This invention is related to a cleaning device for combustion devices and particularly to one for large scale combustion devices for the reduction of soot and/or slag encrustations forming on internal heat exchange surfaces.
During the combustion process of fossil fuels such as coal, the internal heat exchange surfaces of boilers and other combustion devices become encrusted with slag and soot. In order to enhance the thermal and combustion efficiency of such devices, it is necessary to reduce the amount of encrustations on the heat exchanger surfaces. Numerous techniques for boiler cleaning are in use today. One approach is the use of so-called sootblowers which project a stream of cleaning medium such as air, steam, or water, or mixtures of these materials against the internal heat exchange surfaces which cause the accumulated encrustations to be removed through mechanical and thermal shock.
Various types of sootblower systems are used today. One type of sootblower is positioned permanently inside a boiler and is actuated periodically to eject a sootblowing medium. Other types are retractable and include the so-called long retracting sootblowers having a long lance tube which is periodically advanced into and retracted from the heat exchanger. The lance tube features one or more nozzles at its distal end from which the cleaning medium is ejected. The retraction feature of these sootblowers enables the lance tube to be removed from the intense heat within the combustion device between the cleaning cycles which would otherwise damage the lance tube. In most applications of long retracting sootblowers the lance tube is simultaneously rotated as it is axially extended into and out of the boiler so that the stream of sootblowing medium traces a helical or oscillating path during the cleaning cycle. Sootblowers are normally operated intermittently in accordance with a schedule which considers cleaning requirements, sootblower medium consumption, boiler thermal efficiency, and various other factors.
In cases where steam or a mixture which includes steam is used as the cleaning medium and the sootblower is actuated intermittently, there is a tendency for liquid condensate to collect in the cleaning medium supply circuit and lance tube between actuation cycles. At the beginning of the next actuation cycle when the cleaning medium supply valve is opened, the collected condensate is ejected from the cleaning nozzles in the form of liquid slugs. In some conditions, when such slugs of condensate strike the boiler wall surfaces and heat transfer tubes, erosion occurs due to an excessive level of thermal and mechanical shock. Such degradation of the heat exchange components of a boiler can cause failures and limit the operating life of the boiler which is a significant financial cost for the boiler operator. In view of the foregoing, a need exists for a sootblower system which accommodates condensate slugs without causing boiler component damage.
In addition to concerns regarding condensed steam forming between actuation cycles, or at the beginning of a cleaning cycle, there are applications in which it is desirable to use saturated or low quality steam as the cleaning medium. In such applications, the presence of condensate is expected as part of the cleaning medium flow supplied to the sootblower lance tube during a cleaning cycle. It is accordingly desirable to provide a sootblower lance assembly which permits the use of such cleaning medium while separating and safely ejecting entrained condensate.
Various sootblower configurations are known which seek to avoid the disadvantages associated with ejection of condensate when using steam as the cleaning medium. An example of such designs is provided with reference to applicant's previously issued U.S. Pat. No. 5,063,632. Although such devices generally operate satisfactorily, they have a number of significant disadvantages. For example, in some instances, such devices choke the flow of cleaning medium due to interference between the opposed cleaning medium nozzles. Sootblower nozzles are designed to provide efficient conversion of the static and dynamic pressure of the supplied sootblowing medium into a stream ejected from the cleaning nozzle(s) which has a high cleaning effect or peak impact pressure. Fluid flow interference caused by a disrupted cleaning medium flow at the nozzle entrance may lead to performance degradation. Further disadvantages of known sootblower nozzle blocks for condensate ejection include the requirement of complex internal welded components which can become dislodged or deteriorate during use.
One known technique for reducing condensate ejected from the cleaning nozzles is to use a port at the distal end of the lance tube provided to allow the ejection of condensate at the terminal end along the longitudinal axis of the sootblower nozzle block. This approach, described in the previously referenced US patent, creates a continuously open flow path initially for condensate ejection but thereafter permits cleaning medium to escape. Since cleaning medium ejected along the lance tube longitudinal axis is, in most applications, not useful for providing a cleaning effect, this discharge flow constitutes an efficiency degradation of the sootblower's operating performance. An ejection port at the nozzle block distal end produces a spray of condensate into the boiler internal volume. Although, as mentioned previously, ejection of condensate in this direction typically does not lead to undesirable consequences, it is preferable that a port for condensate ejection acts as an “inefficient” nozzle, in terms of generating a coherent high velocity stream of condensate at a given supply pressure. Ideally the condensate spray pattern ejected from a condensate port would be highly dispersed with low impact pressure characteristics.
In sootblowing applications, it is desirable to preserve the supplied sootblowing medium's dynamic and static pressure as it is converted to a stream of cleaning medium emitted from the lance tube nozzles which provides a high dynamic cleaning effect. Accordingly, it is desirable to provide a nozzle block which provides the previously noted desirable features while maintaining excellent performance in terms of cleaning effect.
This invention is related to a sootblower system incorporating a novel lance tube nozzle block having features for reducing the quantity of condensate ejected from cleaning nozzles forming on the inside of the nozzle block, lance tube, poppet valve, and related plumbing passageways or entrained in the cleaning medium supply in a manner which does not lead to boiler tube erosion. The sootblower cleaning nozzles which are aimed at the heat transfer surfaces to be cleaned, spray a steam or a steam/air mixture relatively free of condensate. Accordingly, this invention is capable of substantially minimizing the erosive effect caused by an initial output of a slug of condensate, or condensate present in a steady-state condition against heat transfer surfaces in a boiler. The nozzle block in accordance with this invention provides a condensate separation feature and further a means for ejecting the condensate from the nozzle block in a manner which, for intended applications, does not cause boiler tube erosion. Furthermore, the condensate separating effect provided by the nozzle block in accordance with this invention allows the use of saturated steam or a steam/water mixture for the purposes of cooling the lance tube, while avoiding the degree of heat exchanger erosion which would occur if all the condensed or entrained liquid water were sprayed against the heat exchanger surfaces from cleaning nozzles.
The nozzle block in accordance with an embodiment of this invention is preferably formed as an integral casting and forms two separated flow paths for the cleaning medium. The flow is separated at about the diametric mid-plane of the lance tube inside diameter by a divider wall to define two separated flow paths dedicated to separate nozzles. Each of the flow paths travels to the terminal end of a nozzle block where it undergoes a sharp “U-turn” bend (i.e. about 180°) and then extends rearward and terminates at a sootblower nozzle for spraying the cleaning medium radially from the nozzle block. The two separated flow paths are intertwined within the nozzle block interior. In one embodiment, the terminal end of the nozzle block features a pair of elongated slot passageways which serve to provide an ejection port for condensate. A slot is provided for each of the flow paths and has a particular orientation with respect to the cleaning medium flow to enhance the condensate separation effect. While the slot provides an effective condensate separation effect, it's cross-sectional flow area remains small, resulting in a low percentage of cleaning medium passing through the slots not available for cleaning purposes.
Various embodiments of this invention are described. In one embodiment, the previously mentioned flow path orientations are provided with the condensate ejection slots. In a further embodiment, the interior nozzle flow paths have the features for guiding condensate adhering to the internal surfaces of the nozzle block passageways toward and out of the condensate ejection slots. A still further embodiment provides condensate ejection for a single distal end nozzle for a nozzle block which does not divide the flow paths between a pair of nozzles, or with features only a single distal end nozzle.
Additional benefits and advantages of the present invention will become apparent to those skilled in the art to which the present invention relates from the subsequent description of the preferred embodiment and the appended claims, taken in conjunction with the accompanying drawings.
Now with reference to
A nozzle block 24 in accordance with a first embodiment of the present invention is illustrated in
The configuration of the internal flow passageway within nozzle block 24 are further described in relation to diametric midplane 68 which passes through the nozzle block (see
A significant features of nozzle block 24 is the provision of a pair of condensate ejection slots 64 and 66 extending along mid-lines 65 and 67 respectively, which open at nozzle block body distal end 40. As shown best by
The configurations of nozzle internal flow passageways 42 and 46 provide a number of significant features from a fluid flow perspective. By separating the flow into two paths and isolating them, the effects of interference and turbulence caused by their interaction is eliminated. The retrograde folded-back configuration of the passageways provides a long flow path for the fluid flow to become more laminar, thus reducing high degrees of turbulence which degrades nozzle efficiency. By forming nozzle block body 36 as a one-piece casting, problems associated with loose internal components are avoided entirely. The flow of the cleaning medium close to the entire outside surface of nozzle block body 36 from proximal end 38 to distal end 40 ensures that the nozzle block body is cooled by the flow cleaning medium. This avoids formation of highly heated areas of nozzle block 24 which can lead to deterioration.
The shape and orientation of slots 64 and 66 is important for their operation. Slots 64 and 66 provide an ejection pathway for condensate which is entrained in the cleaning medium flow or forms on internal wall surfaces of the nozzle block body 36. Slots 64 and 66 are positioned at the outer portion of the internal wall surface of U-turns 49 and 51 (i.e. the outside part of the turns) where inertia of the more dense entrained particulates tend to cause them to flow toward the outer section of the passageway at the U-turns (or the action of the apparent centrifugal force) where it can be intercepted by the presence of slots 64 and 66. Thus entrained liquid in the cleaning medium flow becomes directed against the outer surface forming U-turns 49 and 51 where the condensate encounters slots 64 and 66. The internal pressure of the cleaning medium within nozzle block body 36 causes the condensate flowing to slots 64 and 66 to be ejected from the slots. The leakage of cleaning medium through slots 64 and 66 represents an incremental decrease in the efficiency of the cleaning effect provided by the nozzle block 24. This is the case since cleaning medium escaping slots 64 and 66 is not directed in a manner to provide desired cleaning of heat transfer surfaces. In order to reduce this loss, the cross-sectional flow areas of slots 64 and 66 are intentionally minimized. In one embodiment of the present invention the cross-sectional flow area provided by slots 64 and 66 are about 15% of the cross-sectional area of the throats of their respective nozzle outlets 60 and 62.
Slots 64 and 66 can be made very thin in width (W) such that they produce a relatively small flow area. For the embodiments shown, slots 64 and 66 have a length dimension L and a width dimension W, wherein the length (L) is more than five times the width (W) providing a generally rectangular shape. The length (L) of slots 64 and 66 however is selected to ensure that they extend across the majority of the cross-sectional width of the flow passageway at U-turns 49 and 51, increasing the condensate that is intercepted by the presence of the slots. Prior art systems utilizing round holes at the distal end of the sootblower, while permitting condensate ejection, have an inherent low efficiency caused by the large flow area of the condensate ejection port. Other possible shapes such as slots 64 and 66 having a constant width formed along curved paths or other shapes could be provided. In any event, it is a principal feature of the invention that the ejection slots 64 and 66 are not round and have a greater length (L) than width (W) and are oriented such that the width dimension is aligned with the flow path of a cleaning medium as it flows through U-turn sections 49 and 51.
Nozzle block 24 in accordance with this invention has features which provide an additional mechanism for condensate separation and ejection beyond those previously described. In the prior description, the principle of using a centrifugal force effect with higher density condensate is described. This is useful for handling condensate entrained within the cleaning medium flow or adhering to certain surfaces of the flow passageway. It is further the case that condensate tends to collect and flow along the inside wall surfaces of the flow passageways due to the lower fluid velocity encountered at the wall surfaces, a quenching effect provided by cooling of the cleaning medium at the wall surfaces, and a surface tension effect caused by the liquid contacting the wall surfaces. These factors can lead to a layer of condensate flowing along the internal nozzle wall surfaces. Nozzle block 24 incorporates features designed to intercept condensate flowing along the nozzle passageway flow surfaces to direct it toward and out of slots 64 and 66.
Condensate collecting on the inside surface of nozzle axial flow passageway 48 and 50 just before U-turns 49 and 51 is intercepted by water corral 80 and is directed to flow toward water corral edges 82 and onto wall scrapers 84, and then toward and out of slots 64 and 66. To promote such flow, wall scrapers 84 are angled such that there is a component of flow velocity of the cleaning medium which tends to move the liquid along the wall scrapers toward slots 64 and 66. In other words, at slots 64 and 66, wall scraper 84 is downstream as the cleaning medium flows as compared to its section at water corral edges 82. Condensate which is on the lateral surfaces of axial flow passageway 40 and 50 will be intercepted by wall scrapers 84. As mentioned previously, condensate which is on the outer surface of the axial flow passageways at U-turns 49 and 51 will be intercepted by slots 64 and 66.
Now with reference to
A second embodiment of a nozzle in accordance with this invention is shown in
Nozzle block 90 incorporates one principal feature of the present invention for the ejection of condensate; namely, slot 96. Nozzle block 90 may feature a second nozzle outlet (not shown) positioned upstream of the distal end 94 for discharge of cleaning medium, preferably in a direction diametrically opposite the flow of medium from nozzle outlet 92. Slot 96 is provided at the distal end at a region where the cleaning medium undergoes a high rate of change in direction and is provided at the outer surface 100 of that flow path turn. As shown best in
In a manner as described previously, ejection slot 96 is provided as an ejection port for condensate. As in the case of the prior embodiment, slot 96 has a width (W) significantly less than its length (L) and the slot is cut in a manner such that its width dimension is parallel to the flow path of the cleaning medium. Accordingly, slot 96 operates in a manner of the prior embodiment in that condensate flow is interrupted by the presence of the slot and becomes ejected safely from the nozzle block. Moreover, the cross-sectional flow area of slot 96 is minimized to reduce efficiency loss in the operation of the nozzle block. The length (L) of ejection slot 96 extends to approximately the diameter of the throat 114 (minimum diameter section) of nozzle outlet 92. Slot 96 may have a cross-sectional area about 15% of that defined by throat 114 of nozzle outlets 92. In addition, slot 96 may have the far wall 110 offset from near wall 112, for example by an amount of 0.100 inch. Such an offset is evident in the cross-sectional view
While the above description constitutes the preferred embodiment of the present invention, it will be appreciated that the invention is susceptible to modification, variation, and change without departing from the proper scope and fair meaning of the accompanying claims.
The present patent application claims the benefit of priority to the following applications, and is a continuation of PCT Application No. PCT/US2014/015209 filed Feb. 7, 2014, which claims priority to U.S. Provisional Patent Application No. 61/762,613, filed Feb. 8, 2013.
Number | Name | Date | Kind |
---|---|---|---|
3269365 | Kochey, Jr. | Aug 1966 | A |
3593691 | Wirths et al. | Jul 1971 | A |
4422882 | Nelson et al. | Dec 1983 | A |
5063632 | Clark et al. | Nov 1991 | A |
5241723 | Garrabrant | Sep 1993 | A |
5320073 | Silcott et al. | Jun 1994 | A |
5416946 | Brown et al. | May 1995 | A |
5423483 | Schwade | Jun 1995 | A |
5509607 | Booher | Apr 1996 | A |
5687449 | Zachay et al. | Nov 1997 | A |
5778831 | Jameel | Jul 1998 | A |
5873142 | Theiss | Feb 1999 | A |
6764030 | Habib et al. | Jul 2004 | B2 |
8770155 | Tandra | Jul 2014 | B2 |
20040222324 | Habib et al. | Nov 2004 | A1 |
20050125932 | Kendrick | Jun 2005 | A1 |
20130019897 | Zachay | Jan 2013 | A1 |
Entry |
---|
International Search Report for PCT/US2014/015209. |
Number | Date | Country | |
---|---|---|---|
20150345878 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
61762613 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2014/015209 | Feb 2014 | US |
Child | 14820150 | US |