Computer program, method, and system for managing multiple data recording devices

Abstract
A multiple recording device management system including an intermediate multiple recording device managing apparatus, a vehicle recording device mounted in a police vehicle and synced to the managing apparatus, and a personal recording device carried by a police officer and wirelessly synced to the managing apparatus. The managing apparatus is operable to detect when the vehicle recording device, personal recording device, or any other synced device in range has begun recording and to transmit a communication signal to any synced recording device in range indicating that the recording device should begin recording and to further transmit a time stamp to synced recording devices for corroborating recorded data.
Description
BACKGROUND
1. Field

Embodiments of the present invention relate to recording device managing apparatus. More particularly, embodiments of the current invention relate to computer programs, methods, apparatus, and systems for managing multiple recording devices by syncing the recording devices, creating time stamps and metadata corresponding to data recordings taken by the recording devices, and transmitting the time stamps and metadata to the recording devices for corroborating the recordings.


2. Related Art

Recording device management systems are used to coordinate recording devices to capture multiple recordings of an event. For example, a control board can be used to start multiple video cameras to record video data from multiple vantage points. However, the control board simply receives a single input such as a button press and transmits it to multiple recording devices. The management system does little, if anything, to react to inputs from the electronic devices or to make decisions based on statuses of the electronic devices. Also, current management systems do not corroborate the recorded data by correlating data taken from distinct devices.


The law enforcement field is growing more dependent on recording devices such as cameras and audio recorders to preserve evidence. Officers now use dash-cams, hidden cameras, and personal recording devices worn by the officers to obtain crucial video and audio data recordings. However, managing these devices and corroborating the recorded data remains difficult and problematic. For example, recording devices often use different cues to start recording, or require manual operation, which can result in the devices failing to record at a crucial time. Manually managing recording devices can be distracting to the officer, which is particularly undesirable in dangerous situations. Another problem is that in a court of law, evidence is bolstered if corroborated or otherwise forensically verifiable, but multiple recordings may be difficult to corroborate based solely on their content. Additionally, correlating and organizing evidence is time consuming and increases the workload of often understaffed law enforcement departments.


SUMMARY

Embodiments of the present invention solve the above-mentioned problems by providing a computer program, method, apparatus, and system for managing multiple data recording devices.


One embodiment of the invention is an intermediate recording device managing apparatus (“recording device manager”) for use in a multiple recording device system. The recording device manager comprises a controller including a receiver for receiving from a first recording device a first communication signal that the first recording device has started recording, and a transmitter for transmitting to a second recording device a second communication signal instructing the second recording device to begin recording. The recording device manager thus insures that multiple recording devices record an event.


Another embodiment of the invention is an intermediate recording device managing apparatus for use in a multiple recording device system, wherein the apparatus comprises an internal clock and a controller. The controller obtains time readings from the internal clock and creates time stamps therefrom. The controller transmits the time stamps to synced recording devices for corroborating recordings.


This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Other aspects and advantages of the current invention will be apparent from the following detailed description of the embodiments and the accompanying drawing figures.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

Embodiments of the current invention are described in detail below with reference to the attached drawing figures, wherein:



FIG. 1 is a schematic plan view of a multiple recording device management system including an intermediate recording device managing apparatus, a vehicle video recording device mounted in a police vehicle, and a personal video recording device carried by an officer, in accordance with an embodiment of the invention;



FIG. 2 is a perspective view of the intermediate recording device managing apparatus of FIG. 1 constructed in accordance with an embodiment of the invention;



FIG. 3 is a settings configuration interface for configuring options and parameters pertaining to managing the recording devices in accordance with an embodiment of the invention;



FIG. 4 is a wireless and security configuration interface for choosing options and parameters pertaining to wireless setup and security precautions in accordance with an embodiment of the invention;



FIG. 5 is a device-syncing interface for syncing recording devices to the intermediate recording device managing apparatus in accordance with an embodiment of the invention; and



FIG. 6 is a settings configuration interface for configuring options and parameters pertaining to the recording devices in accordance with an embodiment of the invention.





The drawing figures do not limit the current invention to the specific embodiments disclosed and described herein. The drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the invention.


DETAILED DESCRIPTION OF THE EMBODIMENTS

The following detailed description of the invention references the accompanying drawings that illustrate specific embodiments in which the invention can be practiced. The embodiments are intended to describe aspects of the invention in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments can be utilized and changes can be made without departing from the scope of the current invention. The following detailed description is, therefore, not to be taken in a limiting sense. The scope of the current invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.


In this description, references to “one embodiment”, “an embodiment”, or “embodiments” mean that the feature or features being referred to are included in at least one embodiment of the technology. Separate references to “one embodiment”, “an embodiment”, or “embodiments” in this description do not necessarily refer to the same embodiment and are also not mutually exclusive unless so stated and/or except as will be readily apparent to those skilled in the art from the description. For example, a feature, structure, act, etc. described in one embodiment may also be included in other embodiments, but is not necessarily included. Thus, the current technology can include a variety of combinations and/or integrations of the embodiments described herein.


Turning to the figures, and particularly FIG. 1, a first embodiment of a multiple recording device management system 10 (hereinafter “management system 10”) is described, which includes an intermediate multiple recording device managing apparatus 12 (hereinafter “recording device manager” or “manager”), a vehicle recording device 14 mounted in a police vehicle 16 and communicatively coupled (i.e., synced) to the recording device manager 12, and a personal recording device 18 carried by a police officer 20 and wirelessly synced to the recording device manager 12. The recording device manager 12 is operable to detect when the vehicle recording device 14, personal recording device 18, or any other synced device in range has started recording and to broadcast or transmit a signal to any synced recording device in range instructing recording by the respective device. The recording device manager 12 also may generate time stamps and unique serial numbers for a data recording, and create or collect metadata and transmit such time stamps, unique serial number, and metadata to the recording devices 14, 18 for corroborating the recorded data. For illustrative purposes, the management system 10 includes the vehicle recording device 14 and the personal recording device 18, but it will be understood that duplicate or additional devices, such as audio recorders, thermal imagers, security cameras, radios, seismic sensors, radar and LIDAR scanners, and chemical analyzers, can be synced to the recording device manager 12. Moreover, multiple personal recording devices 18 can be synced with the manager 12, as described below.


In embodiments of the present invention, the vehicle recording device 14 and personal recording device 18 are each operable to record data, including without limitation, audio and video data. Moreover, the recording devices 14, 18 are also operable to record or generate metadata associated with the recording, such that the data recorded by the devices 14, 18 includes the audio data, the video data, and/or the metadata associated with either or both of the audio and video data. Examples of metadata for an audio or video recording include a location (as determined by a GPS) where the data was recorded, a user who recorded the data or was otherwise associated with the recording device 14, 18 (e.g., an officer driving a police vehicle or an officer wearing the personal recording device 18), the time stamp and unique serial number described in detail below, a number of data-capture devices synced upon initiation of the data recording event, a trigger for the data recording event (i.e., what prompted data capture by the recording devices), etc. Thus, reference herein to “recorded data” is intended to include audio data, video data, and any metadata associated with the audio and video data. Additionally, in embodiments where the recording device manager is synced with ancillary data-capture devices, such as a thermal imager or radar or LIDAR scanner, for example, such data (including any metadata) generated or otherwise captured by the ancillary devices also encompasses “recorded data.” For ease of reference, video or audio recorded data may be discussed herein for particular examples but should not otherwise be considered limiting of the types of recorded data.


An exemplary scenario of the management system 10 in use is now described for illustrative purposes. The management system 10 may be used by the police officer 20 to record video data during a traffic stop. The recording device manager 12 may be mounted near the vehicle recording device 14, such as on the windshield of the police vehicle 16. Alternatively, the recording device manager 12 may be mounted anywhere within the police vehicle 16 that allows for the recording device manager 12 to communicate (either via a wired or wireless connection) with the vehicle recording device 14 or a recording device manager (not shown). In exemplary embodiments, the vehicle recording device 14 is aimed forwards to record the traffic stop, and the personal recording device 18 is mounted to the police officer's person or is otherwise carried by the police officer 20, such as on a lanyard.


As described in more detail below, the recording device manager 12 is communicatively coupled with at least one personal recording device 18 and is operable to instruct recording of data by the personal recording device 18. In other embodiments of the present invention, the recording device manager 12 may be communicatively coupled with a plurality of personal recording devices 18 carried by a plurality of officers. The recording device manager 12 of embodiments of the present invention manages recording of multiple devices during, for example, a traffic stop by the police officer 20. As often occurs, the police officer 20 wearing the personal recording device 18 will exit the vehicle and approach a situation (such as a stopped car). Should the officer instruct recording by the personal recording device 18, or should the personal recording device 18 automatically begin recording in response to a triggering event, as described in more detail below, the recording device manager 12 receives a signal that the personal recording device 18 has begun recording. The recording device manager 12 then in turn instructs recording by the vehicle recording device 14.


The recording device manager 12 can also perform the converse of the above exemplary scenario. In particular, should the vehicle recording device 14 begin recording, either through manual instruction by the officer or in response to a triggering event, the recording device manager 12 will receive notification of same and instruct the personal recording device 18 to begin recording.


In embodiments where multiple personal recording devices 18 are synced with the recording device manager 12, the recording device manager will instruct recording by the multiple devices 18. As an example, if a first personal recording device 18 begins recording, such as in response to manual instruction by the officer or in response to a triggering event, a signal will be sent to the recording device manager 12. In turn, the recording device manager 12 will instruct recording by a second personal recording device 18 that is synced with the manager 12. It should be appreciated that this scenario of the manager 12 instructing recording is for every device synced with the manager 12.


In alternative embodiments of the present invention, the personal recording device 18 may include a GPS, an RFID, or another type of location or identification feature or sensor (not shown) that informs the recording device manager 12 of the relational location of the personal recording device 18 to the recording device manager 12. Alternatively, the officer may carry on their person a GPS (such as housed within a mobile communications device), RFID, or other type of location or identification sensor. The recording device manager 12 is communicatively coupled with the location or identification sensor, such that the recording device manager can receive information and signals from the sensor. If the recording device manager 12 determines that the personal recording device is within a preset, maximum range of the vehicle 16, as signaled by the location or identification sensor, then the recording device manager 12 may be programmed to not instruct the personal recording device to begin recording upon the vehicle recording device recording. This may be desirable should the officer be sitting in the vehicle, and therefore, video and audio recordings by the personal recording device are unnecessary.


In yet further embodiments of the present invention, the recording device manager 12 may be programmed such that it instructs recording by the personal recording device when the personal recording device is a predetermined minimum distance away from the vehicle recording device 14 or recording device manager. For example, should the officer step away from the vehicle 16 a preset, minimum distance, the recording device manager 12 will note such and instruct recording by the personal recording device and regardless of whether the vehicle recording device has begun recording. Such a feature may be desirable in situations where the officer is chasing a suspect or is otherwise separated a large distance from their vehicle.


It should be appreciated that the signal received by the recording device manager 12 and from one of the recording devices that such recording device has started recording may actually instead be a signal that such recording device is going to imminently begin recording (this is compared to the signal sent by the recording device manager 12 to the other recording device instructing recording by the other recording device and in response to the first recording device beginning recording). In particular, it may be that the signal sent by the recording device manager 12 and to the second recording device instructing the second recording device to begin recording, such signal being in response to the first recording device beginning recording, is actually a signal that the first recording device received an instruction to begin recording, such as manual activation by the officer, as opposed to a signal that the first recording device has actually started recording. Thus, the signal received by the manager 12 may not actually be a signal that the first device has begun recording, but rather a signal that the first device has been instructed to record or will be recording imminently (as within milliseconds).


As an example, the vehicle recording device 14 may receive an instruction by the officer to begin recording data, including without limitation, audio and video data. Receipt of this instruction by the vehicle recording device 14 causes a first signal to be sent to the recording device manager 12 that the vehicle recording device 14 has been instructed to record. In response to receipt of the first signal, the recording device manager 12 then sends a second signal to the personal recording device 18 instructing such device 18 to begin recording. It should be appreciated that the first signal received by the recording device manager 12 may either include information indicating that the vehicle recording device 14 has already begun recording or has been instructed to record. Thus, reference to the first recording device recording encompasses the first recording device having actually begun recording, having been instructed to begin recording, or about to imminently begin recording.


In addition to instructing the vehicle recording device 14 to begin recording in the above exemplary scenario, the recording device manager 12 also generates time stamps and transmits them to the personal recording device 18 and the vehicle recording device 14. A time stamp is any information identifying the particular time of day (and, in some embodiments, the date) an item of data was recorded, such that the item of data is associated with the particular time via the time stamp. As such, the time stamp may be a sequence of characters identifying the time (either or both in human or computer-readable format). The time stamp may be encoded, and in embodiments, the time stamp may be incorporated or otherwise shown on any video image viewable by a user. The time stamp is transmitted to the recording devices 14, 18, each of which includes an internal clock independent of the internal clock of the recording device manager 12. Because the independent internal clocks of the recording devices 14, 18 are not necessarily synchronized and otherwise have different time settings for the clock (i.e., each clock of each device may record a different time for a particular point in time), the time stamp serves as a shared reference point for corroborating data points of the data recorded by the recording devices 14, 18.


In embodiments of the present invention, a unique serial number is generated and provided by the recording device manager 12 and to each of the recording devices 14, 18. For example, for a particular data recording event, such as a traffic stop, the recording device manager 12 generates a unique serial number for the data recording event. The manager 12 then assigns the unique serial number to the data recording event and transfers or otherwise provides the unique serial number to each of the data recording devices, such as the recording devices 14, 18. Thus, in embodiments, a unique serial number is generated each time a data recording is initiated. In embodiments, the unique serial number can be provided in addition to the above-referenced time stamp or in place of the time stamp. Upon receipt of the unique serial number from the recording device manager 12, the recording devices 14, 18 write the unique serial number and any information associated therewith as metadata to a metadata file associated with the data recording. In embodiments of the present invention, the same unique serial number generated by the manager 12 and associated with the data-capture event is sent to each of the recording devices 14, 18. However, in other embodiments, the manager 12 may generate different unique serial numbers for the data-capture event to send to each recording device 14, 18. The manager 12 may then link or otherwise associate the different unique serial numbers sent to each of the recording devices for the particular data-capture event.


The unique serial number serves to validate the time stamp as having been generated by a genuine and properly calibrated recording device manager 12. Additionally, use of the unique serial number and time stamp allow video recording software that manages the data recordings to link together or otherwise associate data recordings having the same serial number and time stamp. Because recorded data is captured by disparate devices, use of the unique serial number assists in associating together the recorded data from each device. An officer or other user reviewing the recorded data will then know when a particular image or item of data obtained from a first recording device occurred and be able to correlate and corroborate such with images or items of data obtained from other recording devices.


In embodiments of the present invention, the time stamp and serial number are sent to the recording devices once, when the recording devices 14, 18 begin recording for the particular data recording event. The recording devices then respectively acknowledge, to the recording device manager 12, receipt of the time stamp and serial number. If the recoding devices do not send their respective acknowledgement to the recording device manager, then the manager may send the time stamp and unique serial number to the recording devices again. In other embodiments of the present invention, such as for especially long data-capture events, the time stamp and unique serial number may be sent more than once, and or a new unique serial number may be generated. In some instances, there may be a brief break or pause in the data recording. In such an instance, the recording device manager may send another, different unique serial number to the recording devices. Alternatively, if a length of time for the break or pause is the same or less than a preset maximum time limit, the data captured after the break or pause may be associated with the same unique serial number as the data captured before the break or pause.


By beginning to record almost simultaneously as the personal recording device 18, the vehicle recording device 14 is operable to capture additional video and audio data recordings of the situation encountered by the officer, including capturing from a different vantage point than the officer. The time stamp and serial number corresponding to the captured and recorded video and audio data recordings from the personal recording device 18 can be matched with the concurrent time stamp corresponding to the captured and recorded video and audio data recordings from the vehicle recording device 14 to link the recordings chronologically. Such is desirable to forensically establish the timing of certain events captured by the two devices 14, 18 and the relation of the recorded images and audio from the personal recording device to the recorded images and audio from the vehicle recording device.


In even further embodiments, the time stamp and serial number sent from the manager 12 and to each recording device may include metadata, such as an identification that the time stamp came from the manager 12, other recording devices to which the manager sent the same time stamp information, a date (if not already included in the time stamp), any triggering event (as described herein), etc.


In yet further embodiments, the time stamp may actually be created by the particular recording device, as opposed to the manager 12. In such a case, the manager sends the time reading to the recording device, and the recording device in turn creates the time stamp.


As can be appreciated, the feature of the recording device manager 12 managing the time stamps can also be used with other ancillary devices. For example, in the case of the manager 12 being synced with a LIDAR, the manager 12 can time stamp when an officer records a particular speed reading and send the time stamp to the LIDAR. The speed reading can then be corroborated with pictures or video created by other recording devices.


In embodiments of the present invention, the signals transmitted and received by the recording device manager 12 may be responsive to a triggering event (also more simply known as a “trigger”). Examples of a triggering event may include, for example, turning on the vehicle's siren and/or signal lights, an accelerometer measurement outside a pre-established norm, a position of the vehicle and/or officer as measured by a GPS, a vehicle crash event or the police vehicle 16 attaining a threshold speed (e.g., 80 m.p.h.), etc. In embodiments, the recording device manager 12 may receive a signal from, for example, the vehicle recording device 16 indicative of a triggering event. In response to receipt of the signal, or based on a type of triggering event as evidenced by the signal, the recording device manager 12 may instruct recording by the personal recording device 18. As an exemplary scenario, the recording device manager may receive a signal identifying a triggering event of the police officer being more than twenty feet from the vehicle. Upon receipt of the signal, the recording device manager 12 sends a signal to the personal recording device 18 to instruct the device 18 to begin recording. It should be appreciated that other types of triggering events and exemplary scenarios can be employed.


As shown in FIGS. 1 and 2, the recording device manager 12 is generally portable and is approximately 1 inch thick, 3 inches wide, and 5 inches tall but can take another shape and can be much larger or smaller. The recording device manager 12 is a standalone device but can be incorporated into other devices, such as a police laptop, a police radio, a recording device (including the vehicle recording device 14), or a mobile communications device.


The recording device manager 12 is permanently or removably mounted anywhere in the police vehicle 16 that is easy to reach, such as on the dashboard, center console, or windshield. Permanently mounting the vehicle recording device 14 helps to prevent assailants from stealing or breaking it. The recording device manager 12 can advantageously be oriented so that the police officer 20 can view its indicators (described below) from vantage points inside and outside of the police vehicle 16. Alternatively, the recording device manager 12 can be carried or worn by the police officer 20, such as on his utility belt or in his pocket.


Referring to FIG. 2, the recording device manager 12 includes a housing 22; first, second, and third indicator 24, 26, 28; a receiver 30 for receiving from either the vehicle recording device 14 or the personal recording device 18 information, including a signal, that such recording device has started recording; a transmitter 32 for transmitting a signal; a communication port 34 for communicatively connecting the recording device manager 12 to an external computing device; and a controller 36 for performing algorithms, managing data, and generating signals and receiving information indicative of triggering events. The recording device manager 12 may also include other controllers, circuitry, computer hardware, and software for performing algorithms, handling, managing, and storing data, and generating and interpreting signals. The recording device manager 12 further includes an internal clock 38 for generating time stamps to be transmitted to the recording devices 14, 18, as discussed above. Alternatively, time functions can be handled by a Global Navigation Positioning System. The recording device manager 12 is connected to and receives power from a power source 40 described below.


The housing 22 protects the above electronic components from moisture, tampering, and forceful damage and can be made out of any durable material, such as plastic or metal. The housing 22 has rounded edges for aesthetics and ease of handling, and is formed from typical molding or casting processes. The housing 22 allows for the indicators 24, 26, 28 to be visible to the officer 20 and for the receiver 30 and port 34 to be connectable to the recording device 14 and external computers, respectively. The housing 22 is formed of a front and back operable to connect to each other to form a case and to be separated for maintenance or troubleshooting.


The indicators 24, 26, 28 are three light emitting diodes (LEDs), or alternatively, backlit cells, graphical displays, or analog indicators that communicate to the police officer 20 various statuses of the recording device manager 12 and recording devices 14, 18. The indicators 24, 26, 28 may use different indications for the various statuses depending on the recording devices (described below) synced to the recording device manager 12.


The first indicator 24 is red and illuminates when power is applied to the recording device manager 12 and is off when no power is applied thereto. The second indicator 26 is yellow and illuminates when the police vehicle ignition is on and slowly blinks a single pulse when the police vehicle ignition is off and the recording device manager 12 is in a low power standby. Alternatively, the second indicator 26 may illuminate when the vehicle recording device 14 is on and slowly blinks two pulses when the vehicle recording device 14 is off and the recording device manager 12 is in a low power standby. The second indicator 26 blinks quickly when at least one of the recording devices 14, 18 is recording.


The third indicator 28 is green and illuminates when the recording device manager 12 is not synced to any personal recording device 18. The third indicator 28 blinks a long pulse followed by a number of short pulses indicating the number of personal recording devices 18 that are synced to the recording device manager 12.


The indicators 24, 26, 28 may also cooperatively communicate a status by, for example, displaying a “chasing” pattern indicating that the personal recording device 18 is booting or resetting. This helps to verify that all three indicators 24, 26, 28 are operational. Also, the indicators 24, 26, 28 can be temporarily disabled in a covert mode, wherein the indicators 24, 26, 28 do not illuminate at all, by pressing a button or flipping a switch on the recording device manager 12. The covert mode is desirable when police officers do not want to draw attention to themselves or their police vehicles. The indicators 24, 26, 28 can be easily toggled back to normal operating mode by pressing the button or flipping the switch again. The mode (covert or normal) is retained when the recording device manager 12 turns on or switches from a low power standby.


The controller 36 may comprise the receiver 30, the transmitter 32, the internal clock 38, the communication ports, and other related components in any combination. In embodiments of the present invention, the receiver 30 and the transmitter 32 may also collectively form a transceiver. The controller 36 may also include electronic circuitry, a processing element, a memory element, computer hardware, and computer software for illuminating indicators 24, 26, 28 based on system statuses, as described above, and for performing algorithms for managing the recording devices 14, 18, as described below. The controller 36 is powered by the power source 40, also described below.


The receiver 30 is configured to receive a communication from either of the vehicle recording device 14 or the personal recording device 18 indicating that the respective device has started or stopped recording. The receiver 30 may be wireless and may include antennas, signal or data receiving circuits, and signal or data transmitting circuits. The receiver 30 may operate utilizing communication standards, such as cellular 2G, 3G, 4G, Bluetooth™, Wi-Fi, or combinations thereof. Alternatively, or in addition, the receiver 30 may be wired and may include connectors or couplers to receive metal conductor cables or connectors or optical fiber cables.


In embodiments of the present invention, the transmitter 32 is configured to transmit a signal to the personal recording device 18 or the vehicle recording device 14 instructing recording of the respective device. The transmitter 32 may be wireless and may include antennas, signal or data receiving circuits, and signal or data transmitting circuits. The transmitter 32 may operate utilizing communication standards such as cellular 2G, 3G, 4G, Bluetooth™, Wi-Fi, or combinations thereof. Alternatively, or in addition, the transmitter 32 may be wired and may include connectors or couplers to receive metal conductor cables or connectors or optical fiber cables. The antenna may transmit over a range of at least forty feet but the range can be increased or decreased based on internal settings.


The communications port 34 is configured to communicatively connect the controller 36 to an external computing device 42 (described below), as shown in FIG. 1. The communications port 34 may be wireless and may include antennas, signal or data receiving circuits, and signal or data transmitting circuits. The communications port 34 may operate utilizing communication standards such as cellular 2G, 3G, 4G, Bluetooth™, or combinations thereof. Alternatively, or in addition, the communications port 34 may be wired and may include connectors or couplers to receive metal conductor cables or connectors or optical fiber cables. The communications port 34 is operable to receive downloaded software from the external computing device 42 and transmit setup instructions, diagnostic test signals, user settings, and statuses of the recording device manager 12 and the recording devices 14, 18, to the external computing device 42.


Embodiments of the present invention may also comprise one or more computer programs stored in or on computer-readable medium residing on or accessible by the controller 36. The computer programs may comprise listings of executable instructions for implementing logic functions and can be embodied in any non-transitory computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device, and execute the instructions. In the context of this application, a “computer-readable medium” can be any non-transitory medium that can contain, store, or communicate the programs. The computer-readable medium can be, for example, but not limited to, an electronic, magnetic, optical, electro-magnetic, infrared, or semi-conductor system, apparatus, or device. More specific, although not inclusive, examples of the computer-readable medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a random access memory (RAM), a read-only memory (ROM), an erasable, programmable, read-only memory (EPROM or Flash memory), an optical fiber, and a portable compact disc read-only memory (CDROM).


The internal clock 38 includes a clock chip operable to keep time and various memory and logic circuits for converting time to computer and human readable data strings. The internal clock 38 can include circuitry such as oscillators, multivibrators, phase-locked loops, counters, or combinations thereof, and can be incorporated into the controller 36. The internal clock 38 has a temporal resolution of approximately 1 ms to 10 ms. The internal clock 38 generates and sends a time reading to the controller 36 at a predetermined frequency, such as once every second or millisecond. The time reading is used by the controller 36 to create time stamps, which are transmitted to the recording devices 14, 18 for corroborating recorded data. The internal clock 38 can be calibrated or adjusted, and the format and frequency of the time readings can be changed via the external computing device 42. The time stamps can be accompanied by a signature of the time stamps' source and other metadata, as described below.


The power source 40 is electronically connected to the recording device manager 12 through dedicated wiring. The power source 40 supplies power to each of the electronic components of the recording device manager 12 and, in embodiments of the present invention, to the vehicle recording device 14. In embodiments of the present invention, the power source 40 is the police vehicle's battery but can be another power source, such as a battery cartridge of the external computing device 42 or the vehicle recording device 14.


The electronic connection between the receiver 30 and the vehicle recording device 14 optionally includes a control area network (CAN) bus 44, which “directs traffic” for incoming and outgoing signals based on indicated importance or other factors and follows an algorithm for determining the order in which (or whether) signals are transmitted.


The vehicle recording device 14 is operable to record audio, video, thermal, chemical, or other data. In some embodiments, the recording device 14 is a video recording device such as one produced by Digital Ally, Inc., including the DVM100, DVM250, DVM250Plus, DVM250Law, DVM400, DV440Ultra, DVM470, DVM500, DVM500Plus, and DVM750. As described above, in one embodiment the recording device 14 is operable to receive a signal of a triggering event, whereas in another embodiment the recording device 14 utilizes the CAN bus 44 and is operable to receive time stamps and metadata (described below) in addition to the signal of a triggering event. In other embodiments, the recording device 14 is a digital audio recorder, heat scanner, or chemical analyzer. The vehicle recording device 14 can be mounted permanently or removably on or inside the police vehicle 16. Permanently mounting the vehicle recording device 14 helps to prevent assailants from stealing or breaking it. The vehicle recording device 14 can be incorporated into the police vehicle's rear view mirror, dashboard, spotlight, or other locations associated with the police vehicle 16 and receives power from the power source 40 through dedicated wiring. In embodiments of the present invention, the vehicle recording device 14 includes a clock substantially similar to the clock 38 for the recording device manager. In addition to the exemplary vehicle recording devices listed above, a vehicle recording device is further described in commonly-owned U.S. application Ser. No. 12/189,192, filed Aug. 10, 2008, entitled “Vehicle-Mounted Video System with Distributed Processing,” now U.S. Pat. No. 8,520,069, issued Aug. 27, 2013, and the entirety of which is incorporated by reference herein.


The personal recording device 18 is small, portable, wearable, easily concealed, and is operable to record audio, video, thermal, chemical, or other data. The personal recording device 18 can be worn by the officer 20, such as on the officer's shirt. The personal recording device 18 is operable to receive a signal instructing the device 18 to begin or stop recording, a signal indicative of a triggering event, and time stamps and metadata corresponding to the recordings. Additionally, the personal recording device 18 further includes a clock, substantially similar to the clock 38 described above for the recording device manager 12, for determining a time corresponding to when a particular item of data was recorded. An exemplary personal recording device is the “FIRSTVU HD” produced by Digital Ally, Inc. and further described in U.S. Provisional Patent Application No. 61/707,348 (“the '348 application”), filed Sep. 28, 2012, and commonly assigned with the present application. The disclosures of the '348 application and any later-filed non-provisional applications claiming priority to the '348 application are hereby incorporated by reference into the present application in their entirety.


Recordings generated by the recording devices 14, 18 and associated time stamps, metadata, and user-inputted information (described below) are temporarily stored in a local memory element (hereinafter “memory”), such as a memory of the particular recording devices 14, 18, and/or a memory of a computing device located in the police vehicle 16. This information can then be uploaded to external servers or transferred to the external computing device 42 (described below). The recordings can then be corroborated using the time stamps and metadata.


Many options and parameters pertaining to the various components and operation of the management system 10 can be setup and/or configured by connecting the recording device manager 12 to the external computing device 42 via communications port 34. The external computing device 42 can be a laptop, tablet, mobile device, smartphone, or other computing device. The external computing device 42 displays a graphical user interface (GUI) by which the police officer 20 or other user may choose options and modify parameters of the management system 10. Each option or parameter typically includes a default setting, which is employed if no change is made before use. Police officers 20 can save preferred settings in a profile so that they do not have to be manually changed at the beginning of every shift, for example. The police officer 20 can select his profile to revert to his settings.


The options and parameters for the management system 10 are stored in a configuration file and can be configured by accessing a configuration interface, as shown in FIG. 3. For example, a language and time zone can be selected. The controller 36 thereby shifts the time received from the internal clock 38 or the GNSS to the selected time zone. Daylight saving time can be enabled or disabled. Additionally, the user can toggle between standard twelve or twenty-four hour time formats. The date format for displaying on event recordings can also be changed. For example, the date can be displayed as mm/dd/yyyy or dd/mm/yy.


Metadata to be generated and transmitted to the recording devices 14, 18 can be configured and changed. For example, the locations of the various recording devices 14, 18, an indication of which recording device or triggering event (such as turning the sirens on) caused a trigger signal to be transmitted, the number and identity of synced recording devices, the name of the police officer 20 on duty, or any other information pertaining to the recorded data can be enabled or customized. Inputting additional information for a given event, such as an event description, ethnicity, age, and gender of a suspect, and time of death, can be enabled. If enabled, this information is saved with the recorded data.


Settings pertaining to how the recording devices 14, 18 behave during an event can be changed as well. A pre-event buffer time can be chosen, which requires a device to continually record data and temporarily store it. If, for example, the pre-event buffer time is selected to be thirty seconds, when the officer 20 presses record at time t on the personal recording device 18, it will keep the thirty seconds of temporarily stored data leading up to time t. This allows for a delayed reaction time by the officer 20 without missing important data. Pre-event audio can be selected to be recorded as well. The personal recording device 18 can be set to vibrate when it begins recording. A shorter vibration can also be set for covert mode. The personal recording device 18 can also be set to vibrate when it enters a low power standby. A record-stop time delay can be setup so that when the recording device manager 12 detects that a synced recording device has stopped recording, the time delay lapses before the recording device manager 12 is allowed to broadcast a signal instructing other synced devices to cease recording. This prevents the recording device manager 12 from immediately instructing stopping other device recording. The recording device manager 12 can be enabled to broadcast a signal or alert when the personal recording device 18 goes out of range. Also, an entry timeout duration can be set to prevent tampering or accidental input.


The recording device manager 12 is also operable to enter a low power mode or power saving mode after a predetermined time period has elapsed, such as a predetermined time period of no recording by either of the personal or vehicle recording devices. Moreover, the recording device manager 12 or the system 10 further comprises an input, such as a switch, button, or software selection, for changing the predetermined time period or to reset the elapse of the time period. In operation in embodiments of the present invention, the recording device manager 12 operates in one of two modes—a power on mode or a low power mode. If the vehicle and/or vehicle recording device 14 is on, then the manager 14 is powered on. In contrast, if the vehicle and/or vehicle recording device 14 is off, the manager 14 is powered off.


Many security precautions can also be setup, as shown in FIG. 4. For example, one or multiple service set identifiers (SSIDs) for syncing the personal recording device 18 over a wireless communications network, such as Wi-Fi, can be selected. SSID broadcasting can be enabled, which means that other devices (including unrelated devices) in the area can see the SSID. SSID broadcasting can also be disabled, which means that devices in the area must know that the SSID exists in order to use it. Passphrases, passwords, or passcodes corresponding to the SSID can be setup or changed. Data encryption can be turned on, whereby transmissions cannot be easily intercepted and decoded. A wireless communications channel can also be selected. USB ports can be set to secure mode or to operate as a conventional mass storage device. Passphrases for secure USB ports can be chosen as well.


The recording devices 14, 18 are synced with the recording device manager 12 before use by accessing a device syncing interface, as shown in FIG. 5. The device syncing interface displays a list or table of available recording devices, each of which the user may individually sync (“add”) or unsync (“remove”). Previously saved settings corresponding to the recording devices 14, 18 can be loaded, and current settings can be saved for future use.


Each recording device 14, 18 can also sync with only one recording device manager, whereas the recording device manager 12 can sync with multiple recording devices. As an example, if two officer vehicles arrive at a situation, such that an officer from each vehicle is wearing a personal recording device 18, each personal recording device can only be synced with and provide information or signals to a single recording device manager 12, namely its “home” recording device manager that is associated with the respective officer's vehicle. In contrast, should two officer vehicles arrive at a situation, and the vehicle recording device in one of the vehicles begins recording, then the recording device manager, receiving the recording signal from the vehicle recording device, is operable to instruct the personal recording devices of both officers (of the two separate officer vehicles) to begin recording. In an alternative embodiment, the personal recording device 18 may be configured to have a hierarchy of recording device managers with which to communicate. For example, the personal recording device's home recording device manager is at the top of the hierarchy, and will be the first manager with which it will attempt to communicate. If the home recording device is powered down, disabled, or out of range, the personal recording device 18 will attempt to communicate with the next manager in the hierarchy until a successful communication is made.


The options and parameters pertaining to the recording devices 14, 18 can be set by accessing a recording settings interface, as shown in FIG. 6. For example, video record quality can be selected from 512 kbps, 1 Mbps, and 2 Mbps, labeled “standard”, “high”, and “very high”, respectively. Record frame rate can be selected from 5 to 60 fps. Record size can be selected from VGA (640×480 pixels), 720p (1280×720 pixels), and 1080p (1920×1080 pixels). Also, an indicator LED can be enabled to illuminate when the personal recording device 18 is recording.


The recording devices 14, 18 can be allowed to upload recordings to an external server or computing device. The external server or computing device could be a computing device housed in the vehicle, a centralized computing device, such as housed at a police precinct, or a DVR 46 (see FIG. 1) or other large-capacity storage device. Multiple Wi-Fi authorized upload times can be set, which denote when recording devices 14, 18 are allowed to upload data. Ideally, upload times will be set during non-use times such as shift changes, lunch breaks, and off duty times. Alternatively, uploading of recorded data can occur whenever the recording devices are within a predetermined distance from the external server or computing device, such as when the officer is located in the vehicle or, preferably, when the officer's vehicle is located near the police precinct. Upload settings can be changed as well.


Turning again to FIG. 1, use of the management system 10 and recording device manager 12 is now explained. As previously discussed, the exemplary management system 10 includes the vehicle recording device 14 and personal recording device 18, but it will be understood that duplicate or additional recording devices, such as audio recorders, thermal imagers, security cameras, radios, seismic sensors, radar and LIDAR scanners, and chemical analyzers, can be synced to the recording device manager 12. The officer 20 first connects the external computing device 42 to the recording device manager 12, sets the various options and parameters described above, and then optionally disconnects the external computing device 42 from the recording device manager 12. Once the recording devices 14, 18 are synced with the recording device manager 12, the management system 10 is ready to be used.


As a situation unfolds, the officer 20 will decide to capture video, audio, or other data as evidence, and will either cause the personal recording device 18 to begin recording if he is on foot, or cause the vehicle recording device 14 to begin recording if he is inside the police vehicle 16. In either case, the device that is recording transmits a signal to the recording device manager 12 indicating that it has begun recording, and then continues to transmit a signal indicating that it is recording. The recording device manager 12 receives the signal and broadcasts or transmits a signal to the other recording device 14, 18 to instruct the other recording device 14, 18 to begin recording. As discussed above, the recording device manager 12 may also instruct recording of the recording device 14, 18 upon receipt of a signal indicative of a triggering event, such as the officer turning on the police vehicle sirens, police lights, spotlight, etc.


If the personal recording device 18 begins recording but is out of range of the recording device manager 12 (e.g., greater than a preset distance, such as forty feet, from the recording device manager 12), the recording device manager 12 will not detect that the personal recording device 18 is recording and thus will not broadcast a signal to the other recording device, namely the vehicle recording device 14, to instruct recording. However, if the personal recording device 18 comes into range while recording, the recording device manager 12 will detect the continuously transmitted signal from the personal recording device 18 and will then broadcast a signal to instruct recording by the vehicle recording device 14.


In even further embodiments of the present invention, the recording device manager 12 detects when a recording device 14, 18 has stopped recording and transmits a signal to the other recording device 14, 18 indicating that it should stop recording. In an alternative embodiment, the recording device manager 12 only transmits a signal to the other recording device 14, 18 that it may stop recording but does not otherwise instruct ceasing of recording. When a recording device 14, 18 receives this permission, the officer 20 can then manually stop the recording on that device. This prevents accidentally, unintentionally, or prematurely ending a recording and losing important data. For the same reasons, the recording device manager 12 may indicate to one of the recording devices 14, 18 that the other recording device is no longer in range or that power to a recording device has been lost and that it should stop recording. Alternatively, the recording device manager 12 instructs the other recording device 14, 18 that it may stop recording. Similarly, if the signal to instruct recording was in response to a triggering event, such as by turning on the sirens, police lights, or spotlight, etc., and the triggering event subsequently ceases, the recording device manager 12 may transmit a signal to the other recording device 14, 18 that it may stop recording.


Although the invention has been described with reference to the embodiments illustrated in the attached drawing figures, it is noted that equivalents may be employed and substitutions made herein without departing from the scope of the invention as recited in the claims.

Claims
  • 1. A recording device comprising: a housing;a memory element for storing recorded data associated with a law enforcement event; anda controller configured to— receive an indication that a first external camera has received an instruction to record,wherein the indication is indicative that the first external camera will imminently begin recording;receive an identifier associated with the first external camera;write the identifier as metadata associated with the recorded data;receive an indication that a second external camera has stopped recording;delay a record-stop time of the first external camera based at least in part on the indication that the second external camera stopped recording; andupload the recorded video data to an external computing device,wherein the identifier allows the recorded data to be subsequently linked with video data from the first external camera.
  • 2. The recording device of claim 1, wherein the instruction to record is received by manual activation by a law enforcement officer.
  • 3. The recording device of claim 1, wherein the instruction to record is automatically triggered by a triggering event.
  • 4. The recording device of claim 1, wherein the controller is further configured to instruct recording to begin upon said receiving of the indication that the first external camera has received an instruction to record.
  • 5. The recording device of claim 1, wherein the recording device is a vehicle recording device operable to record video data and audio data,wherein the vehicle recording device is operable to be mounted in a law enforcement vehicle.
  • 6. The recording device of claim 1, wherein the recording device is a personal recording device operable to record video data and audio data,wherein the personal recording device is operable to be worn by a law enforcement officer.
  • 7. The recording device of claim 1, wherein the recording device is an infrared camera.
  • 8. The recording device of claim 1, wherein the identifier is a unique serial number that is indicative of an unalterable serial number of the first external camera.
  • 9. The recording device of claim 1, wherein the first external camera stores a second identifier associated with the recording device in video data recorded by the first external camera.
  • 10. The recording device of claim 1, wherein the first external computing device is a smartphone carried by a law enforcement officer,wherein the smartphone is configured to display the recorded data.
  • 11. The recording device of claim 1, wherein the controller is configured to send a signal indicative that recording has begun.
  • 12. The recording device of claim 1, wherein the first external camera is within a certain range of the recording device when said indication that the first external camera has received an instruction to record is received.
  • 13. The recording device of claim 1, wherein the controller is further configured to: store a location indication where the data was recorded in metadata; andcontinue to record until receiving an instruction to stop recording from a law enforcement officer.
  • 14. The recording device of claim 1, wherein the recording device is a video camera,wherein the storing recorded data is performed by storing pre-event buffer data.
  • 15. The recording device of claim 14, wherein the pre-event buffer data includes video data without audio datawherein moving to a recording status begins recording audio data.
  • 16. A system comprising: a first video camera;a second video camera; anda recording device including— a housing;a memory element for storing recorded data associated with a law enforcement event; anda controller configured to— receive an indication that the first video camera has received an instruction to record,wherein the indication is indicative that the video camera will imminently begin recording;receive an identifier associated with the video camera;write the identifier as metadata associated with the recorded data;receive an indication that the second video camera has stopped recording;delay a record-stop time of the first video camera based at least in part on the indication that the second video camera stopped recording; andupload the recorded video data to an external computing device,wherein the identifier allows the recorded data to be subsequently linked with video data from the video camera.
  • 17. The system of claim 16, wherein the recording device is a third video camera,wherein the storing recorded data is performed by storing pre-event buffer data,wherein the pre-event buffer data includes video data without audio data,wherein moving to a recording status begins recording audio data.
  • 18. The system of claim 16, wherein the recording device is a vehicle recording device operable to record video data and audio data,wherein the vehicle recording device is operable to be mounted in a law enforcement vehicle,wherein the first video camera is a personal recording device operable to record video data and audio data,wherein the personal recording device is operable to be worn by a law enforcement officer.
  • 19. The system of claim 16, wherein the first video camera is within a certain range of the recording device,wherein the controller is configured to send a signal indicative that recording has begun.
  • 20. A system comprising: A first video camera;a second video camera; anda recording device including— a housing;a memory element for storing recorded data associated with a law enforcement event; anda controller configured to— receive an indication that the first video camera has received an instruction to record,wherein the indication is indicative that the first video camera will imminently begin recording,wherein the first video camera is within a certain range of the recording device;receive an identifier associated with the first video camera;send a signal indicative that recording has begun;write the identifier as metadata associated with the recorded data;receive an indication that the second video camera has stopped recording;delay a record-stop time of the first video camera based at least in part on the indication that the second video camera stopped recording; andupload the recorded video data to an external computing device,wherein the identifier allows the recorded data to be subsequently linked with video data from the video camera.
RELATED APPLICATIONS

This application is a continuation and claims priority benefit, with regard to all common subject matter of earlier-filed U.S. patent application Ser. No. 15/446,226, filed Mar. 1, 2017, and entitled “COMPUTER PROGRAM, METHOD, AND SYSTEM FOR MANAGING MULTIPLE DATA RECORDING DEVICES;” which is a continuation and claims priority benefit, with regard to all common subject matter, of earlier-filed U.S. patent application Ser. No. 15/011,132, filed Jan. 29, 2016, and entitled “COMPUTER PROGRAM, METHOD, AND SYSTEM FOR MANAGING MULTIPLE DATA RECORDING DEVICES;” which is a continuation patent application and claims priority benefit, with regard to all common subject matter, of earlier-filed U.S. patent application Ser. No. 13/967,151, filed Aug. 14, 2013, and entitled “COMPUTER PROGRAM, METHOD, AND SYSTEM FOR MANAGING MULTIPLE DATA RECORDING DEVICES,” which is now U.S. Pat. No. 9,253,452, issued Feb. 2, 2016 (“the '452 patent”), and which are hereby incorporated by reference into the present application in their entirety. This application is also related to U.S. Pat. No. 8,781,292, which is a continuation application that claims priority to the '452 patent, and which is also hereby incorporated by reference into the present application in its entirety.

US Referenced Citations (418)
Number Name Date Kind
4409670 Herndon et al. Oct 1983 A
4789904 Peterson Dec 1988 A
4863130 Marks, Jr. Sep 1989 A
4918473 Blackshear Apr 1990 A
5027104 Reid Jun 1991 A
5096287 Kaikinami et al. Mar 1992 A
5111289 Lucas et al. May 1992 A
5289321 Secor Feb 1994 A
5381155 Gerber Jan 1995 A
5408330 Squicciarii et al. Apr 1995 A
5446659 Yamawaki Aug 1995 A
5453939 Hoffman et al. Sep 1995 A
5473501 Claypool Dec 1995 A
5473729 Bryant et al. Dec 1995 A
5479149 Pike Dec 1995 A
5497419 Hill Mar 1996 A
5526133 Paff Jun 1996 A
5585798 Yoshioka et al. Dec 1996 A
5642285 Woo et al. Jun 1997 A
5668675 Fredricks Sep 1997 A
5689442 Swanson et al. Nov 1997 A
5742336 Lee Apr 1998 A
5752632 Sanderson et al. May 1998 A
5798458 Monroe Aug 1998 A
5815093 Kikinis Sep 1998 A
5850613 Bullecks Dec 1998 A
5878283 House et al. Mar 1999 A
5886739 Winningstad Mar 1999 A
5890079 Levine Mar 1999 A
5926210 Hackett et al. Jul 1999 A
5962806 Coakley et al. Oct 1999 A
5978017 Tino Nov 1999 A
5983161 Lemelson et al. Nov 1999 A
5996023 Winter et al. Nov 1999 A
6008841 Charlson Dec 1999 A
6028528 Lorenzetti et al. Feb 2000 A
6052068 Price R-W et al. Apr 2000 A
6097429 Seeley et al. Aug 2000 A
6100806 Gaukel Aug 2000 A
6121881 Bieback et al. Sep 2000 A
6141609 Herdeg et al. Oct 2000 A
6141611 Mackey et al. Oct 2000 A
6163338 Johnson et al. Dec 2000 A
6175300 Kendrick Jan 2001 B1
6298290 Abe et al. Oct 2001 B1
6310541 Atkins Oct 2001 B1
6314364 Nakamura Nov 2001 B1
6324053 Kamijo Nov 2001 B1
6326900 Deline et al. Dec 2001 B2
6333694 Pierce et al. Dec 2001 B2
6333759 Mazzilli Dec 2001 B1
6370475 Breed et al. Apr 2002 B1
RE37709 Dukek May 2002 E
6389340 Rayner May 2002 B1
6396403 Haner May 2002 B1
6405112 Rayner Jun 2002 B1
6449540 Rayner Sep 2002 B1
6452572 Fan et al. Sep 2002 B1
6490409 Walker Dec 2002 B1
6518881 Monroe Feb 2003 B2
6525672 Chainer et al. Feb 2003 B2
6546119 Ciolli et al. Apr 2003 B2
6560463 Santhoff May 2003 B1
6563532 Strub et al. May 2003 B1
6591242 Karp et al. Jul 2003 B1
6681195 Poland et al. Jan 2004 B1
6690268 Schofield et al. Feb 2004 B2
6697103 Fernandez et al. Feb 2004 B1
6718239 Rayer Apr 2004 B2
6727816 Helgeson Apr 2004 B1
6748792 Freund et al. Jun 2004 B1
6823621 Gotfried Nov 2004 B2
6831556 Boykin Dec 2004 B1
6856873 Breed et al. Feb 2005 B2
6877434 McNulty, Jr. Apr 2005 B1
6883694 Abelow Apr 2005 B2
6947071 Eichmann Sep 2005 B2
6970183 Monroe Nov 2005 B1
7012632 Freeman et al. Mar 2006 B2
7034683 Ghazarian Apr 2006 B2
D520738 Tarantino May 2006 S
7038590 Hoffman et al. May 2006 B2
7071969 Stimson, III Jul 2006 B1
7088387 Freeman et al. Aug 2006 B1
7119832 Blanco et al. Oct 2006 B2
7126472 Kraus et al. Oct 2006 B2
7147155 Weekes Dec 2006 B2
7180407 Guo et al. Feb 2007 B1
7190822 Gammenthaler Mar 2007 B2
7363742 Nerheim Apr 2008 B2
7371021 Ross et al. May 2008 B2
7421024 Castillo Sep 2008 B2
7436143 Lakshmanan et al. Oct 2008 B2
7436955 Yan et al. Oct 2008 B2
7448996 Khanuja et al. Nov 2008 B2
7456875 Kashiwa Nov 2008 B2
7496140 Winningstad et al. Feb 2009 B2
7500794 Clark Mar 2009 B1
7508941 O'Toole, Jr. et al. Mar 2009 B1
7536457 Miller May 2009 B2
7539533 Tran May 2009 B2
7561037 Monroe Jul 2009 B1
7594305 Moore Sep 2009 B2
7602301 Stirling et al. Oct 2009 B1
7602597 Smith et al. Oct 2009 B2
7631452 Brundula et al. Dec 2009 B1
7656439 Manico et al. Feb 2010 B1
7659827 Gunderson et al. Feb 2010 B2
7680947 Nicholl et al. Mar 2010 B2
7697035 Suber, III et al. Apr 2010 B1
7701692 Smith et al. Apr 2010 B2
7778004 Nerheim et al. Aug 2010 B2
7804426 Etcheson Sep 2010 B2
7806525 Howell et al. Oct 2010 B2
7853944 Choe Dec 2010 B2
7944676 Smith et al. May 2011 B2
7984579 Brundula et al. Jul 2011 B2
8077029 Daniel et al. Dec 2011 B1
8121306 Cilia et al. Feb 2012 B2
8175314 Webster May 2012 B1
8269617 Cook et al. Sep 2012 B2
8314708 Gunderson et al. Nov 2012 B2
8350907 Blanco et al. Jan 2013 B1
8356438 Brundula et al. Jan 2013 B2
8373567 Denson Feb 2013 B2
8373797 Ishii et al. Feb 2013 B2
8384539 Denny et al. Feb 2013 B2
8446469 Blanco et al. May 2013 B2
8456293 Trundle et al. Jun 2013 B1
8508353 Cook et al. Aug 2013 B2
8559486 Kitayoshi Oct 2013 B2
8594485 Brundula Nov 2013 B2
8606492 Botnen Dec 2013 B1
8676428 Richardson et al. Mar 2014 B2
8690365 Williams Apr 2014 B1
8707758 Keays Apr 2014 B2
8725462 Jain et al. May 2014 B2
8744642 Nemat-Nasser et al. Jun 2014 B2
8780205 Boutell et al. Jul 2014 B2
8781292 Ross et al. Jul 2014 B1
8805431 Vasavada et al. Aug 2014 B2
8849501 Cook et al. Sep 2014 B2
8854199 Cook et al. Oct 2014 B2
8887208 Merrit et al. Nov 2014 B1
8890954 O'Donnell et al. Nov 2014 B2
8930072 Lambert et al. Jan 2015 B1
8934045 Kam et al. Jan 2015 B2
8989914 Nemat-Nasser et al. Mar 2015 B1
8996234 Tamari et al. Mar 2015 B1
8996240 Plante Mar 2015 B2
9002313 Sink et al. Apr 2015 B2
9003474 Smith Apr 2015 B1
9058499 Smith Jun 2015 B1
9122082 Abreau Sep 2015 B2
9123241 Grigsby et al. Sep 2015 B2
9164543 Minn et al. Oct 2015 B2
9253452 Ross et al. Feb 2016 B2
9518727 Markle et al. Dec 2016 B1
9591255 Skiewica et al. Mar 2017 B2
9728228 Palmer et al. Aug 2017 B2
20010033661 Prokoski Oct 2001 A1
20020013517 West et al. Jan 2002 A1
20020019696 Kruse Feb 2002 A1
20020032510 Turnbull et al. Mar 2002 A1
20020044065 Quist et al. Apr 2002 A1
20020049881 Sugimura Apr 2002 A1
20020084130 Der Gazarian et al. Jul 2002 A1
20020131768 Gammenthaler Sep 2002 A1
20020135336 Zhou et al. Sep 2002 A1
20020159434 Gosior et al. Oct 2002 A1
20020191952 Fiore et al. Dec 2002 A1
20030040917 Fiedler Feb 2003 A1
20030080713 Kirmuss May 2003 A1
20030080878 Kirmuss May 2003 A1
20030081121 Kirmuss May 2003 A1
20030081934 Kirmuss May 2003 A1
20030081935 Kirmuss May 2003 A1
20030081942 Melnyk et al. May 2003 A1
20030095688 Kirmuss May 2003 A1
20030106917 Shelter et al. Jun 2003 A1
20030133018 Ziemkowski Jul 2003 A1
20030151510 Quintana et al. Aug 2003 A1
20030184674 Manico et al. Oct 2003 A1
20030185417 Alattar et al. Oct 2003 A1
20030215010 Kashiwa Nov 2003 A1
20030215114 Kyle Nov 2003 A1
20030222982 Hamdan et al. Dec 2003 A1
20040008255 Lewellen Jan 2004 A1
20040043765 Tolhurst Mar 2004 A1
20040143373 Ennis Jun 2004 A1
20040145457 Schofield et al. Jul 2004 A1
20040150717 Page et al. Aug 2004 A1
20040168002 Accarie et al. Aug 2004 A1
20040199785 Pederson Oct 2004 A1
20040223054 Rotholtz Nov 2004 A1
20040243734 Kitagawa et al. Dec 2004 A1
20040267419 Jing Dec 2004 A1
20050030151 Singh Feb 2005 A1
20050046583 Richards Mar 2005 A1
20050050266 Haas et al. Mar 2005 A1
20050068169 Copley et al. Mar 2005 A1
20050068417 Kreiner et al. Mar 2005 A1
20050083404 Pierce et al. Apr 2005 A1
20050094966 Elberbaum May 2005 A1
20050100329 Lao et al. May 2005 A1
20050101334 Brown et al. May 2005 A1
20050134966 Burgner May 2005 A1
20050132200 Jaffe et al. Jun 2005 A1
20050151852 Jomppanen Jul 2005 A1
20050035161 Shioda Aug 2005 A1
20050185438 Ching Aug 2005 A1
20050206532 Lock Sep 2005 A1
20050206741 Raber Sep 2005 A1
20050228234 Yang Oct 2005 A1
20050232469 Schofield et al. Oct 2005 A1
20050243171 Ross, Sr. et al. Nov 2005 A1
20050258942 Manasseh et al. Nov 2005 A1
20060009238 Stanco et al. Jan 2006 A1
20060028811 Ross, Jr. et al. Feb 2006 A1
20060055786 Olilla Mar 2006 A1
20060082730 Franks Apr 2006 A1
20060158968 Vanman et al. Jul 2006 A1
20060164220 Harter, Jr. et al. Jul 2006 A1
20060164534 Robinson et al. Jul 2006 A1
20060170770 MacCarthy Aug 2006 A1
20060176149 Douglas Aug 2006 A1
20060183505 Willrich Aug 2006 A1
20060193749 Ghazarian et al. Aug 2006 A1
20060203090 Wang et al. Sep 2006 A1
20060220826 Rast Oct 2006 A1
20060225253 Bates Oct 2006 A1
20060244601 Nishimura Nov 2006 A1
20060256822 Kwong et al. Nov 2006 A1
20060270465 Lee et al. Nov 2006 A1
20060271287 Gold et al. Nov 2006 A1
20060274166 Lee et al. Dec 2006 A1
20060274828 Siemens et al. Dec 2006 A1
20060276200 Radhakrishnan et al. Dec 2006 A1
20060282021 DeVaul et al. Dec 2006 A1
20060287821 Lin Dec 2006 A1
20060293571 Bao et al. Dec 2006 A1
20070021134 Liou Jan 2007 A1
20070064108 Haler Mar 2007 A1
20070067079 Kosugi Mar 2007 A1
20070091557 Kim et al. Apr 2007 A1
20070102508 Mcintosh May 2007 A1
20070117083 Winneg et al. May 2007 A1
20070132567 Schofield et al. Jun 2007 A1
20070152811 Anderson Jul 2007 A1
20070172053 Pokier Jul 2007 A1
20070177023 Beuhler et al. Aug 2007 A1
20070195939 Sink et al. Aug 2007 A1
20070199076 Rensin et al. Aug 2007 A1
20070213088 Sink Sep 2007 A1
20070229350 Scalisi et al. Oct 2007 A1
20070257781 Denson Nov 2007 A1
20070257782 Etcheson Nov 2007 A1
20070257804 Gunderson et al. Nov 2007 A1
20070257815 Gunderson et al. Nov 2007 A1
20070260361 Etcheson Nov 2007 A1
20070268158 Gunderson et al. Nov 2007 A1
20070271105 Gunderson et al. Nov 2007 A1
20070274705 Kashiwa Nov 2007 A1
20070277352 Maron et al. Dec 2007 A1
20070285222 Zadnikar Dec 2007 A1
20070287425 Bates Dec 2007 A1
20070297320 Brummette et al. Dec 2007 A1
20080001735 Tran Jan 2008 A1
20080002031 Cana et al. Jan 2008 A1
20080002599 Denny et al. Feb 2008 A1
20080030580 Kashhiawa et al. Feb 2008 A1
20080042825 Denny et al. Feb 2008 A1
20080043736 Stanley Feb 2008 A1
20080049830 Richardson Feb 2008 A1
20080063252 Dobbs et al. Mar 2008 A1
20080084473 Romanowich Apr 2008 A1
20080100705 Kister et al. May 2008 A1
20080122603 Piante et al. May 2008 A1
20080129518 Carlton-Foss Jun 2008 A1
20080143481 Abraham et al. Jun 2008 A1
20080144705 Rackin et al. Jun 2008 A1
20080169929 Albertson et al. Jul 2008 A1
20080170130 Ollila et al. Jul 2008 A1
20080175565 Takakura et al. Jul 2008 A1
20080211906 Lovric Sep 2008 A1
20080222849 Lavoie Sep 2008 A1
20080239064 Iwasaki Oct 2008 A1
20080246656 Ghazarian Oct 2008 A1
20080266118 Pierson et al. Oct 2008 A1
20080307435 Rehman Dec 2008 A1
20080316314 Bedell et al. Dec 2008 A1
20090002491 Haler Jan 2009 A1
20090002556 Manapragada et al. Jan 2009 A1
20090027499 Nicholl Jan 2009 A1
20090052685 Cilia et al. Feb 2009 A1
20090070820 Li Mar 2009 A1
20090085740 Klein et al. Apr 2009 A1
20090109292 Ennis Apr 2009 A1
20090122142 Shapley May 2009 A1
20090135007 Donovan et al. May 2009 A1
20090169068 Okamoto Jul 2009 A1
20090189981 Siann et al. Jul 2009 A1
20090195686 Shintani Aug 2009 A1
20090207252 Raghunath Aug 2009 A1
20090213204 Wong Aug 2009 A1
20090225189 Morin Sep 2009 A1
20090243794 Morrow Oct 2009 A1
20090251545 Shekarri et al. Oct 2009 A1
20090252486 Ross, Jr. et al. Oct 2009 A1
20090276708 Smith et al. Nov 2009 A1
20090294538 Wihlborg et al. Dec 2009 A1
20090324203 Wiklof Dec 2009 A1
20100045798 Sugimoto et al. Feb 2010 A1
20100050734 Chou Mar 2010 A1
20100060747 Woodman Mar 2010 A1
20100097221 Kriener et al. Apr 2010 A1
20100106707 Brown et al. Apr 2010 A1
20100118147 Dorneich et al. May 2010 A1
20100122435 Markham May 2010 A1
20100123779 Snyder et al. May 2010 A1
20100177193 Flores Jul 2010 A1
20100177891 Keidar et al. Jul 2010 A1
20100188201 Cook et al. Jul 2010 A1
20100191411 Cook et al. Jul 2010 A1
20100194885 Plaster Aug 2010 A1
20100217836 Rofougaran Aug 2010 A1
20100238009 Cook et al. Sep 2010 A1
20100238262 Kurtz et al. Sep 2010 A1
20100242076 Potesta et al. Sep 2010 A1
20100265331 Tanaka Oct 2010 A1
20100274816 Guzik Oct 2010 A1
20100287473 Recesso et al. Nov 2010 A1
20110006151 Beard Jan 2011 A1
20110018998 Guzik Jan 2011 A1
20110050904 Anderson Mar 2011 A1
20110069151 Orimoto Mar 2011 A1
20110084820 Walter et al. Apr 2011 A1
20110085025 Pace Apr 2011 A1
20110094003 Spiewak et al. Apr 2011 A1
20110098924 Baladeta et al. Apr 2011 A1
20110129151 Saito et al. Jun 2011 A1
20110157759 Smith et al. Jun 2011 A1
20110187895 Cheng et al. Aug 2011 A1
20110261176 Monaghan, Sr. et al. Oct 2011 A1
20110281547 Cordero Nov 2011 A1
20110301971 Roesch et al. Dec 2011 A1
20110314401 Salisbury et al. Dec 2011 A1
20120038689 Ishii Feb 2012 A1
20120056722 Kawaguchi Mar 2012 A1
20120063736 Simmons et al. Mar 2012 A1
20120120258 Boutell et al. May 2012 A1
20120162436 Cordell et al. Jun 2012 A1
20120188345 Salow Jul 2012 A1
20120189286 Takayama et al. Jul 2012 A1
20120195574 Wallace Aug 2012 A1
20120230540 Calman et al. Sep 2012 A1
20120257320 Brundula et al. Oct 2012 A1
20120268259 Igel et al. Oct 2012 A1
20120276954 Kowalsky Nov 2012 A1
20130021153 Keays Jan 2013 A1
20130033610 Osborn Feb 2013 A1
20130035602 Gemer Feb 2013 A1
20130080836 Stergiou et al. Mar 2013 A1
20130096731 Tamari et al. Apr 2013 A1
20130125000 Flischhauser et al. May 2013 A1
20130148295 Minn et al. Jun 2013 A1
20130222640 Baek et al. Aug 2013 A1
20130225309 Bentley et al. Aug 2013 A1
20130285232 Sheth Oct 2013 A1
20130290018 Anderson et al. Oct 2013 A1
20130300563 Glaze Nov 2013 A1
20130343571 Lee Dec 2013 A1
20140037262 Sako Feb 2014 A1
20140049636 O'Donnell Feb 2014 A1
20140067381 Li Mar 2014 A1
20140092299 Phillips et al. Apr 2014 A1
20140094992 Lambert et al. Apr 2014 A1
20140098453 Brundula et al. Apr 2014 A1
20140139680 Huang May 2014 A1
20140140575 Wolf May 2014 A1
20140170602 Reed Jun 2014 A1
20140192194 Bedell et al. Jul 2014 A1
20140195105 Lambert et al. Jul 2014 A1
20140195272 Sadiq et al. Jul 2014 A1
20140210625 Nemat-Nasser Jul 2014 A1
20140218544 Senot et al. Aug 2014 A1
20140227671 Olmstead et al. Aug 2014 A1
20140311215 Keays et al. Oct 2014 A1
20140341532 Marathe et al. Nov 2014 A1
20140355951 Tabak Dec 2014 A1
20150050003 Ross et al. Feb 2015 A1
20150051502 Ross Feb 2015 A1
20150053776 Rose et al. Mar 2015 A1
20150078727 Ross et al. Mar 2015 A1
20150088335 Lambert et al. Mar 2015 A1
20150103246 Phillips et al. Apr 2015 A1
20150229630 Smith Aug 2015 A1
20150317368 Rhoads et al. Nov 2015 A1
20150332424 Kane et al. Nov 2015 A1
20150358549 Cho et al. Dec 2015 A1
20160042767 Araya et al. Feb 2016 A1
20160050345 Longbotham Feb 2016 A1
20160104508 Chee et al. Apr 2016 A1
20160127695 Zhang et al. May 2016 A1
20160165192 Saatchi et al. Jun 2016 A1
20160277662 Ashitani Sep 2016 A1
20160364621 Hill et al. Dec 2016 A1
20170070659 Kievsky et al. Mar 2017 A1
20170195635 Yokomitsu et al. Jul 2017 A1
20170200476 Chen et al. Jul 2017 A1
20170230605 Han et al. Aug 2017 A1
20170237950 Araya et al. Aug 2017 A1
20170244884 Burtey et al. Aug 2017 A1
20170277700 Davis et al. Sep 2017 A1
20170287523 Hodulik et al. Oct 2017 A1
20180023910 Kramer Jan 2018 A1
20180050800 Boykin et al. Feb 2018 A1
20180295410 Shinozaki Oct 2018 A1
Foreign Referenced Citations (40)
Number Date Country
102010019451 Nov 2011 DE
2479993 Jul 2012 EP
2273624 Jun 1994 GB
2320389 May 1998 GB
2343252 May 2000 GB
2351055 Dec 2000 GB
2417151 Feb 2006 GB
2425427 Oct 2006 GB
2455885 Jul 2009 GB
2485804 May 2012 GB
20090923 Sep 2010 IE
294188 Sep 1993 JP
153298 Jun 1996 JP
198858 Jul 1997 JP
10076880 Mar 1998 JP
210395 Jul 1998 JP
2000137263 May 2000 JP
2005119631 May 2005 JP
20-0236817 Aug 2001 KR
1050897 Jul 2011 KR
2383915 Mar 2010 RU
107851 Aug 2011 RU
124780 Feb 2013 RU
9005076 May 1990 WO
9738526 Oct 1997 WO
9831146 Jul 1998 WO
9948308 Sep 1999 WO
0039556 Jul 2000 WO
005130 Aug 2000 WO
0123214 Apr 2001 WO
0249881 Jun 2002 WO
02095757 Nov 2002 WO
03049446 Jun 2003 WO
2004036926 Apr 2004 WO
2009013526 Jan 2009 WO
2011001180 Jan 2011 WO
2012037139 Mar 2012 WO
2012120083 Sep 2012 WO
2014000161 Jan 2014 WO
2014052898 Apr 2014 WO
Non-Patent Literature Citations (99)
Entry
Automation Systems Article, Know-How Bank Co. Ltd. Takes Leap Forward as a Company Specializing in R&D and Technology Consulting, published Jan. 2005.
Car Rear View Camera—Multimedia Rear View Mirror—4′ LCD color monitor, Retrieved from the Internet: <URL: http://web.archive.org/web/20050209014751/http://laipac.com/multimedia-rear-mirror.htm>, Feb. 9, 2005.
ATC Chameleon. Techdad Review [Online] Jun. 19, 2013 [Retrieved on Dec. 30, 2015]. Retrieved from Internet. <URL:http://www.techdadreview.com/2013/06/19atc-chameleon/>.
“Breathalyzer.” Wikipedia. Printed Date: Oct. 16, 2014; Date Page Last Modified: Sep. 14, 2014; <http://en.wikipedia.org/wiki/Breathalyzer>.
Dees, Tim; Taser Axon Flex: The next generation of body camera; <http://www.policeone.com/police-products/body-cameras/articles/527231- 0-TASER-Axon-Flex-The-next-generation-of-body-camera/>, Date Posted: Mar. 12, 2012; Date Printed: Oct. 27, 2015.
Brown, TP-LINK TL-WDR3500 Wireless N600 Router Review, Mar. 6, 2013.
Controller Area Network (CAN) Overview, National Instruments White Paper, Aug. 1, 2014.
Daskam, Samuel W., Law Enforcement Armed Robbery Alarm System Utilizing Recorded Voice Addresses via Police Radio Channels, Source: Univ. of Ky, Off of Res and Eng., Serv (UKY BU107), pp. 18-22, 1975.
Digital Ally vs. Taser International, Inc., Case No. 2:16-cv-232 (CJM/TJ); US D. Kan, Defendant Taser International Inc.'s Preliminary Invalidity Contentions, Jul. 5, 2016.
Electronic Times Article, published Feb. 24, 2005.
Supplementary European Search Report dated Sep. 28, 2010 in European Patent Application No. 06803645.8; Applicant: Digital Ally, Inc.
W. Fincham, Data Recorders for Accident Investigation, Monitoring of Driver and Vehicle Performance (Digest No. 1997/122), Publication Date: Apr. 10, 1997, pp. 6/1-6/3.
Frankel, Harry; Riter, Stephen, Bernat, Andrew, Automated Imaging System for Border Control, Source: University of Kentucky, Office of Engineering Services, (Bulletin) UKY BU, pp. 169-173, Aug. 1986.
Freudenrich, Craig, Ph.D.; “How Breathalyzers Work—Why Test?.” HowStuff Works. Printed Date: Oct. 16, 2014; Posted Date: Unknown; <http://electronics.howstuffworks.com/gadgets/automotive/breathalyzer1.htm>.
Hankyung Auto News Article, Know-Flow Bank's Black Box for Cars “Multi-Black Box,” Copyright 2005.
Guide to Bluetooth Security: Recommendations of the National Institute of Standards and Technology, National Institute of Standards and Technology, U.S. Dep't of Commerce, NIST Special Publication 800-121, Revision 1 (Jun. 2012).
ICOP Extreme Wireless Mic, Operation Supplement, Copyright 2008.
ICOP Model 20/20-W Specifications; Enhanced Digital In-Car Video and Audio recording Systems, date: Unknown.
ICOP Mobile DVRS; ICOP Model 20/20-W & ICOP 20120 Vision, date: Unknown.
Bertomen, Lindsey J., PoliceOne.com News; “Product Review: ICOP Model 20/20-W,” May 19, 2009.
ICOP Raytheon JPS communications, Raytheon Model 20/20-W, Raytheon 20/20 Vision Digital In-Car Video Systems, date: Unknown.
Overview of the IEEE 802.15.4 standards for Low rate Wireless Personal Area Networks, 2010 7th International Symposium on Wireless Communication Systems (ISWCS), Copyright 2010.
Lewis, S.R., Future System Specifications for Traffic Enforcement Equipment, S.R. 1 Source: IEE Colloquium (Digest), N 252, Publication Date: Nov. 18, 1996, pp. 8/1-8/2.
Kopin Corporation; Home Page; Printed Date: Oct. 16, 2014; Posted Date: Unknown; <http://www.kopin.com>.
Translation of Korean Patent No. 10-1050897, published Jul. 20, 2011.
Lilliput RV 18-50NP 5″ Rear View Mirror TFT LCD Screen with Camera, Retrieved from the Internet: <URL: http://www.case-mod.com/lilliput-rv1850np-rear-view-mirror-tft-lcd-screen-with-camera-p-1271.html>, Mar. 4, 2005.
Motor Magazine Article, Recreating the Scene of an Accident, published 2005.
New Rearview-Mirror-Based Camera Display Takes the Guesswork out of Backing up Retrieved from the Internet: <URL: httb://news.thomasnet.com/fullstory/497750>, Press Release, Oct. 30, 2006.
SIIF Award for Multi Black Box, published Dec. 10, 2004.
Near Field Communication; Sony Corporation; pp. 1-7, Date: Unknown.
Oregon Scientific ATC Chameleon Dual Lens HD Action Camera, http://www.oregonscientificstore.com/Oregon-Scientific-ATC-Chameleon-Dual-Lens-HD-Action-Camera.data, Date Posted: Unknown; Date Printed: Oct. 13, 2014, 14 pgs.
Asian Wolf High Quality Angel Eye Body Video Spy Camera Recorder System, http://www.asianwolf.com/covert-bodycam-hq-angeleye.html, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3.
Brick House Security Body Worn Cameras / Hidden Cameras / Covert Spy Cameras, http://www.brickhousesecurity.com/body-worn-covert-spy-cameras.html?sf=0#sortblock&CMPID=PD_Google_%22body+camera%22&utm_source=google&utm_medium=cpc&utm_term=%22body+camera%22&mm_campaign=876a94ea5dd198a8c5dc3d1e67eccb34&keyword=%22body+camera%.
Amazon.com wearable camcorders, http://www.amazon.com/s/ref=nb_sb_ss_i_0_4?url=search-alias%3Dphoto&field-keywords=wearable+camcorder&x=0&y=0&sprefix=wear, Sep. 26, 2013, Date Posted: Unknown, pp. 1-4.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Feb. 4, 2016; International Application No. PCT/US2015/056052; International Filing Date: Oct. 16, 2015; Applicant: Digital Ally, Inc.
http:/ /www.k-h-b.com/board/board.php?board=products01&comand=body&no=1, Current State of Technology Held by the Company, Copyright 2005.
City of Pomona Request for Proposals for Mobile Video Recording System for Police Vehicles, dated prior to Apr. 4, 2013.
hittp://www.k-h-b.com/sub1_02.html, Copyright 2005.
Renstrom, Joell; “Tiny 3D Projectors Allow You to Transmit Holograms From a Cell Phone.” Giant Freakin Robot. Printed Date: Oct. 16, 2014; Posted Date: Jun. 13, 2014; <http://www.giantfreakinrobot.com/sci/coming-3d-projectors-transmit-holograms-cell-phone.html>.
Request for Comment 1323 of the Internet Engineering Task Force, TCP Extensions for High Performance, Date: May 1992.
RevealMedia RS3-SX high definition video recorder, http://www.revealmedia.com/buy-t166/cameras/rs3-sx.aspx, Sep. 26, 2013, Date Posted: Unknown, pp. 1-2.
Scorpion Micro Dv Video Audio Recorder, http://www.leacorp.com/scorpion-micro-dv-video-audio-recorder/, Sep. 26, 2013, Date Posted: Unknown, pgs. 1-3.
“Stalker Press Room—Using In-Car Video, the Internet, and the Cloud to keep police officers safe is the subject of CopTrax live, free webinar.” Stalker. Printed Date: Oct. 16, 2014; Posted Date: Jul. 31, 2014.
State of Utah Invitation to Bid State Cooperative Contract; Vendor: ICOP Digital, Inc., Contract No. MA503, Jul. 1, 2008.
Wasson, Brian; “Digital Eyewear for Law Enforcement.” Printed Date: Oct. 16, 2014; Posted Date: Dec. 9, 2013; <http://www.wassom.com/digital-eyewear-for-law-enforcement.html>.
X26 Taser, Date Unknown.
Taser International; Taser X26 Specification Sheet, 2003.
Digital Ally First Vu Mountable Digital Camera Video Recorder, http://www.opticsplanet.com/digital-ally-first-vu-mountable-digital-camera-video-recorder.html?gclid=CIKohcX05rkCFSIo7AodU0IA0g&ef_id=UjCGEAAAAWGEjrQF:20130925155534:s, Sep. 25, 2013, Date Posted: Unknown, pp. 1-4.
Drift X170, http://driftinnovation.com/support/firmware-update/x170/, Sep. 26, 2013, Date Posted: Unknown, p. 1.
Ecplaza HY-001HD law enforcement DVR, http://fireeye.en.ecplaza.net/law-enforcement-dvr--238185-1619696.html, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3.
Edesix VideoBadge, http://www.edesix.com/edesix-products, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3.
GoPro Official Website: The World's Most Versatile Camera, http://gopro.com/products/?gclid=CKqHv9jT4rkCFWZk7AodyiAAaQ, Sep. 23, 2013, Date Posted: Unknown, pp. 4-9.
Isaw Advance Hull HD EXtreme, www.isawcam.co.kr, Sep. 26, 2013, Date Posted: Unknown, p. 1.
Kustom Signals VieVu, http://www.kustomsignals.com/index.php/mvideo/vievu, Sep. 26, 2013, Date Posted: Unknown, pp. 1-4.
Lea-Aid Scorpion Micro Recorder Patrol kit,http://www.leacorp.com/products/SCORPION-Micro-Recorder-Patrol-kit.html, Sep. 26, 2013, Date Posted: Unknown, pp. 1-2.
Looxcie Wearable & mountable streaming video cams, http://www.looxcie.com/overview?gclid=CPbDyv6piq8CFWeFQAodlhXC-w, Sep. 26, 2013, Date Posted: Unknown, pp. 1-4.
Midland XTC HD Video Camera, http://midlandradio.com/Company/xtc-100-signup, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3.
Panasonic Handheld AVCCAM HD Recorder/Player, http://www.panasonic.com/business/provideo/ag-hmr10.asp, Sep. 26, 2013, Date Posted: Unknown, pp. 1-2.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Search Authority, or the Declaration dated Jan. 30, 2014, International Application No. PCT/US2013/062415; International Filing date Sep. 27, 2013, Applicant: Digital Ally, Inc.
Point of View Cameras Military & Police, http://pointofviewcameras.com/military-police, Sep. 26, 2013, Date Posted: Unknown, pp. 1-2.
POV.HD System Digital Video Camera, http://www.vio-pov.com/index.php, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3.
Invalidity Chart for International Publication No. WO2014/000161 Oct. 31, 2017.
PCT Patent Application PCT/US17/16383 International Search Report and Written Opinion dated May 4, 2017.
SIV Security in Vehicle Driving Partner, http://www.siv.co.kr/, Sep. 26, 2013, Date Posted: Unknown, p. 1.
Spy Chest Mini Spy Camera / Self Contained Mini camcorder / Audio & Video Recorder, http://www.spytechs.com/spy_cameras/mini-spy-camera.htm, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3.
Stalker Vue Law Enforcement Grade Body Worn Video Camera/Recorder, http://www.stalkerradar.com/law_vue.shtml, Sep. 26, 2013, Date Posted: Unknown, pp. 1-2.
SUV Cam, http://www.elmo.co.jp/suv-cam/en/product/index.html, Sep. 26, 2013, Date Posted: Unknown, p. 1.
TASER AXON Body on Officer Video/Police Body Camera, http://www.taser.com/products/on-officer-video/axon-body-on-officer-video, Sep. 23, 2013, Date Posted: Unknown, pp. 1-8.
TASER AXON Flex On-Officer Video/Police Video Camera, http://www.taser.com/products/on-officer-video/taser-axon, Sep. 26, 2013, Date Posted: Unknown, pp. 1-8.
Taser Cam Law Enforcement Audio/Video Recorder (gun mounted), http://www.taser.com/products/on-officer-video/taser-cam, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3.
Tide Leader police body worn camera, http://tideleader.en.gongchang.com/product/14899076, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3.
UCorder Pockito Wearable Mini Pocket Camcorder, http://www.ucorder.com/, Sep. 26, 2013, Date Posted: Unknown, p. 1.
Veho MUVI HD, http://veho-uk.fastnet.co.uk/main/shop.aspx?category=CAMMUVIHD, Sep. 26, 2013, Date Posted: Unknown, pp. 1-5.
Veho MUVI portable wireless speaker with dock, http://veho-uk.fastnet.co.uk/main/shop.aspx?category=camcorder, Sep. 26, 2013, Date Posted: Unknown, p. 1.
Vidmic Officer Worn Video & Radio Accessories, http://www.vidmic.com/, Sep. 26, 2013, Date Posted: Unknown, p. 1.
VIEVU Products, http://www.vievu.com/vievu-products/vievu-squared/, Sep. 25, 2013, Date Posted: Unknown, pp. 1-2.
WatchGuard CopVu Wearable Video Camera System, http://watchguardvideo.com/copvu/overview, Sep. 26, 2013, Date Posted: Unknown, pp. 1-2.
Witness Cam headset, http://www.secgru.com/DVR-Witness-Cam-Headset-Video-Recorder-SG-DVR-1-COP.html, Sep. 26, 2013, Date Posted: Unknown, pp. 1-2.
WolfCom 3rd Eye, X1 A/V Recorder for Police and Military, http://wolfcomusa.com/Products/Products.html, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Search Authority, or the Declaration dated Jan. 14, 2014, International Application No. PCT/US2015/056039; International Filing date Oct. 16, 2015, Applicant: Digital Ally, Inc.
U.S. Appl. No. 13/959,142 Final Office Action dated Jul. 20, 2016.
U.S. Appl. No. 13/959,142 Office Action dated Nov. 3, 2015.
Digital Ally, Inc. vs. Taser International, Inc., Case No. 2:16-cv-020232 (CJM/TJ); US D. Kan, Complaint for Patent Infringement, Jan. 14, 2016.
Digital Ally, Inc. vs. Enforcement video LLC d/b/a Watchguard Video., Case No. 2:16-cv-02349 (CJM/TJ); US D. Kan, Complaint for Patent Infringement, May 27, 2016.
International Association of Chiefs of Police Digital Video System Minimum Specifications; Nov. 21, 2008.
Petition for Inter Partes Review No. 2017-00375, Taser International, Inc. v. Digital Ally, Inc., filed Dec. 1, 2016.
Petition for Inter Partes Review No. 2017-00376, Taser International, Inc. v. Digital Ally, Inc., filed Dec. 1, 2016.
Petition for Inter Partes Review No. 2017-00515, Taser International, Inc. v. Digital Ally Inc., filed Jan. 11, 2017.
Petition for Inter Partes Review No. 2017-00775, Taser International, Inc. v. Digital Ally Inc., filed Jan. 25, 2017.
PCT Patent Application PCT/US16/34345 International Search Report and Written Opinion dated Dec. 29, 2016.
State of Utah Invitation to Bid State Cooperative Contract; Vendor: Kustom Signals Inc., Contract No. MA1991, Apr. 25, 2008.
Dyna Spy Inc. hidden cameras, https://www.dynaspy.com/hidden-cameras/spy-cameras/body-worn-wearable-spy-cameras, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3.
U.S. Appl. No. 15/011,132 Office Action dated Apr. 18, 2016, 19 pages.
Zepcam—Wearable Video Technology, http://www.zepcam.com/product.aspx, Sep. 26, 2013, Date Posted: Unknown, pp. 1-2.
Petition for Post Grant Review No. PGR2018-00052, Axon Enterprise, Inc. v. Digital Ally, Inc., filed Mar. 19, 2018.
MPEG-4 Coding of Moving Pictures and Audio ISO/IEC JTC1/SC29/WG11 N4668 dated Mar. 2002.
European Patent Application 15850436.6 Search Report dated May 4, 2018.
Final Written Decision for Inter Partes Review No. 2017-00375, Axon Enterprise Inc. v. Digital Ally, Inc., dated Jun. 1, 2018.
Decision Denying Institution of Post Grant Review for Post Grant Review No. PGR2018-00052, Axon Enterprise, Inc. v. Digital Ally, Inc., dated Oct. 1, 2018.
Related Publications (1)
Number Date Country
20190027184 A1 Jan 2019 US
Continuations (3)
Number Date Country
Parent 15446226 Mar 2017 US
Child 16126492 US
Parent 15011132 Jan 2016 US
Child 15446226 US
Parent 13967151 Aug 2013 US
Child 15011132 US