Conductive convective climate controlled seat

Information

  • Patent Grant
  • 11240882
  • Patent Number
    11,240,882
  • Date Filed
    Wednesday, January 23, 2019
    5 years ago
  • Date Issued
    Tuesday, February 1, 2022
    2 years ago
Abstract
A climate controlled assembly includes a support member having a first surface configured to support an occupant, a channel within the support, the channel extending from the first surface through a portion of the support, a thermoelectric device positioned within the channel, a heat exchanger conductively coupled to a first side of the thermoelectric device, the heat exchanger positioned within the channel and a flexible conductive member conductively coupled to a second side of the thermoelectric device, a portion of the flexible conductive member extending along the first surface of the support member.
Description
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.


BACKGROUND
Field

This application generally relates to a climate control system, and more specifically, a climate control system with a conductive member.


Description of the Related Art

Temperature modified air for environmental control of living or working space is typically provided to relatively extensive areas, such as entire buildings, selected offices, or suites of rooms within a building. In the case of vehicles, such as automobiles, the entire vehicle is typically cooled or heated as a unit. There are many situations, however, in which more selective or restrictive air temperature modification is desirable. For example, it is often desirable to provide an individualized climate control for an occupant seat so that substantially instantaneous heating or cooling can be achieved. For example, an automotive vehicle exposed to the summer weather, where the vehicle has been parked in an unshaded area for a long period, can cause the vehicle seat to be very hot and uncomfortable for the occupant for some time after entering and using the vehicle, even with normal air conditioning. Furthermore, even with normal air-conditioning, on a hot day, the occupant's back and other pressure points may remain sweaty while seated. In the winter, it is highly desirable to have the ability to warm the seat of the occupant quickly to facilitate the occupant's comfort, especially where the normal vehicle heater is unlikely to warm the vehicle's interior as quickly.


For such reasons, there have been various types of individualized temperature control systems for vehicle seats. Such temperature control systems typically include a distribution system comprising a combination of channels and passages formed in the back and/or seat cushions of the seat. A thermal module thermally conditions the air and delivers the conditioned air to seat channels and passages. The conditioned air flows through the channels and passages to cool or heat the space adjacent the surface of the vehicle seat.


Thus, while such systems are useful, there is a continuing desire to improve temperature control apparatuses and methods for a climate control system for vehicle seats and other seating assemblies.


SUMMARY OF THE INVENTION

Accordingly, one aspect of the present application comprises a climate controlled assembly. The assembly comprises a support member having a support surface configured to support an occupant; a blower configured to draw air adjacent the support surface of the support member; a thermoelectric device disposed on the support member and including a main side and a waste side; a heat exchanger conductively coupled to the waste side of the thermoelectric device; and a conductive member conductively coupled to the main side of the thermoelectric device, at least a portion of the conductive member extending along the support surface of the support member, wherein during operation, the blower draws air adjacent the support surface at the same time the thermoelectric device cools the conductive member. In some aspects, the assembly further comprises a channel within the support member, the channel extending from the support surface through a portion of the support member, wherein the blower is configured to withdraw air adjacent the support surface of the support into the channel. In some aspects, the thermoelectric device and the heat exchanger are positioned at least partially within the channel. In some aspects, the support member is a seat for a vehicle. In some aspects, the support member is a bed. In some aspects, the conductive member is a flexible metal mesh. In some aspects, the assembly further comprises a comfort layer and a trim layer covering the support surface of the support member. In some aspects, the conductive member extends along the support surface of the support member below the comfort layer. In some aspects, the conductive member comprises a first conductive member and a second conductive member conductively coupled to the main side of the thermoelectric device. In some aspects, the assembly further comprises an intermediate member conductively coupled to the conductive member and to the main side of the thermoelectric device.


Another aspect of the present application comprises a climate controlled assembly. The assembly comprises a support member having a first surface configured to support an occupant; a channel within the support member, the channel extending from the first surface through a portion of the support; a thermoelectric device positioned within the channel; a heat exchanger conductively coupled to a first side of the thermoelectric device, the heat exchanger positioned within the channel; and at least one conductive member conductively coupled to a second side of the thermoelectric device, a portion of the conductive member extending along the first surface of the support member. In some aspects, the assembly further comprises a recess positioned within the support member between the first surface and the channel and a permeable member positioned within the recess. In some aspects, the assembly further comprises a comfort layer positioned on the first surface of the support member, wherein the at least one conductive member is positioned between the permeable member and the comfort layer. In some aspects, the assembly further comprises an insulating layer positioned between the conductive member and the first surface. In some aspects, the assembly further comprises an intermediate conductive member, wherein the at least one conductive member is coupled to the intermediate conductive member and the intermediate conductive member is coupled to the thermoelectric device.


Yet another aspect of the present application comprises a method for thermally conditioning a support assembly that includes a support structure that defines a support surface. The method comprises operating a thermoelectric device, the thermoelectric device including a main side and a waste side; drawing air from adjacent the support surface through a heat exchanger conductively coupled to the waste side of the thermoelectric device; cooling, using the thermoelectric device, a conductive member conductively coupled to the main side of the thermoelectric device and located adjacent the support surface; and conductively cooling the support surface by simultaneously performing the steps of drawing air from adjacent the support surface and cooling the conductive member. In some aspects, the conductive member is a flexible conductive member that extends along the support surface. In some aspects, the thermoelectric device is located at least partially within the support structure.


Another aspect of the present application comprises a climate control device. The device comprises a thermoelectric device having a main side and a waste side, the thermoelectric device configured to heat or cool air; a first heat exchanger defining a flow path adjacent the waste side of the thermos electric device and conductively coupled to the waste side of the thermoelectric device; and a flexible first conductive member extending beyond the thermoelectric device and conductively coupled to the main side the thermoelectric device. In some aspects, the first conductive member is a flexible woven material. In some aspects, the first conductive member is a flexible metallic material. In some aspects, a length of the first conductive member is at least 150 mm. In some aspects, a length of the first conductive member is at least 200 mm. In some aspects, a length of the first conductive member is at least 50 mm. In some aspects, a length of the first conductive member is between 50 mm and 100 mm. In some aspects, a length of the first conductive member is between 200 mm and 250 mm. In some aspects, the device further comprises an intermediate conductive member, wherein the flexible first conductive member is coupled to the intermediate conductive member and the intermediate conductive member is coupled to the thermoelectric device.


Yet another aspect of the present application comprises an apparatus for thermally conditioning a space adjacent a support assembly that includes a support structure that defines a support surface. The apparatus comprises a blower; a thermoelectric device including a main side and a waste side; a heat exchanger conductively coupled to the waste side of the thermoelectric device and defining a flow path adjacent the waste side for receiving fluid from the blower; and a flexible conductive member distanced from the thermoelectric device and conductively coupled to the main side of the thermoelectric device. In some aspects, the flexible conductive member is a flexible woven material. In some aspects, the flexible conductive member is a flexible metallic material. In some aspects, a length of the flexible conductive member is at least 150 mm. In some aspects, a length of the flexible conductive member is at least 200 mm. In some aspects, a length of the flexible conductive member is at least 50 mm. In some aspects, a length of the flexible conductive member is between 50 mm and 100 mm. In some aspects, a length of the flexible conductive member is between 200 mm and 250 mm. In some aspects, the apparatus further comprises an intermediate conductive member, wherein the flexible conductive member is coupled to the intermediate conductive member and the intermediate conductive member is coupled to the thermoelectric device.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional side view of a push type ventilated seat system;



FIG. 2 is a cross-sectional side view of a pull type ventilated seat system;



FIG. 3 is a cross-sectional side view of an embodiment hybrid seat climate control system according to the present disclosure;



FIG. 4 is an enlarged cross-sectional side view of a portion of FIG. 3 of an embodiment hybrid seat climate control system according to the present disclosure;



FIG. 5 is a top view of the seat climate control system of FIG. 4;



FIG. 6 is a top view of a modified embodiment of the seat climate control system of FIG. 4 according to the present disclosure;



FIG. 7 is a side view of an embodiment thermoelectric device coupled to a conductive member according to the present disclosure and illustrating a temperature gradient along the conductive member;



FIG. 8 is a side view of another embodiment thermoelectric device coupled to a conductive member according to the present disclosure and illustrating a temperature gradient along the conductive member;



FIG. 9 is a top view of another embodiment of a seat climate control system according to the present disclosure;



FIG. 10 is a top view of another embodiment of a seat climate control system according to the present disclosure;



FIG. 11 illustrates a set of thermoelectric devices (TEDs) arranged in series according to the present disclosure;



FIG. 12 illustrates an on-board thermistor for measuring temperature according to the present disclosure;



FIG. 13 is a top view of another embodiment of a seat climate control system according to the present disclosure;



FIG. 14 is a cross-sectional side view of another embodiment of a seat climate control system according to the present disclosure;



FIG. 15 is a cross-sectional side view of another embodiment of a seat climate control system according to the present disclosure;



FIG. 16A is a cross-sectional side view of another embodiment of a seat climate control system according to the present disclosure;



FIG. 16B is a cross-sectional side view of another embodiment hybrid seat climate control system according to the present disclosure;



FIG. 17A is a cross-sectional side view of another embodiment of a seat climate control system according to the present disclosure;



FIG. 17B is a top view of the embodiment illustrated in FIG. 17A;



FIG. 18 is a cross-sectional side view of another embodiment of a seat climate control system according to the present disclosure;



FIG. 19A illustrates a top view of an embodiment of coupling a thermally conductive element to a thermoelectric device according to the present disclosure;



FIG. 19B illustrates a side view of the embodiment illustrated in FIG. 19A;



FIG. 20A illustrates a top view of another embodiment of coupling a thermally conductive member to a thermoelectric device according to the present disclosure;



FIG. 20B illustrates a side view of the embodiment illustrated in FIG. 20A;



FIG. 21A illustrates a top view of another embodiment of coupling a thermally conductive member to a thermoelectric device according to the present disclosure;



FIG. 21B illustrates a side view of the embodiment illustrated in FIG. 21A;



FIG. 21C illustrates another top view of the embodiment illustrated in FIG. 21A;



FIG. 21D illustrates an enlarged view of the connection between the flexible conductive members and the thermoelectric device of the embodiment illustrated in FIG. 21C;



FIG. 22A illustrates one embodiment of a thermoelectric device according to the present disclosure;



FIG. 22B illustrates one embodiment of a flexible conductive member according to the present disclosure;



FIG. 22C illustrates a cross-section of the flexible conductive member illustrated in FIG. 22B;



FIG. 23 illustrates a coupling between a flexible conductive member and a thermoelectric device;



FIG. 24 illustrates a coupling between a flexible conductive member and a thermoelectric device according to the present disclosure;



FIG. 25 illustrates a side view of another embodiment of coupling a thermally conductive member to a thermoelectric device according to the present disclosure;



FIG. 26 illustrates a side view of another embodiment of coupling a thermally conductive member to a thermoelectric device according to the present disclosure;



FIG. 27A illustrates a view of another embodiment of coupling a thermally conductive member to a thermoelectric device according to the present disclosure;



FIG. 27B illustrates a cross-section of the embodiment shown in FIG. 27A;



FIG. 28A illustrates another embodiment of coupling a thermally conductive member to a thermoelectric device according to the present disclosure;



FIG. 28B illustrates another view of the embodiment illustrated in FIG. 28A;



FIG. 28C illustrates a cross-section of the embodiment illustrated in FIG. 28B;



FIG. 29 illustrates one embodiment of a conditioning zone for one configuration of a thermally conductive member coupled to a thermoelectric device according to the present disclosure;



FIG. 30 illustrates another embodiment of a conditioning zone for one configuration of a thermally conductive member coupled to a thermoelectric device according to the present disclosure;



FIG. 31 illustrates another embodiment of coupling a plurality of thermally conductive members to a thermoelectric device according to the present disclosure;



FIG. 32 illustrates another embodiment of coupling a plurality of thermally conductive members to a thermoelectric device according to the present disclosure;



FIG. 33 illustrates another embodiment of coupling a plurality of thermally conductive members to a thermoelectric device according to the present disclosure;



FIG. 34 illustrates another embodiment of coupling a thermally conductive member to a thermoelectric device according to the present disclosure;



FIG. 35 illustrates another embodiment of coupling a thermally conductive member to a thermoelectric device according to the present disclosure;



FIG. 36 illustrates another embodiment of coupling a thermally conductive member to a thermoelectric device according to the present disclosure;



FIG. 37 illustrates another embodiment of coupling a thermally conductive member to a thermoelectric device according to the present disclosure;



FIGS. 38A and 38B illustrate another embodiment of a seat climate control system according to the present disclosure with FIG. 38A being a top view of a seat control system and FIG. 38B being a cross-sectional view through FIG. 38A;



FIGS. 39A and 39B further illustrate the embodiment shown in FIGS. 38A and 38B with FIG. 39A being a top view of a seat control system and FIG. 39B being a cross-sectional view through FIG. 39A;



FIG. 40 illustrates an embodiment of a manifold system for a seat climate control system according to the present disclosure.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 1 illustrates an embodiment of a push type ventilated seat system 100. As shown in FIG. 1, the illustrated system comprises a seat portion 102 and a backrest portion 104 (shown in cross-section). The system can include a blower 106 for the seat portion 102 and a blower 108 for the backrest portion 104. The blowers 106, 108 can push air through channels 110, 112 formed in the seat. In this manner, air drawn in from the ambient cabin can be pushed through the seat to provide comfort to a passenger sitting on the seat. The blowers 110, 112 can include a thermoelectric module (e.g., as described below) for selectively providing cooled or heated air to the passenger. One possible disadvantage with a push type system is that the air received by the blower and then delivered to the thermoelectric module may be hotter than the ambient air due to the configuration of the vehicle's heating, ventilating, and air conditioning (HVAC) system and due to the inefficiencies of a blower converting electrical power to airflow power.



FIG. 2 illustrates an embodiment of a pull type ventilated seat system 200. As shown in the FIG. 2, the illustrated pull type system 200 can comprise a seat portion 202 and a backrest portion 204 (shown in cross-section). The system 200 can include a blower 206 for the seat portion 202 and a blower 208 for the backrest portion 204. In this arrangement, the blowers 206, 208 can pull air from a top surface of the seat through channels 210, 212 formed in the seat. In this manner, air drawn in from the ambient cabin next to the seated passenger can be pulled through the seat to provide comfort to a passenger sitting on the seat. However, in this system there is no active cooling and/or heating.



FIGS. 3 and 4 illustrate an embodiment of a seat climate control system 300 employing a combination of convective and conductive thermal conditioning. In one arrangement, convective cooling is provided via a seat ventilation system or thermoelectric assembly 302 which draws or pulls air (as indicated by arrows 406 and 412) through a conditioned surface A (e.g., a “top” surface which is nearest the occupant). A blower 410 can pull air (as indicated by arrows 406 and 412) from the top surface A through channel 414 formed in the seat (shown in cross-section). Conductive cooling can be provided by a thermoelectric device or TED 408 having a flexible conductive member 404 (e.g., a braid made of conductive material) extending along the surface B that is below the outer, or conditioned, surface A. In the illustrated arrangement, the flexible conductive member 404 is positioned beneath the conditioned surface A (e.g., by placing the flexible conductive element 404 beneath the trim and/or covering of the seat and/or beneath an intermediate layer). The trim and/or covering of the seat can be leather, upholstery, or other suitable covering for a seat. In some embodiments, an intermediate layer (e.g., cushion, spacer fabric, etc.) could be located beneath the trim layer but above the conductive member. In some embodiments, as described below, the conductive member may be placed just below the top surface or integrated into the support member or cushion 303. Note that many of the following drawings the top surface is often omitted from the drawings for clarity.


When positioned below the top surface A, the flexible conductive member 404 can be positioned close enough to the top surface to provide a cooling or heating effect to the occupant through conduction. In certain embodiments, a portion of the flexible conductive member is positioned within 0.5 mm and 200 mm of the top surface. In certain embodiments, the flexible conductive 404 member can also extend along the top surface A to form part of the top surface A and/or extend partially below the top surface A and also extend partially along the top surface A. In some embodiments, heat transfer devices such as fins 402 may be placed on the waste or hot side of the thermoelectric device 408. While the illustrated embodiment shows the thermoelectric device or TED 408 positioned in a channel extending through the seat, in modified arrangements of the embodiments described herein the thermoelectric device or TED 408 can be disposed on or coupled to the support structure in a different or modified arrangement. For example, the channel can be positioned along a top surface, side or bottom surface of the seat or support structure. The thermoelectric device or TED 408 or portion thereof can be positioned in a channel positioned along a side, top or bottom surface of the seat or support structure and/or along a side, top or bottom portion of the seat or support structure.


The thermoelectric device can be a Peltier thermoelectric module, which includes a Peltier circuit. A Peltier circuit is a type of thermoelectric device that comprises two sides, each of which is either heated or cooled when current is delivered through the circuit. For example, when voltage is applied in a first direction through the thermoelectric device, one side generally generates heat while the opposite side absorbs heat (i.e., is “cooled”). The thermoelectric device can be configured so that switching the polarity of the circuit can create the opposite effect. Typically, thermoelectric devices comprise a closed circuit that includes dissimilar materials. As a DC voltage is applied across the closed circuit, a temperature change is generated at the junction of the dissimilar materials. Thus, depending on the direction that electrical current flows through the thermoelectric device, heat is either emitted or absorbed. Thermoelectric devices can include several such junctions connected electrically in series. The junctions can be sandwiched between two ceramic plates that generally form the cold side and the hot side of the device. The cold side and hot side can be thermally coupled to one or more heat transfer devices (e.g., fins, such as fins 402, or a flexible conductive member, such as member 404) that facilitate heat transfer with a volume of air or other fluid. Thus, air or other fluid can be passed through or near the cold and/or hot side of a thermoelectric device (e.g., Peltier circuit) to selectively heat and/or cool the air or other fluid. In some embodiments, a control module may be used to activate the thermoelectric device.


As shown in FIG. 4, the thermoelectric module 302 in the illustrated embodiment includes a thermoelectric device 408 (Peltier circuit). One side of the thermoelectric device 408 is coupled to a heat exchanger 404 (which can be in the form of fins), which form the “hot” or waste side of the thermoelectric device 408. The opposite side of the thermoelectric device 408 is coupled to the flexible thermally conductive member 404 (e.g., a thermally conductive flexible braid). As shown in FIG. 4, the heat exchanger 404 of the waste side of the module 408 can be positioned within a channel 414 formed in the seat 301. The channel 414, in turn, is in fluid communication with a fan or blower 410 positioned, for example, beneath the seat 301. In certain arrangements, the fan or blower 410 can be positioned closer to the thermoelectric module 302 (e.g., within the channel 414 and/or integrated with the thermometric electric module 302 (e.g., by positioning the blower near or adjacent the thermoelectric module 302 and/or within the same housing) The blower 410, in turn, can draw or pull air from the “top” surface of the seat down into the channels 414 and through the waste side heat exchanger 402. In this manner, heat is removed from the heat exchangers 402 positioned within the channels 414 while the thermally conductive flexible member 404 is cooled. If desired, the thermoelectric device 408 can be operated in “reverse” such that heat from the ambient air is absorbed by the fins 402 in the channel 414 (that is, the air flowing through the fins 402 are cooled) so as to heat the thermally conductive flexible member 404 coupled to the other side of the thermoelectric device 408.


In one embodiment, the flexible conductive member 404 comprises a copper braid and/or mesh material. However, in other embodiments, other materials could be used (e.g., aluminum, graphite and/or grapheme) and/or other configurations (e.g., non-braided configurations, thin stripes, etc.). It should also be appreciated that while the member 404 is described as being flexible portions of the flexible conductive member 404 may not be flexible. For example, in one embodiment only the portions of the flexible conductive member 404 near and/or in contact with the occupant may be flexible.



FIG. 4 and the following figures of this application show the climate control seat system 302 with combination of a convective and conductive thermal conditioning in the context of a standard automotive seat with a seat portion and a back portion. However, it should be appreciated that certain features and aspects of the climate controlled seat assembly described herein may also be used in other seat configurations and a variety of other applications and environments. For example, certain features and aspects of the combination of a convective and conductive thermal conditioning described herein may be adapted for use in other vehicles, such as, for example, an airplane, a boat, or the like. Further, certain features and aspects of combination of a convective and conductive thermal conditioning may also be adapted for use in stationary environments, such as, for example, a chair, a sofa, a theater seat, a mattress, a topper for mattress, and an office seat that is used in a place of business and/or residence. Further, certain features and aspects of combination of a convective and conductive thermal conditioning can be used in arrangements in which a space is cooled (e.g., a storage bin).



FIG. 5 illustrates a top view of the system 302 of FIG. 4. As shown in FIG. 5, the flexible thermally conductive member 404 can extend from the channel in the seat 301 over a portion of the subsurface B of the cushion 303. FIG. 6 illustrates a modified embodiment in which four conductive members 604, 605, 606, 607 extend from the thermoelectric device 608 to cover a larger portion of the cushion 303. As described above, in certain arrangements, the conductive members and subsurface B of the cushion can be covered with a trim or top layer (e.g., a seat covering material such as upholstery, leather, cloth) and/or an intermediate layer (e.g., a spacer fabric, a comfort layer and/or an additional cushioning layer, etc.) positioned between the top layer and a seat cushion. In certain arrangements, the conductive members or portions thereof can form part of the trim or top layer and/or be positioned above the intermediate layer (if provided). The trim layer or top layer (e.g., a seat covering material such as upholstery, leather, cloth) and/or an intermediate layer can be made of air permeable material and/or can be perforated or otherwise formed with holes and/or passages for allowing the flow of air there-through such that air can flow through the trim or top later and/or the intermediate layer into the channel or channels.



FIGS. 7 and 8 illustrate the advantages and potential disadvantages of the thickness of the flexible conductive member. It is anticipated that, in general, a thicker conductive member will provide better conduction of temperature as compared to a thinner conductive member. However, it is anticipated that, in general, the thinner conductive member would be more flexible and provide better comfort to an occupant sitting on the seat.


As illustrated in FIG. 7, for a thick braid 704 connected to thermoelectric device 708, the thickness of the braid 704 provides good conduction of temperature throughout the braid 704, as illustrated by the arrows 710. As illustrated in the graph 720 which illustrates the temperature 722 of the braid along its length X, the temperature of the braid does not significantly change along its length, that is, the temperature of the braid near the thermoelectric device is almost the same as the temperature of the braid furthest away from the thermoelectric device and stays below the ambient temperature 724. Additionally, a user may feel the thick braid under the seat covering when sitting in the seat or may feel a distinct temperature difference at the seat surface directly over the braid versus the seat surface not covering the braid. Similar to the embodiment shown in FIG. 4, a heat exchanger 702 may be coupled to the waste side of the thermoelectric device 708.


A similar temperature graph is illustrated in FIG. 8 for a thin braid 804. As illustrated in graph 820, the temperature 822 along the braid 804 varies much more for the thin braid 804 than for the thick braid 704 shown in FIG. 7. Additionally, the temperature 822 of the braid 804 further away from the thermoelectric device 808 is higher and closer to the ambient temperature 824 than for the thick braid 704. This wider temperature gradient can create an uneven temperature feel in the seat that may be uncomfortable for the user. In addition, the overall level of cooling may be reduced. While the thin braid 804 may be more flexible and therefore lead to less of a distinct “feel” within the seat cushion, the thin braid 804 does not conduct heat as well as a thick braid, leading to an uneven temperature gradient along the braid that may be felt by the user through the seat cushion. Similar to the embodiment shown in FIG. 4, a heat exchanger 802 may be coupled to the waste side of the thermoelectric device 808.



FIG. 9 is a top view of another embodiment of the system 900 in which a single thermoelectric device 908 is coupled to more than one conductive member (e.g., four in the illustrated arrangement as illustrated by reference numbers 904, 905, 906, and 907). Similar to the embodiment shown in FIG. 4, a heat exchanger 902 may be coupled to the waste side of the thermoelectric device 908 and can be positioned within a channel formed in the support member or cushion 903. In some embodiments, the length of each conductive member may be between about 200-250 mm. In other embodiments, the length of each conductive member may be at least about 50 mm, at least about 75 mm, at least about 100 mm, at least about 125 mm, at least about 150 mm, at least about 200 mm, or at least about 225 mm. In other embodiments, the length of each conductive member may be between about 100-300 mm, between about 125-275 mm, or between about 150-250 mm. As described above, in certain arrangements, the conductive members and subsurface B of the cushion can be covered with a trim or top layer (e.g., a seat covering material such as upholstery, leather, cloth) and/or an intermediate layer (e.g., a spacer fabric, a comfort layer and/or an additional cushioning layer, etc.) positioned between the top layer and a seat cushion. In certain arrangements, the conductive members or portions thereof can form part of the trim or top layer and/or be positioned above the intermediate layer (if provided).



FIG. 10 illustrates an embodiment in which the system 1000 can include more than one channel (e.g., four in the illustrated arrangement) formed in the support member or cushion 1003. Each channel defines a thermally-conditioned “zone” 1001A, 1001B, 1001C, and 1001D. Each channel or zone can include a one thermoelectric device and/or waste side heat exchanger, such as thermoelectric devices 1002A, 1002B, 1002C, and 1002D. One or more conductive members (e.g., conductive flexible braids) can be coupled to each of the thermoelectric devices, as illustrated by conductive members 1004A, 1004B, 1004C, and 1004D. In some embodiments, the length of each conductive member (one illustrative length 1005 is illustrated) may be between about 50-100 mm. In other embodiments, the length of each conductive member may be at least 25 mm, at least 40 mm, at least 50 mm, at least 65 mm, or at least 75 mm. In other embodiments, the length of each conductive member may be between 25 and 125 mm, between 35 and 100 mm, or between 50 and 75 mm. As described above, in certain arrangements, the conductive members 1004A-D and subsurface B of the cushion can be covered with a trim or top layer (e.g., a seat covering material such as upholstery, leather, cloth) and/or an intermediate layer (e.g., a spacer fabric, a comfort layer and/or an additional cushioning layer, etc.) positioned between the top layer and a seat cushion. In certain arrangements, the conductive members or portions thereof can form part of the trim or top layer and/or be positioned above the intermediate layer (if provided).



FIG. 10 illustrates one conductive element associated with each channel. Although not illustrated in FIG. 10, each channel can be associated with a blower and/or a manifold system could be provided beneath and/or within so as to withdraw air from each of the channels with a single blower (or combination of blowers). In embodiments that include multiple thermoelectric devices, the thermoelectric devices can be arranged in series as shown in FIG. 11 or in parallel. When the thermoelectric devices are arranged in series, as shown in FIG. 11, less wiring may be needed. When the thermoelectric devices are arranged in parallel, a failure of one thermoelectric device will not affect the remaining thermoelectric devices and the remaining devices will continue to operate. As shown in FIG. 12, the system can include at least one on-board thermistor for measuring the temperature of the thermoelectric device. The temperature information can be used as part of a control and/or safety system.



FIG. 13 illustrates an embodiment of the system 1300 in which multiple thermoelectric devices are used but only one of the thermoelectric devices includes a thermistor. As shown in FIG. 13, the seat 1303 can have multiple channels formed in the support member or cushion 1303 with each channel containing a thermoelectric device connected to one or more conductive members (e.g., conductive flexible braids). Each of the conductive members 1304A, 1304B, 1304C, and 1304D is connected to a thermoelectric device 1302A, 1302B, 1302C, 1302D. As illustrated, each of the thermoelectric devices 1302A, 1302B, and 1302C are two-wire thermoelectric devices while the thermoelectric device 1302D is a four-wire thermoelectric device equipped with a thermistor to measure the temperature of the thermoelectric device. In other embodiments, one or more of the thermoelectric devices 1302A, 1302B, 1302C, 1302D may include thermistors for measuring the temperature(s) of the thermoelectric device(s). Desirably, to minimize conduction losses throughout the conductive member, the thermoelectric device should be located as close to the top or “A” surface of the seat as possible. As described above, in certain arrangements, the conductive members 1304A-D and subsurface B of the cushion 1303 can be covered with a trim or top layer (e.g., a seat covering material such as upholstery, leather, cloth) and/or an intermediate layer (e.g., a spacer fabric, a comfort layer and/or an additional cushioning layer, etc.) positioned between the top layer and a seat cushion. In certain arrangements, the conductive members or portions thereof can form part of the trim or top layer and/or be positioned above the intermediate layer (if provided).


As described above, in one embodiment, the thermoelectric device and the waste side heat exchanger are positioned beneath the top surface of the cushion and generally within a channel that extends through the seat. FIGS. 14 and 15 illustrate two locations for a thermoelectric assembly within a seat 1403. As shown in FIG. 14, the thermoelectric assembly 1400 can be positioned near or adjacent the top surface of the seat 1403. As with the thermoelectric assembly 302 discussed above with respect to FIG. 4, conductive cooling can be provided by a thermoelectric device 1408 having a flexible conductive member 1404 (e.g., a braid made of conductive material) extending along the subsurface B. The flexible conductive member 1404 is in the illustrated embodiment is positioned beneath the conditioned surface (e.g., by placing the flexible conductive element 1404 beneath the trim and/or covering of the seat). In some embodiments, fins 1402 may be placed on the waste or hot side of the thermoelectric device 1408. A channel 1414 may be provided such that air may be pulled through the cushion 1403 and through a heat exchanger 1402 as discussed above with respect to FIGS. 3 and 4.


In other embodiments, the thermoelectric assembly can be positioned deeper within the seat 1503, as illustrated by assembly 1500 shown in FIG. 15. The flexible conductive member 1504 is in the illustrated embodiment is positioned beneath the conditioned surface (e.g., by placing the flexible conductive element 1504 beneath the trim and/or covering of the seat). In some embodiments, fins 1502 may be placed on the waste or hot side of the thermoelectric device 1508. As shown in FIG. 15, one disadvantage of positioning the thermoelectric device 1508 and/or heat exchanger (e.g., fins 1502) deeper within the channel 1514 of the seat 1503 is that the ambient air 1520, which is typically at a higher temperature than the conductive member 1504, may heat the relatively cooler flexible conductive member 1504 as the air passes through the channel 1514, as illustrated by arrow 1522. This heat transfer by the ambient air to the member 1504 increases thermal losses. To mitigate this thermal loss, a thermally insulating material 1540 can be applied to the exposed surface of the conductive member. The thermally insulating material 1540 may be an insulated sheath wrapping around the conductive member 1504 or may be a coating on the side of the member 1504 facing the airflow.



FIG. 16A illustrates an arrangement of an assembly 1600 in which porous spacer material 1601 (e.g., a “comfort layer”) is positioned between the top layer 1605 (e.g., leather or fabric) and the subsurface B of the seat 1603. In this arrangement, the flexible thermally conductive member 1604 can extend through an opening or gap in the spacer material 1601. The porous spacer material 1601 desirably facilitates the ventilation function of the seat, that is, allows air to be pulled through the top surface into the channels within the seat. The flexible conductive member 1604 is in the illustrated embodiment is positioned beneath the conditioned surface (e.g., by placing the flexible conductive element 1604 beneath the trim 1605 and/or covering of the seat). In some embodiments, fins or heat exchangers 1602 may be placed on the waste or hot side of the thermoelectric device 1608 and as shown the thermoelectric device can be positioned within a channel 1614 extending through the seat. In a modified arrangement, a groove or channel can be formed in the seat 1603 to accommodate the conductive member 1604 or a portion thereof and/or a groove or channel in the seat can be used in combination with an opening or gap in the spacer material 1601 to accommodate the conductive member 1604 or a portion thereof.



FIG. 16B illustrates an embodiment of a thermoelectric assembly 1600 similar to the assembly shown in FIG. 16A; however, the assembly 1600 shown in FIG. 16B includes a supplemental heating layer 1611. This supplemental heating layer 1611 may be provided between a trim or top layer 1605 and the support surface B such that the supplemental heating layer 1611 extends along the surface B. In some embodiments, the supplemental heating layer 1611 may be adjacent to, above, or below the flexible member 1604. In some embodiments, the supplemental heating layer 1611 may be a resistive heater.


In other arrangements, the seat can include a recess or gap which can include spacer (air permeable) material. As shown in FIG. 17A and similar to the embodiments discussed above, conductive cooling can be provided by a thermoelectric device 1708 disposed in a channel 1714 and having a flexible conductive member 1704 extending along the subsurface B below a comfort layer 1701 and a trim layer 1705. The comfort or smoothing layer 1701 may be attached to the trim layer 1705, for example by adhesive and/or sewing. The comfort or smoothing layer 1701 can be configured to prevent or reduce any “read through” or transfer of heat/cooling from the conductive members that may cause user discomfort. In some embodiments, fins 1702 may be placed on the waste or hot side of the thermoelectric device 1708. The seat 1703 includes a recess or gap 1731 into which an air permeable material 1730 may be placed to allow lateral air movement. The recess 1731 may be located toward to the top surface A of the seat (that is, above the channel 1714) but below a trim layer 1705 and a comfort layer 1701. The air permeable material 1730 allows lateral air movement from the thermoelectric device 1708 and flexible conductive member 1704 to better distribute cool, ventilated air to the conditioned surface of the seat. A blower 1706 may pull air from the top surface A, through the trim layer 1705, the comfort layer 1701, the lateral air permeable material 1730, and through the channel 1714, as indicated by arrows 120, 1722, and 1724. In some embodiments, a notch or slit may be provided in the subsurface B to allow the flexible conductive material to pass through. As illustrated in FIG. 17B, the subsurface B may include a slot 1712 through which the flexible conductive member 1704 is passed.



FIG. 18 illustrates an embodiment in which thermally insulating material 1840 is provided on a side of the flexible conductive member 1804 to prevent, for example, cold air from being drawn into the seat 1803 away from the occupant. As shown in FIG. 18 and similar to the embodiments discussed above, conductive cooling can be provided by a thermoelectric device 1808 disposed in a channel 1814 and having a flexible conductive member 1804 extending along the subsurface B. In some embodiments, fins 1802 may be placed on the waste or hot side of the thermoelectric device 1808. The thermally insulating material 1840 may be provided on a side of the flexible conductive member 1804 between the flexible conductive member 1804 and the subsurface B. The thermally insulating material 1840 can prevent cold air from being drawn into the seat 1803 away from the occupant but allows air to flow from the top surface of the seat 1803 and through the channel 1814. In one embodiment, the insulating material can comprise a foam such as a cross-linked foam such as Volara®. Similar to FIG. 17A, discussed above, the embodiment illustrated in FIG. 18 may include an air permeable material 1830 positioned in a recess of the seat 1803 to allow lateral air movement from the thermoelectric device 1808 and flexible conductive member 1804 to better distribute cool, ventilated air to the conditioned surface of the seat. The air permeable material 1830 can be configure to generally allow air flow through the permeable material 1830 while providing structural support similar to the surrounding seat 1803 material.



FIGS. 19-35 provide additional disclosure and embodiments of a seat system employing a combination of convective and conductive thermal conditioning. For example, FIGS. 19-35 illustrate various embodiments and methods for coupling the flexible thermally conductive member to the thermoelectric device.



FIGS. 19A and B illustrate two views of one embodiment of a configuration for a flexible conductive member. In this embodiment, a single flexible conductive member 1904 is connected to the thermoelectric device 1908. As illustrated, in some embodiments, one or more heat transfer devices, such as fins 1902, may be placed on the waste or hot side of the thermoelectric device 1908.


Another embodiment of a configuration for a flexible conductive member is shown in FIGS. 20A and B. In this embodiment, two flexible conductive members 2004A and 2004B are connected to the thermoelectric device 2008. Upon placement in the seat, the two flexible conductive members 2004A and 2004B can be spread apart a distance X to provide additional coverage area. As illustrated in the side or profile view of FIG. 20B, the two flexible members 2004A, 2004B may be stacked one on top of the other when connected to the thermoelectric device 2008. While two flexible conductive members are illustrated in FIGS. 20A and B, other configurations may include 3, 4, 5, or 6 flexible conductive members connected to the thermoelectric device in a stacked or parallel configuration. As illustrated, in some embodiments, one or more heat transfer devices, such as fins 2002, may be placed on the waste or hot side of the thermoelectric device 2008.


Instead of a stacked configuration such as that shown in FIGS. 20A and B, one or more flexible conductive members may be connected in series or laterally to the thermoelectric device, as illustrated in FIGS. 21A-D. As illustrated, flexible conductive members 2104A and 2104B are connected side by side or laterally to the thermoelectric device 2108. As with the configuration discussed above with respect to FIGS. 20A and B, the flexible conductive members 2104A and 2104B may be spread apart a distance X′ to provide additional and more uniform coverage. As illustrated, in some embodiments, one or more heat transfer devices, such as fins 2102, may be placed on the waste or hot side of the thermoelectric device 2108.


While the embodiments discussed above have been discussed with regard to providing a cooling function, these embodiments may also be used with or without a blower to operate in a heating mode to provide heated air to a conditioned surface of a seat.



FIGS. 22A-C illustrate one issue related to the assembly process of attaching the flexible conductive member to the thermoelectric device. A configuration of a thermoelectric device can include a conductive layer such as for example an outer copper layer. As shown, this outer copper layer of the thermoelectric device 2208 is very flat; however, the mesh of the flexible conductive member 2204 is not flat, that is, it has a rough surface due to its construction from overlapping or braided wires. The weaving or braiding of the wires creates an uneven surface having voids such that the flexible conductive member 2204 may be difficult to solder or attach to the flat surface of the thermoelectric device 2208. This difficulty is illustrated in FIG. 23. Directly soldering or otherwise attaching the flexible conductive member 2304 to the thermoelectric device 2308 may result in an unsatisfactory connection between the thermoelectric device and the flexible conductive member. This unsatisfactory connection may result in reduced performance. Furthermore, voids in the soldered connection between the thermoelectric device and the flexible conductive member may create hot spots in the thermoelectric device and may be potential points of mechanical or thermal fatigue during use. As illustrated, in some embodiments, one or more heat transfer devices, such as fins 2302, may be placed on the waste or hot side of the thermoelectric device 2308.


In one embodiment, illustrated in FIGS. 24 and 25, a thermal intermediate flat copper plate 2407 could be positioned between the thermoelectric device 2408 and the flexible conductive member 2404 (e.g., copper braid). Such an arrangement may provide better soldering at the thermoelectric device 2408 (e.g. “flat-on-flat” copper plate of the thermoelectric device to intermediate copper plate, as opposed to the “flat-on-rough” of the thermoelectric device copper plate to the flexible conductive member) which may allow for a wider variety of configurations of the flexible conductive member (e.g. multiple “off-shoots” of the braid) and better coverage on the seat. FIG. 25 illustrates a side view of the assembly illustrated in FIG. 24. As shown, the flexible conductive member 2404 is connected to the intermediate flat copper plate 2407 which is then soldered or otherwise attached to the thermoelectric device 2408. This “flat-on-flat” connection improves the solder connection between the elements, providing durability and heat transfer benefits. As illustrated, in some embodiments, one or more heat transfer devices, such as fins 2402, may be placed on the waste or hot side of the thermoelectric device 2408.


Various embodiments of intermediate plate and flexible member assemblies are shown in FIGS. 26-28. As shown in FIG. 26, the intermediate flat plate 2607 fits within the flattened “tube” of the flexible conductive member 2604. In some embodiments, the intermediate plate may be “pre-tinned” to improve the connection between the intermediate plate 2607 and the flexible conductive member 2604. An intermediate plate and flexible member assembly having multiple flexible conductive members is shown in FIG. 27. In this embodiment, the flexible conductive members 2704A and 2704B are connected in series to an intermediate flat plate 2707. As illustrated in FIG. 27B, the intermediate plate 2707 may have “prongs” such that each of the flexible members 2704A, 2704B can fit around one of the “prongs” to provide a secure connection between the flexible members and the intermediate plate.


In some embodiments, the “prongs” extending from the intermediate plate may be separated such that the flexible conductive members do not touch or overlap when connected to the intermediate plate. As illustrated in FIGS. 28A-C, the intermediate plate 2807 is configured such that the flexible conductive members 2804A, 2804B are separated by a gap Z. The “prongs” of the intermediate plate 2807 fit within the flexible conductive members 2804A, 2804B to provide a secure connection between the flexible conductive members and the intermediate plate. The gap Z is configured to allow for clearance of the thickness of the flexible conductive members 2804A, 2804B around the prongs of the intermediate member 2807.



FIGS. 29-35 describe a flexible conductive element having modified shapes, sizes, and configurations. As discussed above, the use of multiple flexible conductive members connected to a thermoelectric device can provide better flexibility for coverage of the seat or conditioned surface in certain arrangements. FIGS. 29 and 30 illustrate the different cooling zone areas provided by two different flexible conductive member configurations. In FIG. 29, a single flexible conductive member 2904 provides a cooling zone area 2940. A larger cooling zone 3040 is illustrated in FIG. 30, as a result of two flexible conductive members 3004A, 3004B connected to the thermoelectric device.



FIGS. 31-35 illustrate various configurations of multiple flexible conductive members connected to a thermoelectric device. As illustrated in FIG. 31, multiple flexible conductive members 3104A-C are connected to the thermoelectric device via the intermediate plate 3107. Similarly, the intermediate plates 3207 and 3307 illustrated in FIGS. 32 and 33, respectively, illustrate another configuration for attachment of multiple flexible conductive members 3204A-C, and 3304A-D. These configurations provide an even large zone of conditioning due than the configurations shown in FIGS. 29 and 30. As illustrated in FIGS. 34 and 35, the flexible conductive member could also be in a flat, non-rectangular configuration, as illustrated by conductive members 3404 and 3504. The flexible conductive member may be cut to any shape, including non-rectangular shapes, depending on the size and configuration of the support member and surface to be conditioned. In these configurations, greater distribution of cold or heat is achieved.



FIG. 36 illustrates another configuration of a thermoelectric assembly that can be used in embodiments according to the present disclosure. This thermoelectric device can be used with any of the climate control assemblies discussed above. In the illustrated configuration, a thermoelectric device is comprised of a first copper plate 3641a, a first electrically insulating layer 3640a, a first interconnecting layer 3642a, thermoelectric pellets 3608, and a second interconnecting layer 3642b, a second electrically insulating layer 3640b, and a second copper plate 3641b. Fins 3602a and 3602b may be placed on the outside surfaces of the copper plates 3641a, 3641b to form a heat transfer device to conduct heat away from the thermoelectric device. In this embodiment, the thermoelectric device includes fins on both sides of the device. However, as described in the embodiments described above, the fins on one side of the device can be omitted and the copper plate can be coupled to a flexible conductive member. In some configurations, the insulating layers 3640a, 3640b may be formed of an epoxy or polyimide. Additional details of an exemplary thermoelectric device can be found in U.S. patent application Ser. No. 11/546,928 (Publication No. 2008/0087316) filed on Oct. 12, 2006, the entirety of which is hereby incorporated by reference herein. For example, U.S. Patent Publication No. 2008/0087316 discusses that a thermoelectric device can include a plurality of semiconductor elements.



FIG. 37 illustrates another configuration of a thermoelectric assembly similar to the embodiment described above with reference to FIG. 36 with similar numbers used to identify similar components. Instead of fins on onside of the device, the assembly can include a conductive plate—e.g., copper plate 3741 that extends beyond the additional layers comprising the thermoelectric device to provide a surface to solder 3705 or otherwise attach a flexible member 3604. As described above, other configurations can be provided for conductively coupling the flexible member 3604 to the thermoelectric assembly.



FIGS. 38A and B and 39A and B illustrate another climate control system for a seat according the present disclosure. As shown in FIGS. 38A (top view) and B (cross-sectional view), the flexible member 3804 may extend through an opening, channel or slot 3812 such that the flexible member 3804 extends along a surface below a comfort layer and a trim layer (both not shown), such as comfort layer 1701 and trim layer 1705 discussed above with respect to FIGS. 17A and 17B. In some configurations, the flexible members 3804a-d may be above (as shown) or below a spacer or distribution layer 3801a-d. The spacer layer 3801a-d as illustrated in FIGS. 38A and B can be between the flexible members 3804a-d and a support layer 3803 of the seat. The space layer 3801a-d can be positioned within recesses formed in the support layer 3803. In some embodiments, a comfort layer, such as the comfort layer 3955 discussed below with respect to FIGS. 39A and 39B, may be placed above the flexible members 3804a-d and the spacer layer 3801a-d. The spacer layer 3801a-d can be configured to allow air to flow laterally and upwardly through the structure while maintaining a space between two surfaces, such as the support layer 3803 and the trim/cover layer, which may comprise both an outer trim layer and a comfort/smoothing layer as discussed above with respect to FIGS. 17A and 17B. The spacer layer can be formed of a variety of materials such as a honey-combed foam material, material with channels and passages formed therein, 3D spacer fabrics, mesh netting fabrics, spacing plates, etc. As an example, one preferred material is sold under the trade name 3MESH® and is commercially available from Mueller Textil GmbH, Germany or Mueller Textiles, Inc., R.I., USA. Other preferred spacing devices and spacing plates are disclosed in U.S. Pat. No. 8,777,320, the entirety of which is incorporated by reference herein in its entirety. The channels 3814a and 3814b may fluidly connect to channels 3876 and 3872 that are part of a manifold system mounted to the bottom of the seat pan, as illustrated in more detail in FIG. 40.



FIGS. 39A and B illustrate a configuration as in FIGS. 38A and 39B that also includes a second comfort layer 3955. The second comfort layer 3955 restricts airflow into the climate control assembly to specific locations, such as openings 3950. The second comfort layer 3955 is located between the flexible conductive members 3904a-d and the spacer layer 3901a-d below. The second comfort layer 3955 can comprises two or more pieces of comfort foam defining a gap or channel 3982 between them. The gap or channel 3982 can allow a trim layer, such as trim layer 1701 discussed above with respect to FIGS. 17A and 17B, to be secured directly to the support layer 3803 beneath. The openings 3950 in the second comfort layer 3955 direct airflow through specified channels, such as channels 3914a, 3914b in the seat assembly. These channels may be connected to a manifold system, such as the system 4000 illustrated in FIG. 40. In the embodiments described herein, the trim layer or top layer (e.g., a seat covering material such as upholstery, leather, cloth) and/or an intermediate layer can be made of air permeable material and/or can be perforated or otherwise formed with holes and/or passages for allowing the flow of air there-through such that air can flow through the trim or top later and the intermediate layer into the channel or channels.


The conductive members 3904a-d can be located in areas where the occupant contacts the seat and can extend towards each other as shown in FIGS. 39A and 39B or longitudinally as illustrated by the dotted lines. A distribution or spacer layers 3901a-d, as discussed above, can overlap the respective conductive members 3904a-d in areas of contact with the occupant. The distribution or spacer layer can also extend into areas adjacent to areas where the occupant contacts the seat to draw air around the occupant and into the seat.


As illustrated in FIG. 39B, the second comfort layer 3955 may include recesses in which the conductive members 3904 are partially (as shown) or fully recessed such that the top of the conductive members 3904 are flush with the top surface of the second comfort layer 3955. Alternatively, the conductive members 3904 may not be placed within recesses in the second comfort layer 3955. While FIG. 39B illustrates a space between the heat exchanger coupled to the waste side of the thermoelectric device, in other embodiments the heat exchanger may abut or extend above the distribution or spacer layer 3901 to minimize the length of the conductive member 3904.



FIG. 40 illustrates a manifold system 4000 that is attached to a seat pan of a seat assembly 4003 from below. The manifold system 4000 couples a single fan or blower 4060 to multiple channels 4070, 4072, 4074, 4076 or thermoelectric devices. The manifold system 4000 can draw air from the surface adjacent to the user, through the climate controlled seat assembly via the channels as illustrated in FIGS. 38A, 38B, 39A, 39B.


As discussed above, the flexible conductive member may comprise copper mesh or copper braid material. These materials are advantageous as they have high thermal conductivity and may be soldered directly to a copper connection on the thermoelectric device. However, in other embodiments, other conductive materials, such as aluminum mesh or braid or graphite or graphone may be used for the flexible conductive members.


To assist in the description of the disclosed embodiments, words such as upward, upper, downward, lower, vertical, horizontal, upstream, and downstream have been used above to describe the accompanying figures. It will be appreciated, however, that the illustrated embodiments can be located and oriented in a variety of desired positions.


In the above description, various components are described as being associated with the “back” or “seat” cushion. In modified embodiments, it should be appreciated that the subcomponents of the back and seat cushions may be reversed and/or made to the same. In still other embodiments, the various components of the illustrated embodiments may be combined and/or may be applied to different zones of a seat, such as, for example, a top and bottom portion of a backrest portion. In other embodiments, the features of the back and seat cushions may be applied to different zones of an occupant area that are to be thermally conditioned, such as, for example, back and rear seat assemblies or left and right seat assemblies.


Although several embodiments and examples are disclosed herein, the present application extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and modifications and equivalents thereof. It is also contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the inventions. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combine with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.


While the embodiments disclosed herein are susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the inventions are not to be limited to the particular forms or methods disclosed, but, to the contrary, the inventions are to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a user; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “directing” or “activating” include “instructing directing” or “instructing activating,” respectively. The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers. For example, “about 10 mm” includes “10 mm.” Terms or phrases preceded by a term such as “substantially” include the recited term or phrase. For example, “substantially parallel” includes “parallel.”


Although the foregoing description of the preferred embodiments has shown, described, and pointed out certain novel features, it will be understood that various omissions, substitutions, and changes in the form of the detail of the apparatus as illustrated, as well as the uses thereof, may be made by those skilled in the art without departing from the spirit of this disclosure. Consequently, the scope of the present inventions should not be limited by the foregoing discussion, which is intended to illustrate rather than limit the scope of the inventions.

Claims
  • 1. A climate controlled assembly comprising a support surface configured to support an occupant, the assembly comprising: a support member having the support surface configured to support the occupant;a thermally conductive member comprising at least one of graphite or graphene, at least a portion of the thermally conductive member extending along the support surface to condition the support surface;a thermoelectric device comprising a main side and a waste side, the thermoelectric device configured to transfer heat between the main and waste sides, the main side in thermal communication with the thermally conductive member to heat or cool the thermally conductive member; anda blower configured to move air through the support surface to provide conditioning to the support surface through convection,wherein the blower is configured to move air over the waste side that is moved through the support surface.
  • 2. The assembly of claim 1, wherein the portion of the thermally conductive member is configured to provide cooling or heating to the occupant through conduction.
  • 3. The assembly of claim 1, wherein the portion of the thermally conductive member is below the support surface by a distance within a range between 0.5 mm and 200 mm.
  • 4. The assembly of claim 1, wherein the portion of the thermally conductive member extends partially below the support surface and partially along the support surface.
  • 5. The assembly of claim 1, wherein the portion of the thermally conductive member conductively conditions through the support surface.
  • 6. The assembly of claim 1, wherein the portion of the thermally conductive member is part of the support surface.
  • 7. The assembly of claim 1, wherein the portion of the thermally conductive member is flexible.
  • 8. The assembly of claim 7, wherein the portion of the thermally conductive member is a flexible woven material.
  • 9. The assembly of claim 1, wherein the portion of the thermally conductive member is flat.
  • 10. The assembly of claim 1, wherein the portion of the thermally conductive member has a length of at least 50 mm.
  • 11. The assembly of claim 1, wherein a plurality of thermoelectric devices comprises the thermoelectric device, each of the plurality of thermoelectric devices corresponding to a thermally-conditioned region of the support surface and in thermal communication with a corresponding set of thermally conductive members comprising the thermally conductive member.
  • 12. The assembly of claim 1, further comprising an intermediate plate in thermal communication with the thermoelectric device and in thermal communication with the thermally conductive member to thermally conduct between the thermoelectric device and the thermally conductive member.
  • 13. The assembly of claim 1, wherein the support surface comprises a layer configured to conduct heat.
  • 14. The assembly of claim 13, wherein the layer extends adjacent to the portion of the thermally conductive member.
  • 15. The assembly of claim 13, wherein the layer extends above the thermally conductive member.
  • 16. An apparatus for conditioning a surface of a seat cushion, the apparatus comprising: the seat cushion having the conditioned surface;a thermoelectric device having a main side and a waste side, the thermoelectric device comprising a plurality of semiconductor elements, the thermoelectric device configured to transfer heat between the main and waste sides;a flexible thermally conductive member extending beyond the thermoelectric device and conductively coupled to the main side of the thermoelectric device, at least a portion of the flexible thermally conductive member positioned at or below the conditioned surface and configured to provide a cooling or heating effect through conduction to an occupant on the conditioned surface; andan air channel in the seat cushion configured to direct air through the conditioned surface,wherein the air channel is configured to move air over the waste side that is moved through the conditioned surface.
  • 17. The apparatus of claim 16, wherein the flexible thermally conductive member has a flat, non-rectangular shape.
  • 18. The apparatus of claim 16, wherein the flexible thermally conductive member has a strip shape.
  • 19. The apparatus of claim 16, wherein the flexible thermally conductive member comprises a flexible metallic material.
  • 20. The apparatus of claim 16, wherein the flexible thermally conductive member comprises a plurality of flexible thermally conductive members stacked on top of one another.
  • 21. The apparatus of claim 16, wherein the flexible thermally conductive member comprises a plurality of flexible thermally conductive members separate from one another.
  • 22. The apparatus of claim 21, wherein at least two of the plurality of flexible thermally conductive members extend in different directions from one another.
  • 23. The apparatus of claim 22, wherein the at least two of the plurality of flexible thermally conductive members extend in substantially opposite directions.
  • 24. A climate controlled assembly comprising: a support member having a support surface configured to support an occupant;a flexible thermally conductive member extending along the support surface;a thermoelectric device comprising a main side and a waste side, the thermoelectric device configured to transfer heat between the main and waste sides, the main side in thermal communication with the flexible thermally conductive member to provide a cooling or heating effect through conduction to the support surface; anda blower configured to move air through the support surface to provide conditioning to the support surface through convection,wherein the blower is configured to move air over the waste side that is moved through the support surface.
US Referenced Citations (832)
Number Name Date Kind
1839156 Lumpkin Dec 1931 A
2235620 Nessell Mar 1941 A
2362259 Findley Nov 1944 A
2363168 Findley Nov 1944 A
2461432 Mitchell Feb 1949 A
2462984 Maddison Mar 1949 A
2493067 Goldsmith Jan 1950 A
2512559 Williams Jun 1950 A
2519241 Findley Aug 1950 A
2782834 Vigo Feb 1957 A
2791956 Guest May 1957 A
2813708 Frey Nov 1957 A
2884956 Perlin May 1959 A
2931286 Fry, Sr. et al. Apr 1960 A
2959017 Gilman et al. Nov 1960 A
2976700 Jackson Mar 1961 A
2984077 Gaskill May 1961 A
3019609 Pietsch Feb 1962 A
3030145 Kottemann Apr 1962 A
3039817 Taylor Jun 1962 A
3077079 Pietsch Feb 1963 A
3085405 Frantti Apr 1963 A
3090206 Anders May 1963 A
3136577 Richard Jun 1964 A
3137142 Venema Jun 1964 A
3137523 Karner Jun 1964 A
3138934 Roane Jun 1964 A
3178894 Mole et al. Apr 1965 A
3186240 Daubert Jun 1965 A
3197342 Neild Jul 1965 A
3212275 Tillman Oct 1965 A
3240628 Sonntag, Jr. Mar 1966 A
3253649 Laing May 1966 A
3266064 Figman Aug 1966 A
3282267 Eidus Nov 1966 A
3298195 Raskhodoff Jan 1967 A
3300649 Strawn Jan 1967 A
3325312 Sonntag, Jr. Jun 1967 A
3326727 Fritts Jun 1967 A
3351498 Shinn et al. Nov 1967 A
3366164 Newton Jan 1968 A
3392535 De Castelet Jul 1968 A
3486177 Marshack Dec 1969 A
3529310 Olmo Sep 1970 A
3550523 Segal Dec 1970 A
3599437 Panas Aug 1971 A
3615870 Crouthamel Oct 1971 A
3627299 Schwartze et al. Dec 1971 A
3632451 Abbott Jan 1972 A
3640456 Sturgis Feb 1972 A
3648469 Chapman Mar 1972 A
3681797 Messner Aug 1972 A
3703141 Pernoud Nov 1972 A
3767470 Hines Oct 1973 A
3786230 Brandenburg, Jr. Jan 1974 A
3818522 Schuster Jun 1974 A
3819418 Winkler et al. Jun 1974 A
3839876 Privas Oct 1974 A
3870568 Oesterhelt et al. Mar 1975 A
3876860 Nomura et al. Apr 1975 A
3894213 Agarwala Jul 1975 A
3899054 Huntress et al. Aug 1975 A
3902923 Evans et al. Sep 1975 A
3916151 Reix Oct 1975 A
3926052 Bechtel Dec 1975 A
3927299 Sturgis Dec 1975 A
3928876 Starr Dec 1975 A
4002108 Drori Jan 1977 A
4044824 Eskeli Aug 1977 A
4124794 Eder Nov 1978 A
4195687 Taziker Apr 1980 A
4223205 Sturgis Sep 1980 A
4224565 Sosniak et al. Sep 1980 A
4281516 Berthet et al. Aug 1981 A
4301658 Reed Nov 1981 A
4314008 Blake Feb 1982 A
4315599 Biancardi Feb 1982 A
4336444 Bice et al. Jun 1982 A
4338944 Arkans Jul 1982 A
4391009 Schild et al. Jul 1983 A
4413857 Hayashi Nov 1983 A
4423308 Callaway et al. Dec 1983 A
4437702 Agosta Mar 1984 A
4438070 Stephens et al. Mar 1984 A
4459428 Chou Jul 1984 A
4491173 Demand Jan 1985 A
4493939 Blaske et al. Jan 1985 A
4497973 Heath et al. Feb 1985 A
4506510 Tircot Mar 1985 A
4518700 Stephens May 1985 A
4518847 Horst, Sr. et al. May 1985 A
4549134 Weiss Oct 1985 A
4554968 Haas Nov 1985 A
4567351 Kitagawa et al. Jan 1986 A
4572430 Takagi et al. Feb 1986 A
4611089 Elsner et al. Sep 1986 A
4639883 Michaelis Jan 1987 A
4665707 Hamilton May 1987 A
4671567 Frobose Jun 1987 A
4677416 Nishimoto et al. Jun 1987 A
4685727 Cremer et al. Aug 1987 A
4686724 Bedford Aug 1987 A
4688390 Sawyer Aug 1987 A
4704320 Mizunoya et al. Nov 1987 A
4711294 Jacobs et al. Dec 1987 A
4712832 Antolini et al. Dec 1987 A
4777802 Feher Oct 1988 A
4782664 Sterna et al. Nov 1988 A
4791274 Horst Dec 1988 A
4793651 Inagaki et al. Dec 1988 A
4802929 Schock Feb 1989 A
4812733 Tobey Mar 1989 A
4823554 Trachtenberg et al. Apr 1989 A
4825488 Bedford May 1989 A
4828627 Connery May 1989 A
4847933 Bedford Jul 1989 A
4853992 Yu Aug 1989 A
4859250 Buist Aug 1989 A
4923248 Feher May 1990 A
4930317 Klein Jun 1990 A
4947648 Harwell et al. Aug 1990 A
4969684 Zarotti Nov 1990 A
4981324 Law Jan 1991 A
4988847 Argos et al. Jan 1991 A
4997230 Spitalnick Mar 1991 A
5002336 Feher Mar 1991 A
5012325 Mansuria et al. Apr 1991 A
5014909 Yasuo May 1991 A
5016304 Ryhiner May 1991 A
5022462 Flint et al. Jun 1991 A
5057490 Skertic Oct 1991 A
5070937 Mougin et al. Dec 1991 A
5077709 Feher Dec 1991 A
5088790 Wainwright et al. Feb 1992 A
5097674 Imaiida et al. Mar 1992 A
5102189 Saito et al. Apr 1992 A
5106161 Meiller Apr 1992 A
5111025 Barma et al. May 1992 A
5111664 Yang May 1992 A
5117638 Feher Jun 1992 A
5119640 Conrad Jun 1992 A
5125238 Ragan et al. Jun 1992 A
5148977 Hibino et al. Sep 1992 A
5166777 Kataoka Nov 1992 A
5187349 Curhan et al. Feb 1993 A
5188286 Pence, IV Feb 1993 A
5226188 Liou Jul 1993 A
5255735 Raghava et al. Oct 1993 A
5256857 Curhan et al. Oct 1993 A
5265599 Stephenson et al. Nov 1993 A
5278936 Shao Jan 1994 A
5279128 Tomatsu et al. Jan 1994 A
5335381 Chang Aug 1994 A
5367728 Chang Nov 1994 A
5372402 Kuo Dec 1994 A
5375421 Hsieh Dec 1994 A
5382075 Shih Jan 1995 A
5385382 Single, II et al. Jan 1995 A
5409547 Watanabe et al. Apr 1995 A
5413166 Kerner et al. May 1995 A
5416935 Nieh May 1995 A
5419489 Burd May 1995 A
5419780 Suski May 1995 A
5430322 Koyanagi et al. Jul 1995 A
5448788 Wu Sep 1995 A
5448891 Nakagiri et al. Sep 1995 A
5456081 Chrysler et al. Oct 1995 A
5473783 Allen Dec 1995 A
5493742 Klearman Feb 1996 A
5493864 Pomerene et al. Feb 1996 A
5497632 Robinson Mar 1996 A
5505520 Frusti et al. Apr 1996 A
5515238 Fritz et al. May 1996 A
5524439 Gallup et al. Jun 1996 A
5542503 Dunn et al. Aug 1996 A
5544487 Attey et al. Aug 1996 A
5544488 Reid Aug 1996 A
5555732 Whiticar Sep 1996 A
5561981 Quisenberry et al. Oct 1996 A
5576512 Doke Nov 1996 A
5584084 Klearman et al. Dec 1996 A
5584183 Wright et al. Dec 1996 A
5594609 Lin Jan 1997 A
5597200 Gregory et al. Jan 1997 A
5601399 Okpara et al. Feb 1997 A
5606639 Lehoe et al. Feb 1997 A
5613729 Summer, Jr. Mar 1997 A
5613730 Buie et al. Mar 1997 A
5623828 Harrington Apr 1997 A
5626021 Karunasiri et al. May 1997 A
5626386 Lush May 1997 A
5634342 Peeters et al. Jun 1997 A
5637921 Burward-Hoy Jun 1997 A
5640728 Graebe Jun 1997 A
5642539 Kuo Jul 1997 A
5645314 Liou Jul 1997 A
5650904 Gilley et al. Jul 1997 A
5653741 Grant Aug 1997 A
5660310 LeGrow Aug 1997 A
5667622 Hasegawa et al. Sep 1997 A
5675852 Watkins Oct 1997 A
5690849 DeVilbiss et al. Nov 1997 A
5692952 Chih-Hung Dec 1997 A
5704213 Smith et al. Jan 1998 A
5715695 Lord Feb 1998 A
5721804 Greene, III Feb 1998 A
5724818 Iwata et al. Mar 1998 A
5729981 Markus et al. Mar 1998 A
5734122 Aspden Mar 1998 A
5761908 Oas et al. Jun 1998 A
5761909 Hughes et al. Jun 1998 A
5772500 Harvey et al. Jun 1998 A
5798583 Morita Aug 1998 A
5800490 Patz et al. Sep 1998 A
5802855 Yamaguchi et al. Sep 1998 A
5802856 Schaper et al. Sep 1998 A
5822993 Attey Oct 1998 A
5827424 Gillis et al. Oct 1998 A
5833321 Kim et al. Nov 1998 A
5850741 Feher Dec 1998 A
5865031 Itakura Feb 1999 A
5871151 Fiedrich Feb 1999 A
5884485 Yamaguchi et al. Mar 1999 A
5884486 Hughes et al. Mar 1999 A
5887304 Von der Heyde Mar 1999 A
5888261 Fortune Mar 1999 A
5895964 Nakayama Apr 1999 A
5902014 Dinkel et al. May 1999 A
5921100 Yoshinori et al. Jul 1999 A
5921314 Schuller et al. Jul 1999 A
5921858 Kawai et al. Jul 1999 A
5924289 Bishop, II Jul 1999 A
5924766 Esaki et al. Jul 1999 A
5924767 Pietryga Jul 1999 A
5927599 Kath Jul 1999 A
5927817 Ekman et al. Jul 1999 A
5934748 Faust et al. Aug 1999 A
5936192 Tauchi Aug 1999 A
5937908 Inoshiri et al. Aug 1999 A
5948303 Larson Sep 1999 A
5950067 Maegawa et al. Sep 1999 A
5952728 Imanishi et al. Sep 1999 A
5987893 Schultz-Harder et al. Nov 1999 A
5988568 Drews Nov 1999 A
5992154 Kawada et al. Nov 1999 A
5994637 Imanushi et al. Nov 1999 A
5995711 Fukuoka et al. Nov 1999 A
6000225 Ghoshal Dec 1999 A
6003950 Larsson Dec 1999 A
6006524 Park Dec 1999 A
6019420 Faust et al. Feb 2000 A
6038865 Watanabe et al. Mar 2000 A
6048024 Wallman Apr 2000 A
6049655 Vazirani Apr 2000 A
6052853 Schmid Apr 2000 A
6053163 Bass Apr 2000 A
6059018 Yoshinori et al. May 2000 A
6062641 Suzuki et al. May 2000 A
6072924 Sato et al. Jun 2000 A
6072938 Peterson et al. Jun 2000 A
6073998 Siarkowski et al. Jun 2000 A
6079485 Esaki et al. Jun 2000 A
6084172 Kishi et al. Jul 2000 A
6085369 Feher Jul 2000 A
6086831 Harness et al. Jul 2000 A
6087638 Silverbrook Jul 2000 A
6094919 Bhatia Aug 2000 A
6097088 Sakuragi Aug 2000 A
6100463 Ladd et al. Aug 2000 A
6101815 Van Oort et al. Aug 2000 A
6103967 Cauchy et al. Aug 2000 A
6105373 Watanabe et al. Aug 2000 A
6109688 Wurz et al. Aug 2000 A
6112525 Yoshida et al. Sep 2000 A
6112531 Yamaguchi Sep 2000 A
6116029 Krawec Sep 2000 A
6119463 Bell Sep 2000 A
6120370 Asou et al. Sep 2000 A
6127619 Xi et al. Oct 2000 A
6141969 Launchbury et al. Nov 2000 A
6145925 Eksin et al. Nov 2000 A
6158224 Hu et al. Dec 2000 A
6161241 Zysman Dec 2000 A
6161388 Ghoshal Dec 2000 A
6164076 Chu et al. Dec 2000 A
6164719 Rauh Dec 2000 A
6171333 Nelson et al. Jan 2001 B1
6178292 Fukuoka et al. Jan 2001 B1
6179706 Yoshinori et al. Jan 2001 B1
6186592 Orizakis et al. Feb 2001 B1
6189966 Faust et al. Feb 2001 B1
6189967 Short Feb 2001 B1
6196627 Faust et al. Mar 2001 B1
6196839 Ross Mar 2001 B1
6206465 Faust et al. Mar 2001 B1
6213198 Shikata et al. Apr 2001 B1
6222243 Kishi et al. Apr 2001 B1
6223539 Bell May 2001 B1
6233959 Kang et al. May 2001 B1
6250083 Chou Jun 2001 B1
6256996 Ghoshal Jul 2001 B1
6262357 Johnson et al. Jul 2001 B1
6263530 Feher Jul 2001 B1
6266962 Ghoshal Jul 2001 B1
6282907 Ghoshal Sep 2001 B1
6289982 Naji Sep 2001 B1
6291803 Fourrey Sep 2001 B1
6306673 Imanishi et al. Oct 2001 B1
6326610 Muramatsu et al. Dec 2001 B1
6336237 Schmid Jan 2002 B1
6338251 Ghoshal Jan 2002 B1
6341395 Chao Jan 2002 B1
6345507 Gillen Feb 2002 B1
6347521 Kadotani et al. Feb 2002 B1
6378311 McCordic Apr 2002 B1
6385976 Yamamura et al. May 2002 B1
6391676 Tsuzaki et al. May 2002 B1
6393842 Kim et al. May 2002 B2
6400013 Tsuzaki et al. Jun 2002 B1
6402470 Kvasnak et al. Jun 2002 B1
6410971 Otey Jun 2002 B1
6425527 Smole Jul 2002 B1
6427449 Logan et al. Aug 2002 B1
6434328 Rutherford Aug 2002 B2
6438964 Giblin Aug 2002 B1
6444893 Onoue et al. Sep 2002 B1
6452740 Ghoshal Sep 2002 B1
6470696 Palfy et al. Oct 2002 B1
6474072 Needham Nov 2002 B2
6474073 Uetsuji et al. Nov 2002 B1
6481801 Schmale Nov 2002 B1
6487739 Harker Dec 2002 B1
6489551 Chu et al. Dec 2002 B2
6490879 Lloyd et al. Dec 2002 B1
6492585 Zamboni et al. Dec 2002 B1
6493888 Salvatini et al. Dec 2002 B1
6493889 Kocurek Dec 2002 B2
6509704 Brown Jan 2003 B1
6511125 Gendron Jan 2003 B1
6519949 Wernlund et al. Feb 2003 B1
6539725 Bell Apr 2003 B2
6541737 Eksin et al. Apr 2003 B1
6541743 Chen Apr 2003 B2
6546576 Lin Apr 2003 B1
6548894 Chu et al. Apr 2003 B2
6552256 Shakouri et al. Apr 2003 B2
6557353 Fusco et al. May 2003 B1
RE38128 Gallup et al. Jun 2003 E
6571564 Upadhye et al. Jun 2003 B2
6573596 Saika Jun 2003 B2
6574967 Park et al. Jun 2003 B1
6578986 Swaris et al. Jun 2003 B2
6580025 Guy Jun 2003 B2
6581225 Imai Jun 2003 B1
6583638 Costello et al. Jun 2003 B2
6598251 Habboub et al. Jul 2003 B2
6598405 Bell Jul 2003 B2
6604576 Noda et al. Aug 2003 B2
6604785 Bargheer et al. Aug 2003 B2
6605955 Costello et al. Aug 2003 B1
6606754 Flick Aug 2003 B1
6606866 Bell Aug 2003 B2
6619044 Batchelor et al. Sep 2003 B2
6619736 Stowe et al. Sep 2003 B2
6619737 Kunkel et al. Sep 2003 B2
6625990 Bell Sep 2003 B2
6626488 Pfahler Sep 2003 B2
6629724 Ekern et al. Oct 2003 B2
6637210 Bell Oct 2003 B2
6644735 Bargheer et al. Nov 2003 B2
6672076 Bell Jan 2004 B2
6676207 Rauh et al. Jan 2004 B2
6684437 Koenig Feb 2004 B2
6686532 Macris Feb 2004 B1
6687937 Harker Feb 2004 B2
6695402 Sloan, Jr. Feb 2004 B2
6700052 Bell Mar 2004 B2
6705089 Chu et al. Mar 2004 B2
6708352 Salvatini et al. Mar 2004 B2
6711767 Klamm Mar 2004 B2
6711904 Law et al. Mar 2004 B1
6719039 Calaman et al. Apr 2004 B2
6725669 Melaragni Apr 2004 B2
6727422 Macris Apr 2004 B2
6730115 Heaton May 2004 B1
6739138 Saunders et al. May 2004 B2
6739655 Schwochert et al. May 2004 B1
6743972 Macris Jun 2004 B2
6761399 Bargheer et al. Jul 2004 B2
6764502 Bieberich Jul 2004 B2
6767766 Chu et al. Jul 2004 B2
6772829 Lebrun Aug 2004 B2
6774346 Clothier Aug 2004 B2
6786541 Haupt et al. Sep 2004 B2
6786545 Bargheer et al. Sep 2004 B2
6790481 Bishop et al. Sep 2004 B2
6793016 Aoki et al. Sep 2004 B2
6804966 Chu et al. Oct 2004 B1
6808230 Buss et al. Oct 2004 B2
6812395 Bell Nov 2004 B2
6815814 Chu et al. Nov 2004 B2
6817191 Watanabe Nov 2004 B2
6817197 Padfield Nov 2004 B1
6817675 Buss et al. Nov 2004 B2
6818817 Macris Nov 2004 B2
6823678 Li Nov 2004 B1
6828528 Stowe et al. Dec 2004 B2
6832732 Burkett et al. Dec 2004 B2
6834509 Palfy et al. Dec 2004 B2
6840305 Zheng et al. Jan 2005 B2
6840576 Ekern et al. Jan 2005 B2
6841957 Brown Jan 2005 B2
6845622 Sauciuc et al. Jan 2005 B2
6855158 Stolpmann Feb 2005 B2
6855880 Feher Feb 2005 B2
6857697 Brennan et al. Feb 2005 B2
6857954 Luedtke Feb 2005 B2
6868690 Faqih Mar 2005 B2
6871365 Flick et al. Mar 2005 B2
6876549 Beitmal et al. Apr 2005 B2
6886351 Palfy et al. May 2005 B2
6892807 Fristedt et al. May 2005 B2
6893086 Bajic et al. May 2005 B2
6904629 Wu Jun 2005 B2
6907739 Bell Jun 2005 B2
6923216 Extrand et al. Aug 2005 B2
6935122 Huang Aug 2005 B2
6954944 Feher Oct 2005 B2
6959555 Bell Nov 2005 B2
6962195 Smith et al. Nov 2005 B2
6963053 Lutz Nov 2005 B2
6967309 Wyatt et al. Nov 2005 B2
6976734 Stoewe Dec 2005 B2
6977360 Weiss Dec 2005 B2
6981380 Chrysler et al. Jan 2006 B2
6990701 Litvak Jan 2006 B1
7000490 Micheels Feb 2006 B1
7036163 Schmid May 2006 B2
7040710 White et al. May 2006 B2
7052091 Bajic et al. May 2006 B2
7063163 Steele et al. Jun 2006 B2
7066306 Gavin Jun 2006 B2
7070231 Wong Jul 2006 B1
7070232 Minegishi et al. Jul 2006 B2
7075034 Bargheer et al. Jul 2006 B2
7082772 Welch Aug 2006 B2
7084502 Bottner et al. Aug 2006 B2
7100978 Ekern et al. Sep 2006 B2
7108319 Hartwich et al. Sep 2006 B2
7111465 Bell Sep 2006 B2
7114771 Lofy et al. Oct 2006 B2
7124593 Feher Oct 2006 B2
7131689 Brennan et al. Nov 2006 B2
7134715 Fristedt et al. Nov 2006 B1
7141763 Moroz Nov 2006 B2
7147279 Bevan et al. Dec 2006 B2
7165281 Larssson et al. Jan 2007 B2
7168758 Bevan et al. Jan 2007 B2
7178344 Bell Feb 2007 B2
7201441 Stoewe et al. Apr 2007 B2
7213876 Stoewe May 2007 B2
7220048 Kohlgrüber et al. May 2007 B2
7224059 Shimada et al. May 2007 B2
7231772 Bell Jun 2007 B2
7244887 Miley Jul 2007 B2
7246496 Goenka et al. Jul 2007 B2
7272936 Feher Sep 2007 B2
7273981 Bell Sep 2007 B2
7299639 Leija et al. Nov 2007 B2
7337615 Reidy Mar 2008 B2
7338117 Iqbal et al. Mar 2008 B2
7340907 Vogh et al. Mar 2008 B2
7355146 Angelis et al. Apr 2008 B2
7356912 Iqbal et al. Apr 2008 B2
7360365 Codecasa et al. Apr 2008 B2
7360416 Manaka et al. Apr 2008 B2
7370479 Pfannenberg May 2008 B2
7370911 Bajic et al. May 2008 B2
7380586 Gawthrop Jun 2008 B2
7425034 Bajic et al. Sep 2008 B2
7426835 Bell et al. Sep 2008 B2
7462028 Cherala et al. Dec 2008 B2
7469432 Chambers Dec 2008 B2
7475464 Lofy et al. Jan 2009 B2
7475938 Stoewe et al. Jan 2009 B2
7478869 Lazanja et al. Jan 2009 B2
7480950 Feher Jan 2009 B2
7506924 Bargheer et al. Mar 2009 B2
7506938 Brennan et al. Mar 2009 B2
7513273 Bivin Apr 2009 B2
7581785 Heckmann et al. Sep 2009 B2
7587901 Petrovski Sep 2009 B2
7587902 Bell Sep 2009 B2
7591507 Giffin et al. Sep 2009 B2
7608777 Bell et al. Oct 2009 B2
7621594 Hartmann et al. Nov 2009 B2
7640754 Wolas Jan 2010 B2
7665803 Wolas Feb 2010 B2
7708338 Wolas May 2010 B2
7731279 Asada et al. Jun 2010 B2
RE41765 Gregory et al. Sep 2010 E
7827620 Feher Nov 2010 B2
7827805 Comiskey et al. Nov 2010 B2
7862113 Knoll Jan 2011 B2
7866017 Knoll Jan 2011 B2
7877827 Marquette et al. Feb 2011 B2
7937789 Feher May 2011 B2
7963594 Wolas Jun 2011 B2
7966835 Petrovski Jun 2011 B2
7969738 Koo Jun 2011 B2
7996936 Marquette et al. Aug 2011 B2
8062797 Fisher et al. Nov 2011 B2
8065763 Brykalski et al. Nov 2011 B2
8104295 Lofy Jan 2012 B2
8143554 Lofy Mar 2012 B2
8181290 Brykalski et al. May 2012 B2
8191187 Brykalski et al. Jun 2012 B2
8222511 Lofy Jul 2012 B2
8256236 Lofy Sep 2012 B2
8332975 Brykalski et al. Dec 2012 B2
8397518 Vistakula Mar 2013 B1
8402579 Marquette et al. Mar 2013 B2
8418286 Brykalski et al. Apr 2013 B2
8434314 Comiskey et al. May 2013 B2
8438863 Lofy May 2013 B2
RE44272 Bell Jun 2013 E
8505320 Lofy Aug 2013 B2
8516842 Petrovski Aug 2013 B2
8539624 Terech et al. Sep 2013 B2
8575518 Walsh Nov 2013 B2
8621687 Brykalski et al. Jan 2014 B2
8732874 Brykalski et al. May 2014 B2
8777320 Stoll et al. Jul 2014 B2
8782830 Brykalski et al. Jul 2014 B2
8869596 Hagl Oct 2014 B2
8893329 Petrovksi Nov 2014 B2
8893513 June et al. Nov 2014 B2
8969703 Makansi et al. Mar 2015 B2
9055820 Axakov et al. Jun 2015 B2
9105808 Petrovksi Aug 2015 B2
9105809 Lofy Aug 2015 B2
9121414 Lofy et al. Sep 2015 B2
9125497 Brykalski et al. Sep 2015 B2
9310112 Bell et al. Apr 2016 B2
9335073 Lofy May 2016 B2
9445524 Lofy et al. Sep 2016 B2
9451723 Lofy et al. Sep 2016 B2
9603459 Brykalski et al. Mar 2017 B2
9622588 Brykalski et al. Apr 2017 B2
9651279 Lofy May 2017 B2
9662962 Steinman et al. May 2017 B2
9685599 Petrovski et al. Jun 2017 B2
9719701 Bell et al. Aug 2017 B2
9814641 Brykalski et al. Nov 2017 B2
9857107 Inaba et al. Jan 2018 B2
9989267 Brykalski et al. Jun 2018 B2
9989282 Makansi et al. Jun 2018 B2
10005337 Petrovski Jun 2018 B2
10195970 Bauer Feb 2019 B2
10208990 Petrovski et al. Feb 2019 B2
10219323 Inaba et al. Feb 2019 B2
10228165 Makansi et al. Mar 2019 B2
10228166 Lofy Mar 2019 B2
10266031 Steinman et al. Apr 2019 B2
10288084 Lofy et al. May 2019 B2
10290796 Boukai et al. May 2019 B2
RE47574 Terech et al. Aug 2019 E
10405667 Marquette et al. Sep 2019 B2
10457173 Lofy et al. Oct 2019 B2
10495322 Brykalski et al. Dec 2019 B2
10589647 Wolas et al. Mar 2020 B2
10991869 Jovovic et al. Apr 2021 B2
11033058 Cauchy Jun 2021 B2
11075331 Bück Jul 2021 B2
20010005990 Kim et al. Jul 2001 A1
20010014212 Rutherford Aug 2001 A1
20010028185 Stowe et al. Oct 2001 A1
20020017102 Bell Feb 2002 A1
20020026226 Ein Feb 2002 A1
20020062854 Sharp May 2002 A1
20020092308 Bell Jul 2002 A1
20020100121 Kocurek Aug 2002 A1
20020108380 Nelsen et al. Aug 2002 A1
20020121094 VanHoudt Sep 2002 A1
20020166659 Wagner et al. Nov 2002 A1
20020171132 Buchwalter et al. Nov 2002 A1
20020195844 Hipwell Dec 2002 A1
20030039298 Eriksson et al. Feb 2003 A1
20030041892 Fleurial et al. Mar 2003 A1
20030070235 Suzuki et al. Apr 2003 A1
20030084511 Salvatini et al. May 2003 A1
20030110779 Otey et al. Jun 2003 A1
20030133492 Watanabe Jul 2003 A1
20030145380 Schmid Aug 2003 A1
20030150060 Huang Aug 2003 A1
20030160479 Minuth et al. Aug 2003 A1
20030188382 Klamm et al. Oct 2003 A1
20030234247 Stern Dec 2003 A1
20040040327 Iida et al. Mar 2004 A1
20040070236 Brennan et al. Apr 2004 A1
20040090093 Kamiya et al. May 2004 A1
20040098991 Heyes May 2004 A1
20040113549 Roberts et al. Jun 2004 A1
20040164594 Stoewe et al. Aug 2004 A1
20040177622 Harvie Sep 2004 A1
20040177876 Hightower Sep 2004 A1
20040177877 Hightower Sep 2004 A1
20040195870 Bohlender Oct 2004 A1
20040238022 Hiller et al. Dec 2004 A1
20040238516 Bulgajewski Dec 2004 A1
20040255364 Feher Dec 2004 A1
20040264009 Hwang et al. Dec 2004 A1
20050000558 Moriyama et al. Jan 2005 A1
20050011009 Wu Jan 2005 A1
20050012204 Strnad Jan 2005 A1
20050045702 Freeman et al. Mar 2005 A1
20050056310 Shikata et al. Mar 2005 A1
20050067862 Iqbal et al. Mar 2005 A1
20050072165 Bell Apr 2005 A1
20050076944 Kanatzidis et al. Apr 2005 A1
20050078451 Sauciuc et al. Apr 2005 A1
20050086739 Wu Apr 2005 A1
20050121065 Otey Jun 2005 A1
20050126184 Cauchy Jun 2005 A1
20050140180 Hesch Jun 2005 A1
20050143797 Parish et al. Jun 2005 A1
20050145285 Extrand Jul 2005 A1
20050161072 Esser et al. Jul 2005 A1
20050173950 Bajic et al. Aug 2005 A1
20050183763 Christiansen Aug 2005 A1
20050193742 Arnold Sep 2005 A1
20050200166 Noh Sep 2005 A1
20050202774 Lipke Sep 2005 A1
20050220167 Kanai et al. Oct 2005 A1
20050251120 Anderson et al. Nov 2005 A1
20050257532 Ikeda et al. Nov 2005 A1
20050268956 Take Dec 2005 A1
20050278863 Bahash et al. Dec 2005 A1
20050285438 Ishima et al. Dec 2005 A1
20050288749 Lachenbruch Dec 2005 A1
20060005548 Ruckstuhl Jan 2006 A1
20060005944 Wang et al. Jan 2006 A1
20060053529 Feher Mar 2006 A1
20060075760 Im et al. Apr 2006 A1
20060078319 Maran Apr 2006 A1
20060080778 Chambers Apr 2006 A1
20060087160 Dong et al. Apr 2006 A1
20060102224 Chen et al. May 2006 A1
20060118158 Zhang et al. Jun 2006 A1
20060123799 Tateyama et al. Jun 2006 A1
20060137099 Feher Jun 2006 A1
20060157102 Nakajima et al. Jul 2006 A1
20060158011 Marlovits et al. Jul 2006 A1
20060162074 Bader Jul 2006 A1
20060162341 Milazzo Jul 2006 A1
20060175877 Alionte et al. Aug 2006 A1
20060197363 Lofy et al. Sep 2006 A1
20060200398 Botton et al. Sep 2006 A1
20060201161 Hirai et al. Sep 2006 A1
20060201162 Hsieh Sep 2006 A1
20060213682 Moon et al. Sep 2006 A1
20060214480 Terech Sep 2006 A1
20060219699 Geisel et al. Oct 2006 A1
20060225441 Goenka et al. Oct 2006 A1
20060225773 Venkatasubramanian et al. Oct 2006 A1
20060237166 Otey et al. Oct 2006 A1
20060243317 Venkatasubramanian Nov 2006 A1
20060244289 Bedro Nov 2006 A1
20060273646 Comiskey et al. Dec 2006 A1
20060289051 Niimi et al. Dec 2006 A1
20070017666 Goenka et al. Jan 2007 A1
20070035162 Bier et al. Feb 2007 A1
20070040421 Zuzga et al. Feb 2007 A1
20070069554 Comiskey et al. Mar 2007 A1
20070086757 Feher Apr 2007 A1
20070089773 Koester et al. Apr 2007 A1
20070095378 Ito et al. May 2007 A1
20070095383 Tajima May 2007 A1
20070101602 Bae et al. May 2007 A1
20070107450 Sasao et al. May 2007 A1
20070138844 Kim Jun 2007 A1
20070142883 Quincy, III Jun 2007 A1
20070145808 Minuth et al. Jun 2007 A1
20070157630 Kadle et al. Jul 2007 A1
20070158981 Almasi et al. Jul 2007 A1
20070163269 Chung et al. Jul 2007 A1
20070190712 Lin et al. Aug 2007 A1
20070193279 Yoneno et al. Aug 2007 A1
20070200398 Wolas et al. Aug 2007 A1
20070214956 Carlson et al. Sep 2007 A1
20070220907 Ehlers Sep 2007 A1
20070227158 Kuchimachi Oct 2007 A1
20070234742 Aoki et al. Oct 2007 A1
20070241592 Giffin et al. Oct 2007 A1
20070251016 Feher Nov 2007 A1
20070256722 Kondoh Nov 2007 A1
20070261412 Heine Nov 2007 A1
20070261413 Hatamian et al. Nov 2007 A1
20070261548 Vrzalik et al. Nov 2007 A1
20070262621 Dong et al. Nov 2007 A1
20070296251 Krobok et al. Dec 2007 A1
20080000025 Feher Jan 2008 A1
20080000511 Kuroyanagi et al. Jan 2008 A1
20080022694 Anderson et al. Jan 2008 A1
20080023056 Kambe et al. Jan 2008 A1
20080028536 Hadden-Cook Feb 2008 A1
20080028768 Goenka Feb 2008 A1
20080028769 Goenka Feb 2008 A1
20080053108 Wen Mar 2008 A1
20080053509 Flitsch et al. Mar 2008 A1
20080077211 Levinson et al. Mar 2008 A1
20080078186 Cao Apr 2008 A1
20080084095 Wolas Apr 2008 A1
20080087316 Inaba et al. Apr 2008 A1
20080154518 Manaka et al. Jun 2008 A1
20080155990 Gupta et al. Jul 2008 A1
20080163916 Tsuneoka et al. Jul 2008 A1
20080164733 Giffin et al. Jul 2008 A1
20080166224 Giffin et al. Jul 2008 A1
20080245092 Forsberg et al. Oct 2008 A1
20080263776 O'Reagan Oct 2008 A1
20080289677 Bell et al. Nov 2008 A1
20080307796 Bell et al. Dec 2008 A1
20090000031 Feher Jan 2009 A1
20090015042 Bargheer et al. Jan 2009 A1
20090026813 Lofy Jan 2009 A1
20090033130 Marquette et al. Feb 2009 A1
20090106907 Chambers Apr 2009 A1
20090108094 Ivri Apr 2009 A1
20090126110 Feher May 2009 A1
20090178700 Heremans et al. Jul 2009 A1
20090211619 Sharp et al. Aug 2009 A1
20090218855 Wolas Sep 2009 A1
20090235969 Heremans et al. Sep 2009 A1
20090269584 Bell et al. Oct 2009 A1
20090277897 Lashmore Nov 2009 A1
20090293488 Coughlan, III et al. Dec 2009 A1
20100031987 Bell et al. Feb 2010 A1
20100132379 Wu Jun 2010 A1
20100132380 Robinson, II Jun 2010 A1
20100133883 Walker Jun 2010 A1
20100153066 Federer et al. Jun 2010 A1
20100154437 Nepsha Jun 2010 A1
20100154911 Yoskowitz Jun 2010 A1
20100198322 Joseph et al. Aug 2010 A1
20100282910 Stothers et al. Nov 2010 A1
20100294455 Yang et al. Nov 2010 A1
20100307168 Kohl et al. Dec 2010 A1
20110066217 Diller et al. Mar 2011 A1
20110101741 Kolich May 2011 A1
20110226751 Lazanja et al. Sep 2011 A1
20110271994 Gilley Nov 2011 A1
20110289684 Parish et al. Dec 2011 A1
20120000901 Bajic et al. Jan 2012 A1
20120003510 Eisenhour Jan 2012 A1
20120017371 Pollard Jan 2012 A1
20120049586 Yoshimoto et al. Mar 2012 A1
20120080911 Brykalski et al. Apr 2012 A1
20120129439 Ota et al. May 2012 A1
20120132242 Chu et al. May 2012 A1
20120145215 Hwang et al. Jun 2012 A1
20120174956 Smythe et al. Jul 2012 A1
20120198616 Makansi et al. Aug 2012 A1
20120201008 Hershberger et al. Aug 2012 A1
20120235444 Dilley et al. Sep 2012 A1
20120239123 Weber et al. Sep 2012 A1
20120261399 Lofy Oct 2012 A1
20120289761 Boyden et al. Nov 2012 A1
20120325281 Akiyama Dec 2012 A1
20130008181 Makansi et al. Jan 2013 A1
20130097777 Marquette et al. Apr 2013 A1
20130125563 Jun May 2013 A1
20130157271 Coursey Jun 2013 A1
20130200424 An et al. Aug 2013 A1
20130232996 Goenka et al. Sep 2013 A1
20130239592 Lofy Sep 2013 A1
20140014871 Haddon et al. Jan 2014 A1
20140026320 Marquette et al. Jan 2014 A1
20140030082 Helmenstein Jan 2014 A1
20140041396 Makansi et al. Feb 2014 A1
20140090513 Zhang et al. Apr 2014 A1
20140113536 Goenka et al. Apr 2014 A1
20140131343 Walsh May 2014 A1
20140137569 Parish et al. May 2014 A1
20140159442 Helmenstein Jun 2014 A1
20140165608 Tseng Jun 2014 A1
20140180493 Csonti et al. Jun 2014 A1
20140182646 Choi et al. Jul 2014 A1
20140187140 Lazanja et al. Jul 2014 A1
20140194959 Fries et al. Jul 2014 A1
20140230455 Chandler et al. Aug 2014 A1
20140250918 Lofy Sep 2014 A1
20140256244 Sakurai et al. Sep 2014 A1
20140260331 Lofy et al. Sep 2014 A1
20140305625 Petrovski Oct 2014 A1
20140338366 Adldinger et al. Nov 2014 A1
20150116943 Olsson et al. Apr 2015 A1
20150231636 Lim et al. Aug 2015 A1
20150238020 Petrovski et al. Aug 2015 A1
20150298524 Goenka Oct 2015 A1
20160030234 Lofy et al. Feb 2016 A1
20160035957 Casey Feb 2016 A1
20160039321 Dacosta-Mallet et al. Feb 2016 A1
20160053772 Lofy et al. Feb 2016 A1
20160133817 Makansi et al. May 2016 A1
20160152167 Kozlowski Jun 2016 A1
20160304013 Wolas et al. Oct 2016 A1
20170047500 Shiraishi et al. Feb 2017 A1
20170066355 Kozlowski Mar 2017 A1
20170071359 Petrovski et al. Mar 2017 A1
20170164757 Thomas Jun 2017 A1
20170261241 Makansi et al. Sep 2017 A1
20170282764 Bauer et al. Oct 2017 A1
20170291467 Steinman et al. Oct 2017 A1
20170354190 Cauchy Dec 2017 A1
20170365764 Shingai et al. Dec 2017 A1
20180017334 Davis et al. Jan 2018 A1
20180076375 Makansi et al. Mar 2018 A1
20180111527 Tait et al. Apr 2018 A1
20180123013 Williams et al. May 2018 A1
20180170223 Wolas Jun 2018 A1
20180172325 Inaba et al. Jun 2018 A1
20180279416 Sajic et al. Sep 2018 A1
20180281641 Durkee et al. Oct 2018 A1
20180290574 Kozlowski Oct 2018 A1
20190051807 Okumura et al. Feb 2019 A1
20190239289 Inaba et al. Aug 2019 A1
20200035897 Jovovic Jan 2020 A1
20200035898 Jovovic et al. Jan 2020 A1
20200035899 Bück Jan 2020 A1
20200266327 Jovovic et al. Aug 2020 A1
20210041147 Cauchy Feb 2021 A9
Foreign Referenced Citations (169)
Number Date Country
979490 Dec 1975 CA
2079462 Jun 1991 CN
2128076 Mar 1993 CN
2155318 Feb 1994 CN
2155741 Feb 1994 CN
1121790 May 1996 CN
1299950 Jun 2001 CN
1320087 Oct 2001 CN
1535220 Oct 2004 CN
1813164 Aug 2006 CN
1839060 Sep 2006 CN
1929761 Mar 2007 CN
101 033 878 Sep 2007 CN
101 097 986 Jan 2008 CN
101 219 025 Jul 2008 CN
101 331 034 Dec 2008 CN
101 332 785 Dec 2008 CN
101 370 409 Feb 2009 CN
101 511 638 Aug 2009 CN
101 663 180 Mar 2010 CN
101 871 704 Oct 2010 CN
102 059 968 May 2011 CN
201 987 052 Sep 2011 CN
102 576 232 Jul 2012 CN
102 729 865 Oct 2012 CN
102 801 105 Nov 2012 CN
104 282 643 Jan 2015 CN
106 937 799 Jul 2017 CN
208 355 060 Jan 2019 CN
195 03 291 Aug 1996 DE
199 12 764 Sep 2000 DE
299 11 519 Nov 2000 DE
102 38 552 Aug 2001 DE
101 15 242 Oct 2002 DE
202 17 645 Mar 2003 DE
201 20 516 Apr 2003 DE
10 2009 036 332 Feb 2011 DE
10 2009 058 996 Dec 2012 DE
0 424 160 Apr 1991 EP
0 411 375 May 1994 EP
0 621 026 Oct 1994 EP
0 834 421 Apr 1998 EP
0 862 901 Sep 1998 EP
0 730 720 Jul 2000 EP
1 598 223 Nov 2005 EP
1 972 312 Sep 2008 EP
1 845 914 Sep 2009 EP
2 396 619 Aug 2015 EP
2 921 083 Sep 2015 EP
1 675 747 Mar 2017 EP
2 882 307 Aug 2006 FR
2 893 826 Jun 2007 FR
874660 Aug 1961 GB
978057 Dec 1964 GB
56-097416 Aug 1981 JP
58-185952 Oct 1983 JP
60-080044 May 1985 JP
60-085297 May 1985 JP
01-281344 Nov 1989 JP
04-052470 Jun 1990 JP
04-165234 Jun 1992 JP
04-107656 Sep 1992 JP
05-026762 Feb 1993 JP
05-277020 Oct 1993 JP
09-37894 Feb 1997 JP
09-276076 Oct 1997 JP
10-044756 Feb 1998 JP
10-503733 Apr 1998 JP
10-227508 Aug 1998 JP
10-297243 Nov 1998 JP
10-332883 Dec 1998 JP
2000-060681 Feb 2000 JP
2000-164945 Jun 2000 JP
2000-244024 Sep 2000 JP
2000-325384 Nov 2000 JP
2001-174028 Jun 2001 JP
2001-208405 Aug 2001 JP
2002-514735 May 2002 JP
2002-227798 Aug 2002 JP
2002-306276 Oct 2002 JP
2003-042594 Feb 2003 JP
2003-174203 Jun 2003 JP
2003-204087 Jul 2003 JP
2003-254636 Sep 2003 JP
2004-055621 Feb 2004 JP
2004-079883 Mar 2004 JP
2004-174138 Jun 2004 JP
2005-079210 Feb 2005 JP
2005-251950 Sep 2005 JP
2005-303183 Oct 2005 JP
2005-333083 Dec 2005 JP
2006-001392 Jan 2006 JP
2006-021572 Jan 2006 JP
2006-076398 Mar 2006 JP
2006-122588 May 2006 JP
2006-137405 Jun 2006 JP
2012-111318 Jun 2012 JP
2014-135455 Jul 2014 JP
10-1998-0702159 Jul 1998 KR
10-2001-0060500 Jul 2001 KR
10-2005-0011494 Jan 2005 KR
10-2006-0048748 May 2006 KR
10-1254624 Apr 2013 KR
66619 Feb 1973 LU
2562507 Sep 2015 RU
WO 9420801 Sep 1994 WO
WO 9514899 Jun 1995 WO
WO 9531688 Nov 1995 WO
WO 96005475 Feb 1996 WO
WO 9807898 Feb 1998 WO
WO 9831311 Jul 1998 WO
WO 9923980 May 1999 WO
WO 9944552 Sep 1999 WO
WO 9958907 Nov 1999 WO
WO 02011968 Feb 2002 WO
WO 02053400 Jul 2002 WO
WO 02058165 Jul 2002 WO
WO 03014634 Feb 2003 WO
WO 03051666 Jun 2003 WO
WO 03063257 Jul 2003 WO
WO 2004011861 Feb 2004 WO
WO 2005115794 Dec 2005 WO
WO 2006037178 Apr 2006 WO
WO 2006041935 Apr 2006 WO
WO 2006078394 Jul 2006 WO
WO 2006102509 Sep 2006 WO
WO 2007060371 May 2007 WO
WO 2007089789 Aug 2007 WO
WO 2007142972 Dec 2007 WO
WO 2008023942 Feb 2008 WO
WO 2008045964 Apr 2008 WO
WO 2008046110 Apr 2008 WO
WO 2008057962 May 2008 WO
WO 2008076588 Jun 2008 WO
WO 2008086499 Jul 2008 WO
WO 2008115831 Sep 2008 WO
WO 2009015235 Jan 2009 WO
WO 2009036077 Mar 2009 WO
WO 2009097572 Aug 2009 WO
WO 2010009422 Jan 2010 WO
WO 2010088405 Aug 2010 WO
WO 2010129803 Nov 2010 WO
WO 2010137290 Dec 2010 WO
WO 2011026040 Mar 2011 WO
WO 2011156643 Dec 2011 WO
WO 2012061777 May 2012 WO
WO 2013052823 Apr 2013 WO
WO 2014052145 Apr 2014 WO
WO 2014145556 Sep 2014 WO
WO 2014164887 Oct 2014 WO
WO 2015085150 Jun 2015 WO
WO 2015123585 Aug 2015 WO
WO 2016077843 May 2016 WO
WO 2016130840 Aug 2016 WO
WO 2017059256 Apr 2017 WO
WO 2017066261 Apr 2017 WO
WO 2017086043 May 2017 WO
WO 2017100718 Jun 2017 WO
WO 2017106829 Jun 2017 WO
WO 2017136793 Aug 2017 WO
WO 2017201083 Nov 2017 WO
WO 2018071612 Apr 2018 WO
WO 2018148398 Aug 2018 WO
WO 2018175506 Sep 2018 WO
WO 2019173553 Sep 2019 WO
WO 2020112902 Jun 2020 WO
WO 2020172255 Aug 2020 WO
WO 2020180632 Sep 2020 WO
WO 2021025663 Feb 2021 WO
Non-Patent Literature Citations (13)
Entry
U.S. Appl. No. 16/818,816, filed Mar. 13, 2020, Wolas et al.
U.S. Appl. No. 14/864,704, filed Sep. 24, 2015, Terech et al.
Feher, Steve, “Thermoelectric Air Conditioned Variable Temperature Seat (VTS) & Effect Upon Vehicle Occupant Comfort, Vehicle Energy Efficiency, and Vehicle Environment Compatibility”, SAE Technical Paper, Apr. 1993, pp. 341-349.
Lofy et al., “Thermoelectrics for Environmental Control in Automobiles”, Proceeding of Twenty-First International Conference on Thermoelectrics (ICT 2002), 2002, pp. 471-476.
Photographs and accompanying description of climate control seat assembly system components publicly disclosed as early as Jan. 1998.
Photographs and accompanying description of a component of a climate control seat assembly system sold prior to Nov. 1, 2005.
Photographs and accompanying description of a component of a climate control seat assembly system sold prior to Dec. 20, 2003.
International Search Report and Written Opinion received in PCT Application No. PCT/US2015/15927, dated May 14, 2015.
International Preliminary Report on Patentability received in PCT Application No. PCT/US2015/015927, dated Aug. 25, 2016.
U.S. Appl. No. 14/821,514, filed Aug. 7, 2015, Lofy.
U.S. Appl. No. 15/685,912, filed Aug. 24, 2017, Petrovski et al.
U.S. Appl. No. 16/277,765, filed Feb. 15, 2019, Petrovski et al.
Luo, Z., “A Simple Method to Estimate the Physical Characteristics of a Thermoelectric Cooler from Vendor Datasheets”, Electronics Cooling, Aug. 2008, in 17 pages from https://www.electronics-cooling.com/2008/08/a-simple-method-to-estimate-the-physical-characteristics-of-a-thermoelectric-cooler-from-vendor-datasheets/.
Related Publications (1)
Number Date Country
20190230744 A1 Jul 2019 US
Provisional Applications (1)
Number Date Country
61940306 Feb 2014 US
Continuations (1)
Number Date Country
Parent 15118441 US
Child 16255711 US