1. Field of the Invention (Technical Field)
Embodiments of the present invention relate to a method, system, and apparatus for controlling the gas temperature of the gas flowing between compression stages so that the temperature of the gas always remains above the dew-point and hydrate temperature of the gas. A further embodiment of the present invention provides a method for controlling inner stage compression temperatures that can be part of a new compressor assembly or retrofitted to compressors already installed and operating.
2. Description of Related Art
To collect gases that are commonly vented by process equipment used at natural gas locations, including but not limited to well sites and processing plants, a flash gas compressor is commonly used. The flash gas compressors operate at pounds of suction pressure (usually 25 to 100 pounds per square inch gauge (“psig”) and discharge pressures generally above 100 and less than 1500 psig). The compressors generally have from one to four compression stages and the gas entering and leaving the inner compression stages is cooled by flowing through a radiator utilizing air, driven by a fan, as the heat sink.
During cool weather, the air circulating through the gas cooler radiator can cool the gas to a temperature below the hydrocarbon dew-point of the gas as well as cooling the gas to a temperature that causes gas hydrates to form.
Cooling the gas below its dew-point results in hydrocarbon liquids forming in the gas stream. The hydrocarbon liquids are separated from the gas by scrubbers installed between the compression stages. The hydrocarbon liquids that condense and are separated by the scrubbers are commonly called “recycle loops”. Depending upon the British Thermal Units of heat (“BTU”) of the gas, how low the ambient temperature is, and how high the inner stage compression pressures are, the recycle loops, when dumped back to the storage tank, can create a volume of hydrocarbon vapors that will overload the vapor recovery system or require installation of a pressurized storage tank or flaring.
Cooling the gas below the hydrate formation temperature causes ice crystals to form in the radiator, potentially blocking the flow of gas. There is thus a present need for a method, system, and apparatus which can consistently cool the gas between multiple stages of compression so that the gas temperature remains above the dew-point of the gases and below a temperature which would cause thermal damage to the compressor when the vapors are compressed in a subsequent stage of compression.
Objects, advantages and novel features, and further scope of applicability of the present invention will be set forth in part in the detailed description to follow, taken in conjunction with the accompanying drawings, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention.
An embodiment of the present invention relates to a system for maintaining temperature of a gas between stages of compression including introducing the gas into a first stage of compression; directing the gas from the first stage of compression to a heat exchanger; directing the gas from the heat exchanger to an interstage scrubber; directing the gas from the interstage scrubber to a second stage of compression; and controlling a volume of coolant traveling through the heat exchanger by sensing a temperature of the gases that have exited a second stage of compression.
Objects, advantages and novel features, and further scope of applicability of the present invention will be set forth in part in the detailed description to follow, taken in conjunction with the accompanying drawings, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
The accompanying drawing, which is incorporated into and forms a part of the specification, illustrates one or more embodiments of the present invention and, together with the description, serves to explain the principles of the invention. The drawing is only for the purpose of illustrating one or more preferred embodiments of the invention and is not to be construed as limiting the invention.
Referring now to
Referring to
Referring again to
Referring again to
The antifreeze solution preferably exits heat exchanger 10 and flows through lines 29 and 72 to the inlet of air cooled radiator 32. Air cooled radiator 32 can optionally be a radiator similar to a radiator on a car or truck, or, as illustrated, it can be of a design where the radiator and coolant reservoir are separate units. While flowing through radiator 32, the antifreeze solution is preferably cooled by air which is driven by a fan. The cooled antifreeze solution exits radiator 32 and flows through line 35 to inlet 36 of coolant reservoir 37. The antifreeze solution exits coolant reservoir 37 and flows through line 39 to the inlet 43 of coolant pump 40. Coolant pump 40 can be a centrifugal pump. When throttling motor valve 24 begins closing, the discharge pressure of centrifugal pump 40 preferably increases slightly but the pump continues running normally.
Although embodiments of the present invention most preferably operate via pneumatic control using pneumatically-operated components, other types of control and sources for power of operation can optionally be used in place of or in conjunction with one or more of the pneumatic controls and pneumatically-powered components. Accordingly, in one embodiment one or more electrically-operated components can be provided. Optionally, one or more manually-powered controls can be provided and an operator can operate them.
In one embodiment, the present invention is disposed at a well site and not at another location. In one embodiment, the present invention is skid-mounted.
Although the invention has been described in detail with particular reference to these preferred embodiments, other embodiments can achieve the same results. Variations and modifications of the present invention will be obvious to those skilled in the art and it is intended to cover in the appended claims all such modifications and equivalents. The entire disclosures of all references, applications, patents, and publications cited above are hereby incorporated by reference.
This application claims priority to and the benefit of the filing of U.S. Provisional Patent Application Ser. No. 61/798,380, entitled “Compressor Inter-Stage Temperature Control”, filed on Mar. 15, 2013, and the specification thereof is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
844694 | Smith | Feb 1907 | A |
1903481 | Schweisthal | Apr 1933 | A |
2225959 | Miller | Dec 1940 | A |
2726729 | Williams | Dec 1955 | A |
2738026 | Glasgow et al. | Mar 1956 | A |
2765872 | Hartman et al. | Oct 1956 | A |
2786543 | Hayes et al. | Mar 1957 | A |
2812827 | Worley et al. | Nov 1957 | A |
2815901 | Hale | Dec 1957 | A |
2853149 | Gosselin | Sep 1958 | A |
2937140 | Stinson | May 1960 | A |
2970107 | Gilmore | Jan 1961 | A |
2984360 | Smith | May 1961 | A |
3018640 | Heller et al. | Jan 1962 | A |
3025928 | Heath | Mar 1962 | A |
3027651 | Nerge | Apr 1962 | A |
3094574 | Glasgow et al. | Jun 1963 | A |
3105855 | Meyers | Oct 1963 | A |
3152753 | Adams | Oct 1964 | A |
3182434 | Fryar | May 1965 | A |
3232027 | Lorenz | Feb 1966 | A |
3237847 | Wilson | Mar 1966 | A |
3254473 | Fryar et al. | Jun 1966 | A |
3255573 | Cox, Jr. et al. | Jun 1966 | A |
3288448 | Patterson et al. | Nov 1966 | A |
3321890 | Barnhart | May 1967 | A |
3347019 | Barnhart | Oct 1967 | A |
3360127 | Wood, Jr. | Dec 1967 | A |
3396512 | McMinn et al. | Aug 1968 | A |
3398723 | Smalling | Aug 1968 | A |
3407052 | Huntress et al. | Oct 1968 | A |
3528758 | Perkins | Sep 1970 | A |
3540821 | Siegmund | Nov 1970 | A |
3541763 | Heath et al. | Nov 1970 | A |
3589984 | Reid | Jun 1971 | A |
3616598 | Floral, Jr. | Nov 1971 | A |
3648434 | Gravis, III et al. | Mar 1972 | A |
3659401 | Giammarco | May 1972 | A |
3662017 | Woerner | May 1972 | A |
3672127 | Mayse et al. | Jun 1972 | A |
3736725 | Alleman et al. | Jun 1973 | A |
3817687 | Cavallero et al. | Jun 1974 | A |
3829521 | Green | Aug 1974 | A |
3855337 | Foral, Jr. et al. | Dec 1974 | A |
3872682 | Shook | Mar 1975 | A |
3949749 | Stewart | Apr 1976 | A |
3989487 | Peterson | Nov 1976 | A |
4009985 | Hirt | Mar 1977 | A |
4010009 | Moyer | Mar 1977 | A |
4010065 | Alleman | Mar 1977 | A |
4058147 | Stary et al. | Nov 1977 | A |
4098303 | Gammell | Jul 1978 | A |
4108618 | Schneider | Aug 1978 | A |
4118170 | Hirt | Oct 1978 | A |
4134271 | Datia | Jan 1979 | A |
4162145 | Alleman | Jul 1979 | A |
4198214 | Heath et al. | Apr 1980 | A |
4270938 | Schmidt et al. | Jun 1981 | A |
4286929 | Heath et al. | Sep 1981 | A |
4305895 | Heath et al. | Dec 1981 | A |
4322265 | Wood | Mar 1982 | A |
4332643 | Reid | Jun 1982 | A |
4342572 | Heath | Aug 1982 | A |
4362462 | Blotenberg | Dec 1982 | A |
4369049 | Heath | Jan 1983 | A |
4396371 | Lorenz et al. | Aug 1983 | A |
4402652 | Gerlach et al. | Sep 1983 | A |
4421062 | Padilla, Sr. | Dec 1983 | A |
4431433 | Gerlach et al. | Feb 1984 | A |
4435196 | Pielkenrood | Mar 1984 | A |
4459098 | Turek et al. | Jul 1984 | A |
4462813 | May et al. | Jul 1984 | A |
4474549 | Capone | Oct 1984 | A |
4474550 | Heath et al. | Oct 1984 | A |
4493770 | Moilliet | Jan 1985 | A |
4501253 | Gerstmann et al. | Feb 1985 | A |
4505333 | Ricks | Mar 1985 | A |
4511374 | Heath | Apr 1985 | A |
4539023 | Boley | Sep 1985 | A |
4568268 | Gerlach et al. | Feb 1986 | A |
4579565 | Heath | Apr 1986 | A |
4583998 | Reid et al. | Apr 1986 | A |
4588372 | Torborg | May 1986 | A |
4588424 | Heath et al. | May 1986 | A |
4597733 | Dean et al. | Jul 1986 | A |
4615673 | Heath et al. | Oct 1986 | A |
4617030 | Heath | Oct 1986 | A |
4659344 | Gerlach et al. | Apr 1987 | A |
4674446 | Padilla, Sr. | Jun 1987 | A |
4676806 | Dean et al. | Jun 1987 | A |
4689053 | Heath | Aug 1987 | A |
4701188 | Mims | Oct 1987 | A |
4715808 | Heath et al. | Dec 1987 | A |
4737168 | Heath | Apr 1988 | A |
4778443 | Sands et al. | Oct 1988 | A |
4780115 | Ranke | Oct 1988 | A |
4824447 | Goldsberry | Apr 1989 | A |
4830580 | Hata et al. | May 1989 | A |
4919777 | Bull | Apr 1990 | A |
4948393 | Hodson et al. | Aug 1990 | A |
4949544 | Hines | Aug 1990 | A |
4978291 | Nakai | Dec 1990 | A |
4983364 | Buck et al. | Jan 1991 | A |
5080802 | Cairo, Jr. et al. | Jan 1992 | A |
5084074 | Beer et al. | Jan 1992 | A |
5129925 | Marsala et al. | Jul 1992 | A |
5130078 | Dillman | Jul 1992 | A |
5132011 | Ferris | Jul 1992 | A |
5163981 | Choi | Nov 1992 | A |
5167675 | Rhodes | Dec 1992 | A |
5191990 | Fritts | Mar 1993 | A |
5195587 | Webb | Mar 1993 | A |
5209762 | Lowell | May 1993 | A |
5249739 | Bartels et al. | Oct 1993 | A |
5269886 | Brigham | Dec 1993 | A |
5346537 | Lowell | Sep 1994 | A |
5377723 | Hilliard | Jan 1995 | A |
5419299 | Fukasawa et al. | May 1995 | A |
5453114 | Ebeling | Sep 1995 | A |
5476126 | Hilliard et al. | Dec 1995 | A |
5490873 | Behrens et al. | Feb 1996 | A |
5501253 | Weiss | Mar 1996 | A |
5513680 | Hilliard et al. | May 1996 | A |
5536303 | Ebeling | Jul 1996 | A |
5571310 | Nanaji | Nov 1996 | A |
5579740 | Cotton et al. | Dec 1996 | A |
5664144 | Yanai et al. | Sep 1997 | A |
5665144 | Hill et al. | Sep 1997 | A |
5678411 | Matsumura et al. | Oct 1997 | A |
5755854 | Nanaji | May 1998 | A |
5766313 | Heath | Jun 1998 | A |
5826433 | Dube | Oct 1998 | A |
5857616 | Karnoff et al. | Jan 1999 | A |
5878725 | Osterbrink | Mar 1999 | A |
5882486 | Moore | Mar 1999 | A |
5885060 | Cunkelman et al. | Mar 1999 | A |
5988232 | Koch et al. | Nov 1999 | A |
6004380 | Landreau et al. | Dec 1999 | A |
6010674 | Miles et al. | Jan 2000 | A |
6023003 | Dunning et al. | Feb 2000 | A |
6027311 | Hill et al. | Feb 2000 | A |
6095793 | Greeb | Aug 2000 | A |
6142191 | Sutton et al. | Nov 2000 | A |
6183540 | Thonsgaard | Feb 2001 | B1 |
6193500 | Bradt et al. | Feb 2001 | B1 |
6223789 | Koch | May 2001 | B1 |
6224369 | Moneyhun | May 2001 | B1 |
6238461 | Heath | May 2001 | B1 |
6251166 | Anderson | Jun 2001 | B1 |
6273937 | Schucker | Aug 2001 | B1 |
6299671 | Christensen | Oct 2001 | B1 |
6314981 | Mayzou et al. | Nov 2001 | B1 |
6332408 | Howlett | Dec 2001 | B2 |
6363744 | Finn et al. | Apr 2002 | B2 |
6364933 | Heath | Apr 2002 | B1 |
6425942 | Forster | Jul 2002 | B1 |
6461413 | Landreau et al. | Oct 2002 | B1 |
6478576 | Bradt et al. | Nov 2002 | B1 |
6499476 | Reddy | Dec 2002 | B1 |
6532999 | Pope et al. | Mar 2003 | B2 |
6533574 | Pechoux | Mar 2003 | B1 |
6537349 | Choi et al. | Mar 2003 | B2 |
6537458 | Polderman | Mar 2003 | B1 |
6551379 | Heath | Apr 2003 | B2 |
6604558 | Sauer | Aug 2003 | B2 |
6616731 | Hillstrom | Sep 2003 | B1 |
6719824 | Bowser | Apr 2004 | B1 |
6745576 | Granger | Jun 2004 | B1 |
6931919 | Weldon | Aug 2005 | B2 |
6984257 | Heath et al. | Jan 2006 | B2 |
7005057 | Kalnes | Feb 2006 | B1 |
7025084 | Perry et al. | Apr 2006 | B2 |
7131265 | Lechner | Nov 2006 | B2 |
RE39944 | Heath | Dec 2007 | E |
7350581 | Wynn | Apr 2008 | B2 |
7481237 | Jones et al. | Jan 2009 | B2 |
7497180 | Karlsson et al. | Mar 2009 | B2 |
7531030 | Heath et al. | May 2009 | B2 |
7575672 | Gilmore | Aug 2009 | B1 |
7905722 | Heath et al. | Mar 2011 | B1 |
8529215 | Heath et al. | Sep 2013 | B2 |
20010008073 | Finn et al. | Jul 2001 | A1 |
20020073843 | Heath | Jun 2002 | A1 |
20020081213 | Takahashi et al. | Jun 2002 | A1 |
20020178918 | Lecomte et al. | Dec 2002 | A1 |
20020185006 | Lecomte et al. | Dec 2002 | A1 |
20030005823 | Le Blanc et al. | Jan 2003 | A1 |
20030167690 | Edlund et al. | Sep 2003 | A1 |
20040031389 | Heath et al. | Feb 2004 | A1 |
20040186630 | Shier et al. | Sep 2004 | A1 |
20040211192 | Lechner | Oct 2004 | A1 |
20050115248 | Koehler et al. | Jun 2005 | A1 |
20050266362 | Stone et al. | Dec 2005 | A1 |
20060144080 | Heath et al. | Jul 2006 | A1 |
20060156744 | Cusiter et al. | Jul 2006 | A1 |
20060156758 | An et al. | Jul 2006 | A1 |
20060218900 | Lechner | Oct 2006 | A1 |
20060254777 | Wynn | Nov 2006 | A1 |
20060260468 | Amin | Nov 2006 | A1 |
20070051114 | Mahlanen | Mar 2007 | A1 |
20070084341 | Heath et al. | Apr 2007 | A1 |
20070151292 | Heath et al. | Jul 2007 | A1 |
20070175226 | Karlsson et al. | Aug 2007 | A1 |
20070186770 | Heath et al. | Aug 2007 | A1 |
20070199696 | Walford | Aug 2007 | A1 |
20080008602 | Pozivil et al. | Jan 2008 | A1 |
20080120993 | An et al. | May 2008 | A1 |
20090133578 | Bras et al. | May 2009 | A1 |
20090223246 | Heath et al. | Sep 2009 | A1 |
20100040989 | Heath et al. | Feb 2010 | A1 |
20120079851 | Heath et al. | Apr 2012 | A1 |
20120261092 | Heath et al. | Oct 2012 | A1 |
20130319844 | Heath et al. | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
011862 | Sep 2000 | AR |
024366 | Oct 2002 | AR |
2281610 | Sep 1998 | CA |
2426071 | Oct 2003 | CA |
2224389 | Feb 2008 | CA |
2311440 | Jun 2011 | CA |
2563747 | May 2013 | CA |
2542039 | Sep 1984 | FR |
370591 | Apr 1932 | GB |
573819 | Dec 1945 | GB |
58185990 | Oct 1983 | JP |
2159913 | Nov 2000 | RU |
1021809 | Jun 1983 | SU |
1801092 | Mar 1993 | SU |
2005068847 | Jul 2005 | WO |
2010080040 | Jul 2010 | WO |
2013170190 | Nov 2013 | WO |
Entry |
---|
“Natural Gas Dehydration”, The Environmental Technology Verification Program, Sep. 2003. |
Archer, “TEG Regenerator Vapor Recovery in Amoco's Northwestern Business Unit”, Amoco Northwestern Business Unit, Aug. 1992. |
Reid, “Coldfinger an Exhauster for Removing Trace Quantities of Water from Glycol Solutions Used for Gas Dehydration”, Ball-Reid Engineers, Inc., Oklahoma City, Oklahoma, 1975, 592-602. |
Number | Date | Country | |
---|---|---|---|
61798380 | Mar 2013 | US |