al. Mar 2018 A1
20180149155 Akei et al. May 2018 A1
20190040861 Doepker et al. Feb 2019 A1
20190101120 Perevozchikov et al. Apr 2019 A1
20190186491 Perevozchikov et al. Jun 2019 A1
20190203709 Her et al. Jul 2019 A1
20190353164 Berning et al. Nov 2019 A1
Foreign Referenced Citations (123)
Number Date Country
1137614 Dec 1996 CN
1158944 Sep 1997 CN
1158945 Sep 1997 CN
1177681 Apr 1998 CN
1177683 Apr 1998 CN
1259625 Jul 2000 CN
1286358 Mar 2001 CN
1289011 Mar 2001 CN
1339087 Mar 2002 CN
1349053 May 2002 CN
1382912 Dec 2002 CN
1407233 Apr 2003 CN
1517553 Aug 2004 CN
1680720 Oct 2005 CN
1702328 Nov 2005 CN
2747381 Dec 2005 CN
1757925 Apr 2006 CN
1828022 Sep 2006 CN
1854525 Nov 2006 CN
1963214 May 2007 CN
1995756 Jul 2007 CN
101358592 Feb 2009 CN
101684785 Mar 2010 CN
101761479 Jun 2010 CN
101806302 Aug 2010 CN
101910637 Dec 2010 CN
102076963 May 2011 CN
102089525 Jun 2011 CN
102272454 Dec 2011 CN
102400915 Apr 2012 CN
102422024 Apr 2012 CN
102449314 May 2012 CN
102705234 Oct 2012 CN
102762866 Oct 2012 CN
202926640 May 2013 CN
103502644 Jan 2014 CN
103671125 Mar 2014 CN
203962320 Nov 2014 CN
204041454 Dec 2014 CN
104838143 Aug 2015 CN
105317678 Feb 2016 CN
205533207 Aug 2016 CN
205823629 Dec 2016 CN
205876712 Jan 2017 CN
205876713 Jan 2017 CN
205895597 Jan 2017 CN
209621603 Nov 2019 CN
209654225 Nov 2019 CN
3917656 Nov 1995 DE
102011001394 Sep 2012 DE
0747598 Dec 1996 EP
0822335 Feb 1998 EP
1067289 Jan 2001 EP
1087142 Mar 2001 EP
1182353 Feb 2002 EP
1241417 Sep 2002 EP
1371851 Dec 2003 EP
1382854 Jan 2004 EP
2151577 Feb 2010 EP
1927755 Nov 2013 EP
2764347 Dec 1998 FR
2107829 May 1983 GB
S58214689 Dec 1983 JP
S60259794 Dec 1985 JP
S62220789 Sep 1987 JP
S6385277 Apr 1988 JP
S63205482 Aug 1988 JP
H01178789 Jul 1989 JP
H0281982 Mar 1990 JP
H02153282 Jun 1990 JP
H03081588 Apr 1991 JP
03233101 Oct 1991 JP
H04121478 Apr 1992 JP
H04272490 Sep 1992 JP
H0610601 Jan 1994 JP
H0726618 Mar 1995 JP
H7026618 Mar 1995 JP
H07293456 Nov 1995 JP
H08247053 Sep 1996 JP
H8320079 Dec 1996 JP
H08334094 Dec 1996 JP
H09177689 Jul 1997 JP
H11107950 Apr 1999 JP
H11166490 Jun 1999 JP
2951752 Sep 1999 JP
H11324950 Nov 1999 JP
2000104684 Apr 2000 JP
2000161263 Jun 2000 JP
2000329078 Nov 2000 JP
2002202074 Jul 2002 JP
2003074481 Mar 2003 JP
2003074482 Mar 2003 JP
2003106258 Apr 2003 JP
2003214365 Jul 2003 JP
2003227479 Aug 2003 JP
2004239070 Aug 2004 JP
2005264827 Sep 2005 JP
2006083754 Mar 2006 JP
2006183474 Jul 2006 JP
2007154761 Jun 2007 JP
2007228683 Sep 2007 JP
2008248775 Oct 2008 JP
2013104305 May 2013 JP
2013167215 Aug 2013 JP
1019870000015 May 1985 KR
870000015 Jan 1987 KR
20050027402 Mar 2005 KR
20050095246 Sep 2005 KR
100547323 Jan 2006 KR
20100017008 Feb 2010 KR
101192642 Oct 2012 KR
20120115581 Oct 2012 KR
20130094646 Aug 2013 KR
WO-9515025 Jun 1995 WO
WO-0073659 Dec 2000 WO
WO-2007046810 Apr 2007 WO
WO-2008060525 May 2008 WO
WO-2009017741 Feb 2009 WO
WO-2009155099 Dec 2009 WO
WO-2010118140 Oct 2010 WO
WO-2011106422 Sep 2011 WO
WO-2012114455 Aug 2012 WO
WO-2017071641 May 2017 WO
Non-Patent Literature Citations (159)
Entry
Office Action regarding Chinese Patent Application No. 201180010366.1, dated Jun. 4, 2014. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201610516097.0, dated Jun. 27, 2017. Translation provided by Unitalen Attorneys at Law.
Notice of Allowance regarding U.S. Appl. No. 15/186,092, dated Dec. 20, 2018.
Office Action regarding Indian Patent Application No. 1306/MUMNP/2015, dated Dec. 31, 2018.
Notice of Allowance regarding U.S. Appl. No. 15/187,225, dated Jan. 3, 2019.
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Feb. 1, 2019. Translation provided by Unitalen Attorneys at Law.
Notice of Allowance regarding U.S. Appl. No. 15/784,458, dated Feb. 7, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/784,540, dated Feb. 7, 2019.
Search Report regarding European Patent Application No. 18198310.7, dated Feb. 27, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Mar. 19, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/186,092, dated Apr. 19, 2019.
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Apr. 29, 2019. Translation provided by Unitalen Attorneys at Law.
Notice of Allowance regarding U.S. Appl. No. 15/187,225, dated May 2, 2019.
Office Action regarding U.S. Appl. No. 15/587,735, dated May 17, 2019.
Office Action regarding Chinese Patent Application No. 201811011292.3, dated Jun. 21, 2019. Translation provided by Unitalen Attorneys at Law.
Office Action regarding European Patent Application No. 11747996.4, dated Jun. 26, 2019.
U.S. Appl. No. 16/147,920, filed Oct. 1, 2018, Michael M. Perevozchikov et al.
U.S. Appl. No. 16/154,406, filed Oct. 8, 2018, Roy J. Doepker et al.
U.S. Appl. No. 16/154,844, filed Oct. 9, 2018, Jeffrey Lee Berning et al.
U.S. Appl. No. 16/177,902, filed Nov. 1, 2018, Michael M. Perevozchikov et al.
Luckevich, Mark, “MEMS microvalves: the new valve world.” Valve World, May 2007, pp. 79-83.
Extended European Search Report regarding Application No. EP07254962, dated Mar. 12, 2008.
U.S. Office Action regarding U.S. Appl. No. 11/645,288, dated Nov. 30, 2009.
First China Office Action regarding Application No. 200710160038.5, dated Jul. 8, 2010. Translation provided by Unitalen Attorneys At Law.
International Search Report regarding Application No. PCT/US2010/030248, dated Nov. 26, 2010.
Written Opinion of the International Searching Authority regarding Application No. PCT/US2010/030248, dated Nov. 26, 2010.
International Search Report regarding Application No. PCT/US2011/025921, dated Oct. 7, 2011.
Written Opinion of the International Search Authority regarding Application No. PCT/US2011/025921, dated Oct. 7, 2011.
China Office Action regarding Application No. 200710160038.5, dated Jan. 31, 2012. Translation provided by Unitalen Attorneys At Law.
U.S. Office Action regarding U.S. Appl. No. 13/181,065, dated Nov. 9, 2012.
International Search Report regarding Application No. PCT/US2013/051678, dated Oct. 21, 2013.
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/051678, dated Oct. 21, 2013.
China Office Action regarding Application No. 201080020243.1, dated Nov. 5, 2013. Translation provided by Unitalen Attorneys At Law.
International Search Report regarding Application No. PCT/US2013/069456, dated Feb. 18, 2014.
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/069456, dated Feb. 18, 2014.
International Search Report regarding Application No. PCT/US2013/069462, dated Feb. 21, 2014.
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/069462, dated Feb. 21, 2014.
International Search Report regarding Application No. PCT/US2013/070992, dated Feb. 25, 2014.
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/070992, dated Feb. 25, 2014.
International Search Report regarding Application No. PCT/US2013/070981, dated Mar. 4, 2014.
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/070981, dated Mar. 4, 2014.
Second Office Action regarding China Application No. 201180010366.1, dated Dec. 31, 2014. Translation provided by Unitalen Attorneys At Law.
Office Action regarding U.S. Appl. No. 14/081,390, dated Mar. 27, 2015.
Search Report regarding European Patent Application No. 10762374.6-1608 / 2417356 PCT/US2010030248, dated Jun. 16, 2015.
Office Action regarding U.S. Appl. No. 14/060,240, dated Aug. 12, 2015.
International Search Report regarding International Application No. PCT/US2015/033960, dated Sep. 1, 2015.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2015/033960, dated Sep. 1, 2015.
Office Action regarding U.S. Appl. No. 14/073,293, dated Sep. 25, 2015.
Restriction Requirement regarding U.S. Appl. No. 14/060,102, dated Oct. 7, 2015.
Office Action regarding Chinese Patent Application No. 201410461048.2, dated Nov. 30, 2015. Translation provided by Unitalen Attorneys at Law.
Interview Summary regarding U.S. Appl. No. 14/060,240, dated Dec. 1, 2015.
Office Action regarding U.S. Appl. No. 14/073,293, dated Jan. 29, 2016.
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Feb. 25, 2016. Translation provided by Unitalen Attorneys at Law.
Restriction Requirement regarding U.S. Appl. No. 14/060,102, dated Mar. 16, 2016.
First Office Action regarding Chinese Application No. 201380059666.8, dated Apr. 5, 2016. Translation provided by Unitalen Attorneys At Law.
First Office Action regarding Chinese Application No. 201380062614.6, dated Apr. 5, 2016. Translation provided by Unitalen Attorneys At Law.
Advisory Action regarding U.S. Appl. No. 14/073,293, dated Apr. 18, 2016.
Office Action regarding Chinese Patent Application No. 201380062657.4, dated May 4, 2016. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201380059963.2, dated May 10, 2016. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 14/060,102, dated Jun. 14, 2016.
Office Action regarding U.S. Appl. No. 14/846,877, dated Jul. 15, 2016.
Office Action regarding Chinese Patent Application No. 201410461048.2, dated Jul. 26, 2016. Translation provided by Unitalen Attorneys at Law.
Search Report regarding European Patent Application No. 13858194.7, dated Aug. 3, 2016.
Search Report regarding European Patent Application No. 13859308.2, dated Aug. 3, 2016.
Office Action regarding U.S. Appl. No. 14/294,458, dated Aug. 19, 2016.
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Oct. 21, 2016. Translation provided by Unitalen Attorneys At Law.
Search Report regarding European Patent Application No. 11747996.4, dated Nov. 7, 2016.
Office Action regarding Chinese Patent Application No. 201380059666.8, dated Nov. 23, 2016. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 14/060,102, dated Dec. 28, 2016.
International Search Report regarding International Application No. PCT/CN2016/103763, dated Jan. 25, 2017.
Written Opinion of the International Searching Authority regarding International Application No. PCT/CN2016/103763, dated Jan. 25, 2017.
Office Action regarding U.S. Appl. No. 15/156,400, dated Feb. 23, 2017.
Office Action regarding U.S. Appl. No. 14/294,458, dated Feb. 28, 2017.
Advisory Action regarding U.S. Appl. No. 14/060,102, dated Mar. 3, 2017.
Office Action regarding U.S. Appl. No. 14/663,073, dated Apr. 11, 2017.
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Apr. 24, 2017. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 14/946,824, dated May 10, 2017.
Advisory Action regarding U.S. Appl. No. 14/294,458, dated Jun. 9, 2017.
Office Action regarding Chinese Patent Application No. 201610703191.7, dated Jun. 13, 2017. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Indian Patent Application No. 2043/MUMNP/2011, dated Jul. 28, 2017.
Office Action regarding U.S. Appl. No. 14/294,458, dated Sep. 21, 2017.
Office Action regarding U.S. Appl. No. 14/757,407, dated Oct. 13, 2017.
Office Action regarding Chinese Patent Application No. 201610158216.X, dated Oct. 30, 2017. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201410460792.0, dated Nov. 1, 2017. Translation provided by Unitalen Attorneys At Law.
Office Action regarding Chinese Patent Application No. 201610512702.7, dated Dec. 20, 2017. Partial translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Jan. 9, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201580029636.1, dated Jan. 17, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 15/646,654, dated Feb. 9, 2018.
Office Action regarding U.S. Appl. No. 15/651,471 dated Feb. 23, 2018.
Office Action regarding Indian Patent Application No. 1907/MUMNP/2012, dated Feb. 26, 2018.
Election Requirement regarding U.S. Appl. No. 15/186,092, dated Apr. 3, 2018.
Election Requirement regarding U.S. Appl. No. 15/784,458, dated Apr. 5, 2018.
Office Action regarding Korean Patent Application No. 10-2016-7034539, dated Apr. 11, 2018. Translation provided by Y.S. Chang & Associates.
Office Action regarding U.S. Appl. No. 15/186,151, dated May 3, 2018.
Office Action regarding Chinese Patent Application No. 201610930347.5, dated May 14, 2018. Translation provided by Unitalen Attorneys at Law.
Election/Restriction Requirement regarding U.S. Appl. No. 15/187,225, dated May 15, 2018.
Notice of Allowance regarding U.S. Appl. No. 14/757,407, dated May 24, 2018.
Office Action regarding Chinese Patent Application No. 201610158216.X, dated Jun. 13, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding European Patent Application No. 13859308.2, dated Jun. 22, 2018.
Office Action regarding U.S. Appl. No. 15/186,092, dated Jun. 29, 2018.
Notice of Allowance regarding U.S. Appl. No. 15/646,654, dated Jul. 11, 2018.
Notice of Allowance regarding U.S. Appl. No. 15/651,471, dated Jul. 11, 2018.
Office Action regarding U.S. Appl. No. 15/784,540, dated Jul. 17, 2018.
Office Action regarding U.S. Appl. No. 15/784,458, dated Jul. 19, 2018.
Election/Restriction Requirement regarding U.S. Appl. No. 15/587,735, dated Jul. 23, 2018.
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Aug. 1, 2018. Translation provided by Unitalen Attorneys at Law.
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 15/186,092, dated Aug. 14, 2018.
Office Action regarding U.S. Appl. No. 15/187,225, dated Aug. 27, 2018.
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Sep. 5, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Korean Patent Application No. 10-2016-7034539, dated Sep. 6, 2018. Translation provided by Y.S. Chang & Associates.
Office Action regarding Indian Patent Application No. 1307/MUMNP/2015, dated Sep. 12, 2018.
Office Action regarding Chinese Patent Application No. 201580029636.1, dated Oct. 8, 2018. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 15/587,735, dated Oct. 9, 2018.
Office Action regarding U.S. Appl. No. 15/186,151, dated Nov. 1, 2018.
Office Action regarding Korean Patent Application No. 10-2017-7033995, dated Nov. 29, 2018. Translation provided by KS KORYO International IP Law Firm.
Office Action regarding Chinese Patent Application No. 201580041209.5, dated Jan. 17, 2018. Translation provided by Unitalen Attorneys at Law.
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Jul. 25, 2019.
Office Action regarding Chinese Patent Application No. 201610499158.7, dated Aug. 1, 2019. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201811168307.7, dated Aug. 12, 2019. Translation provided by Unitalen Attorneys at Law.
Restriction Requirement regarding U.S. Appl. No. 15/682,599, dated Aug. 14, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/587,735, dated Aug. 23, 2019.
International Search Report regarding International Application No. PCT/US2019/032718, dated Aug. 23, 2019.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2019/032718, dated Aug. 23, 2019.
Office Action regarding Chinese Patent Application No. 201780055443.2, dated Sep. 2, 2019. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 15/692,844, dated Sep. 20, 2019.
U.S. Appl. No. 15/682,599, Perevozchikov et al.
U.S. Appl. No. 15/692,844, Perevozchikov et al.
Non-Final Office Action for U.S. Appl. No. 11/522,250, dated Aug. 1, 2007.
Notification of the First Office Action received from the Chinese Patent Office dated Mar. 6, 2009 regarding Application No. 200710153687.2, translated by CCPIT Patent and Trademark Law Office.
Non-Final Office Action for U.S. Appl. No. 12/103,265, dated May 27, 2009.
Non-Final Office Action for U.S. Appl. No. 12/103,265, dated Dec. 17, 2009.
Notice of Grounds for Rejection regarding Korean Patent Application No. 10-2007-0093478 dated Feb. 25, 2010. Translation provided by Y.S. Chang & Associates.
Final Office Action for U.S. Appl. No. 12/103,265, dated Jun. 15, 2010.
Final Preliminary Notice of Grounds for Rejection regarding Korean Patent Application No. 10-2007-0093478, dated Aug. 31, 2010. Translation provided by Y.S. Chang & Associates.
Advisory Action for U.S. Appl. No. 12/103,265, dated Sep. 17, 2010.
First Office Action regarding Chinese Patent Application No. 201010224582.3, dated Apr. 17, 2012. English translation provided by Unitalen Attorneys at Law.
First Examination Report regarding India-Patent Application No. 1071/KOL/2007, dated Apr. 27, 2012.
Non-Final Office Action for U.S. Appl. No. 13/0365,529, dated Aug. 22, 2012.
International Search Report regarding International Application No. PCT/US2015/042479, dated Oct. 23, 2015.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2015/042479, dated Oct. 23, 2015.
Restriction Requirement regarding U.S. Appl. No. 14/809,786, dated Aug. 16, 2017.
International Search Report regarding International Application No. PCT/US2017/050525, dated Dec. 28, 2017.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2017/050525, dated Dec. 28, 2017.
U.S. Appl. No. 14/809,786, filed Jul. 27, 2015, Kirill M. Ignatiev et al.
U.S. Appl. No. 15/682,599, filed Aug. 22, 2017, Michael M. Perevozchikov et al.
U.S. Appl. No. 15/692,844, filed Aug. 31, 2017, Michael M. Perevozchikov et al.
Office Action regarding Chinese Patent Application No. 201710795228.8, dated Oct. 28, 2019. Translation provided by Unitalen Attorneys at Law.
Office Action regarding European Patent Application No. 11747996.4, dated Nov. 5, 2019.
Notice of Allowance regarding U.S. Appl. No. 15/186,151, dated Nov. 14, 2019.
Office Action regarding Indian Patent Application No. 2043/MUMNP/2011, dated Nov. 27, 2019.
Office Action regarding Chinese Patent Application No. 201811480347.5, dated Jan. 10, 2020. Translation provided by Unitalen Attorneys at Law.
Office Action regarding Chinese Patent Application No. 201811541653.5, dated Jan. 10, 2020. Translation provided by Unitalen Attorneys at Law.
Office Action regarding European Patent Application No. 11747996.4, dated Jan. 14, 2020.
Office Action regarding U.S. Appl. No. 15/881,016, dated Jan. 23, 2020.
Office Action regarding U.S. Appl. No. 15/682,599, dated Jan. 24, 2020.
Notice of Allowance regarding U.S. Appl. No. 15/692,844, dated Feb. 20, 2020.
Office Action regarding European Patent Application No. 13859308.2, dated Mar. 4, 2020.
Office Action regarding Chinese Patent Application No. 201811168307.7, dated Mar. 27, 2020. Translation provided by Unitalen Attorneys at Law.
Non-Final Office Action for U.S. Appl. No. 14/809,786, dated Jan. 11, 2018.
Related Publications (1)
Number Date Country
20180223823 A1 Aug 2018 US
Provisional Applications (1)
Number Date Country
62455679 Feb 2017 US