This invention relates to polymer insulation for conductors, wherein the surface of the insulation is contoured to provide advantages in extrusion application of the insulation to the conductor or in communications application of the insulated wire or both.
Normally, polymer insulation is extrusion applied to conductors as a smooth coating having an annular cross-section in the thickness desired to provide the signal transmission properties desired for the particular application. Two types of extrusion processes are generally used, pressure extrusion and melt-draw down extrusion. In pressure extrusion, the molten thermoplastic polymer comes into contact with the conductor within the extrusion die and the extrudate emerging from the die is the polymer-insulated conductor. The diameter of the extrusion orifice establishes the outer diameter of the polymer insulation. In melt draw down extrusion, the molten thermoplastic polymer is extruded as a tube having a larger diameter than the diameter of the conductor, and this tubular shape is drawn down onto the conductor passing into the interior of the extruded tube. This converts the extruded tube of molten polymer into a conical shape, typically referred to as a melt cone. In pressure extrusion, the speed of the conductor advancing though the extrusion die is the same speed as the molten polymer emerging from the die. In melt draw down extrusion, the conductor speed is greater than the extrusion speed, which has the effect of drawing the melt cone to a thinner wall thickness than extruded, whereby the thickness of the polymer insulation is thinner than the thickness of the extruded tube. This drawing out of the melt cone is defined as draw down ratio (DDR), which is the ratio of the cross-sectional area of the polymer insulation as compared to the cross-sectional area of the annular die opening. Thermoplastic fluoropolymers are typically extruded as polymer insulation onto conductors by melt draw down extrusion, because of their extrusion characteristics which limit extrusion rate to low speeds relative to polyolefins, while the easier extruding polyolefins are typically extruded by pressure extrusion to form the polymer insulation on conductors.
Most polymer insulations on conductors are of solid polymer, i.e. unfoamed. Foamed polymer insulations have also been used. In the extrusion foaming technique wherein high pressure inert gas is injected into the molten polymer within the extruder, and melt draw down extrusion is used to form the polymer insulation, the foaming is preferably delayed until the molten polymer contacts the conductor, otherwise the melt cone becomes fragile, and the draw down ratio has to be reduced to avoid cone breakage, causing incompletely coated conductor. The DDR for extrusion foaming is generally within the range of 5 to 30:1, while for unfoamed polymer, the DRR is typically at least 80:1. While foamed polymer insulation offers the advantage of improved dielectric constant and reduced capacitance over solid (unfoamed) polymer insulation, the use of foamed insulation has been limited.
U.S. Pat. No. 5,990,419 addresses the problem of cross talk between a twisted pair of polymer insulated conductors, noting that cross-talk can be reduced by reducing capacitance between the twisted pair, by increasing the center-to-center distance between conductors and by decreasing the dielectric constant of the space between the conductors. This patent acknowledges the existence of foamed insulation, but rejects it in favor of providing solid insulation having longitudinally running ribs extending from the outer surface of the insulation, i.e. increasing its diameter, as shown in
U.S. Patent Publication 2006/0207786 discloses varying solid polymer insulation cross sections intended to improve impedance uniformity along the length of the twisted pair of insulated conductors. Some of these cross sections entrap air, as shown in
The low strength of the foamed polymer insulation as compared to solid polymer insulation is a problem when force is applied to the foamed insulation, which tends to crush the foamed insulation, thereby reducing the effective insulation thickness. Crushing force is present for example when a pair of foamed polymer insulated conductors is twinned, i.e. twisted together to form a twisted pair of polymer insulated conductors. As the lay of the twist is shortened from about 0.5 in (12.7 mm) to about 0.3 in (7.6 mm), the crushing force increases. The crush of the foamed insulation can be compensated by increasing the thickness of the foamed insulation, but this has the disadvantage of increasing the size of the cable and using a greater amount of polymer.
U.S. Pat. No. 5,990,419 and U.S. Patent Publication 2006/0207786, instead of addressing their problems by working with foamed polymer insulation, abandon such insulation in favor of proposing various solid polymer insulation configurations.
The present invention in one aspect, provides a foamed polymer-insulated conductor that ameliorates the crush problem, thereby enabling the dielectric and capacitance advantages to be realized for communications cable without increasing the size of the cable. This cable comprises a conductor and polymer insulation encasing said conductor, said polymer insulation having a foamed interior and having an exterior surface formed from longitudinally running rounded peaks and valleys. The surface of the polymer insulation has a corrugated appearance, except that for the diameter of the insulation typically used to form twisted pairs of conductors, e.g. 45 mils (1.14 mm), the insulated conductor is so small in cross section that the corrugated appearance is hardly visible to the naked eye. The rounding of the peaks improves their formation by extrusion to form the polymer insulation of the conductor. The effect of the peaks along the exterior surface of the polymer insulation is to resist crushing. This crush resistance is enhanced by the following aspects of the peaks: (a) the density of the peaks is greater than the density of the foamed interior, (b) the polymer insulation can have an unfoamed layer at the exterior surface of said peaks, or (c) the peaks are unfoamed. The greater density of the peaks as compared to the interior of the foamed insulation increases crush resistance. Having an unfoamed layer at the surface of the peaks is another way of increasing peak density. Such layer acts as a dome (crest), resisting crushing. The extrusion process can be carried out to provide the unfoamed layer at the entire exterior surface of the polymer insulation, whereby both peaks and valleys have this unfoamed outer layer. The entire peaks can be unfoamed, which also resists crushing of the polymer insulation.
The number of peaks present will depend on the diameter of the polymer insulation. As diameter increases, so does circumference, which means that the peak width chosen for a small diameter polymer insulation, if used on a larger diameter polymer insulation, will require more peaks. The peaks are not tall and thin, because such configuration does not improve crush resistance. Such peaks tend to fold over upon themselves upon being subjected to crushing. The peaks used in the present invention have sufficient width relative to height that they do not fold during crushing. Preferred quantitative characterizations of the peaks are independently as follows: (i) the height of the peaks is no greater than about 150% of the width of said peaks, (ii) the peaks cover at least about 30% of the exterior surface (the footprint of the peaks on the valley circumference) of the polymer insulation, and (iii) the peaks have a height that is at least about 50% of the width of the peaks. As the width of the peaks decrease, the number of the peaks should be increased to provide equivalent improvement. For the very small size (diameter) communications cable, such as wherein the overall thickness of insulation is about 6 to 14 mils (0.150 to 0.360 mm), and the height of said peaks is at least about 25% of said total thickness. Overall thickness is the thickness of the insulation from the conductor surface to the top of the peaks. The width of the peaks is the distance across the base of the peaks where they intersect with the valleys. The height of the peaks is measured from the circumference defined by the valleys (valley circumference) to the top of the peaks.
The process for making the communications cable described above comprises extruding a foamable molten thermoplastic polymer onto the conductor and foaming said polymer on said conductor to thereby obtain the encasing of the conductor to form the polymer insulation having a foamed interior, said extruding including forming said longitudinally running peaks and valleys as said exterior surface of said polymer insulation. The extrusion can be pressure extruding or melt draw down extruding.
Provision of the peaks on the exterior surface of the polymer insulation by extrusion can increase extrusion difficulty, i.e. can require the extrusion rate (speed) to be reduced in order to maintain the dimensions of the peaks. If the extrusion is too fast, the molten thermoplastic polymer tends to extrude non-uniformly in the peak area, giving rise to periodic peak thinning and/or shortening in height. This can be avoided by decreasing the rate of extrusion, but at a loss in production. Another aspect of the present invention is the extrusion process that minimizes this extrusion difficulty by the design of the extruded peak. Such process comprises extruding molten thermoplastic polymer through an orifice to coat a conductor passing through said orifice, thereby forming polymer insulation on said conductor, said orifice defining the exterior surface of said polymer insulation comprising longitudinally running rounded peaks and valleys, said peaks covering at least about 30% of said exterior surface and having a height that is at least 50% of the width of said peaks. The width of the peaks and their rounding minimize to eliminate any adverse effect on extrusion rate. The details of the peaks described above apply to this process and the process mentioned in the preceding paragraph. The non-foldability of the peaks, meaning that the peaks are not narrow, importantly contributes to this extrusion benefit.
This process aspect of the invention is applicable to pressure extruding or melt draw down extruding. In the case of melt draw down extruding, the rounded peaks are also draw down, whereby the peaks on the polymer insulation are smaller than the peaks extruded from the orifice. This process aspect of the present invention is applicable to forming solid polymer insulation, i.e. unfoamed, and to forming foamed polymer insulation. In the case of foamed polymer insulation, the extrusion process includes the additional step of foaming the polymer insulation, preferably when in contact with the conductor. The presence of the peaks in the melt cone formed in melt draw down extrusion, whether of solid polymer, i.e. not to be foamed, or of polymer that is to be foamed when in contact with the conductor, strengthens the melt cone, thereby enabling the DDR to be increased, resulting in improved production.
In all the polymer insulations of and made by the processes of the present invention, the polymer can be any thermoplastic polymer that is extrudable for coating a conductor and that has the electrical, physical, and thermal properties desired for the particular communications application. The most common such polymer insulations are polyolefin and fluoropolymer, and these polymers can be used in the present invention. Non-fluorinated polymer other than polyolefin can also be used.
Another aspect of the present invention is the extrusion die for making the polymer insulation, as follows: An extrusion die for the extrusion of molten thermoplastic polymer onto a conductor to form polymer insulation thereon, said die having a surface forming the exterior surface of said polymer insulation, said die surface having a series of radially spaced, longitudinally running rounded grooves, whereby the exterior surface of said polymer insulation has longitudinally running rounded peaks and valleys, said peaks corresponding to said grooves in said die surface, said extrusion die including a guide for centering a conductor within said polymer insulation. The detail of the peaks described above apply to the grooves forming these peaks. In the case of pressure extrusion, the size of the die surface (orifice) will generally be the size of the polymer insulated conductor, and the size of the extruded peaks will generally be the same as the size of the peaks in the surface of the polymer insulation. In the case of melt draw down extrusion, the extruded tube and the peaks in its exterior surface will be larger than the corresponding dimension for the polymer insulation formed on the conductor. The shrinkage in size will depend on the draw down ratio used.
In
In
The embodiment of
In
In
The embodiment of
The presence of the rounded tops of peaks 18 (
The presence of the unfoamed layer the exterior surface of the foamed polymer insulation, such as shown by layer 50 in
The number of peaks and therefore the number of valleys forming the exterior surface of the foamed polymer insulation of the present invention will vary, depending on the width of the peaks and diameter of the foamed polymer insulation, which determines the circumference from which the peaks extend. Generally, the foamed polymer insulation will have at least 5 peaks.
The overall thickness of the polymer insulation (distance from conductor surface to top of peak), including any outer surface and inner surface unfoamed layers, such as layers 48 and 50 of
For the twisted pair insulation thicknesses, the height of the peaks, as disclosed above, is preferably at least 25% of the thickness of the overall polymer insulation, more preferably at least 30%, and even more preferably, at least 40% thereof. Generally, folding of the peaks during crushing is avoided if the height of the peaks is no more than 150% of the width of the peaks, preferably no more than 125%, and more preferably no more than 100% thereof. Of course, the peaks are also wide enough that they do not fold upon crushing, which is generally obtained when the width of the peaks are at least 75% of the peak height, more preferably at least 100%, and even more preferably, at least 125% of the peak height. Another indication of the peak width is the coverage of the peaks on the circumference of the polymer insulated cable, the circumference in this case meaning the inner diameter of the foamed polymer insulation represented by the surface (floor) of the valleys. Preferably, the peaks cover at least 35%, and more preferably at least 40%, and even more preferably, at least 50% of the circumference (valley surface) of the foamed polymer insulation.
One embodiment for making the foamed polymer insulated conductor is the melt draw down extrusion shown in
The annular orifice contains a series of grooves 84 running in the direction of extrusion, which as best seen in
As discussed above, the chilling of the molten polymer from the die 64 provides an unfoamed layer of polymer at the exterior surface of the foamed polymer insulation. The presence of this unfoamed layer increases the average density of the peaks as compared to the density of the foamed polymer insulation within its interior. This increase in density in itself increases the crush resistance of the peaks and thus of the foamed polymer insulation. The process of the present invention achieves this effect by extrusion of molten thermoplastic polymer from a single source, i.e. using a single extruder. In this embodiment, all the polymer forming the foamed polymer insulation comes through port 70 in the cross head 60.
In another embodiment of the present invention, the cross head 60 in
Another modification not shown in
Any method for foaming the polymer to form the foamed regions of the polymer insulation can be used. It is preferred, however, that the method used will obtain cells (voids) that are both small and uniform in approximate spherical shape for the best combination of electrical properties, such as low return loss and high signal transmission velocity. In this regard, the cells are preferably about 50 micrometers in diameter and smaller and the average void content is about 10 to 70%. For twisted pairs, the void content of the polymer insulation will typically be about 15 to 35%. For coaxial cable, the average void content will be about 10-70%. Average void content is determined by comparing the weight of the foamed insulation with the weight of unfoamed insulation (same polymer) of the same dimensions according to the following equation;
Void content(%)=100(1−[foamed wt/unfoamed wt]).
This is the average void content of the foamed together with the unfoamed portions of the insulation. The preferred method for obtaining this foam result in the foamed regions of the insulation is the use of high pressure inert gas injection into the molten polymer in the extruder, as mentioned above, feeding through port 70 (
If unfoamed inner and outer layers were present in the foamed polymer insulation, the void content of the interior of the insulation can be increased to compensate for the unfoamed layers, i.e. to provide the same average void content and same capacitance as though no unfoamed layers were present, by increasing the pressure of the inert gas injected into the molten polymer.
The process of the present invention for producing foamed polymer insulation is also applicable to pressure extrusion coating of the conductor. In pressure extrusion coating the die would be similar to that of
Another aspect of the present invention is the extrusion coating process, by either melt draw down extrusion or pressure extrusion, to form polymer insulation having peaks and valleys like those described above as the exterior surface of the polymer insulation, wherein the polymer insulation can either be foamed as described above or entirely unfoamed. To produce the unfoamed polymer insulation, the steps of producing the foam, e.g. high pressure injection of inert gas and incorporation of foam cell nucleating agent, is omitted from the extrusion coating process. Of course the features of producing unfoamed layers at the outer and/or inner surfaces of the foamed polymer insulation would also be unnecessary, because the entire polymer insulation would be unfoamed (solid).
According to this aspect of the present invention, the rounding of the peaks and the width of the peaks are such as to permit the extrusion rate to be increased, without producing distortion of the peaks in the final polymer insulation. If the peaks were too narrow and/or if the peaks were characterized by sharp corners, such as shown in
In the processes and product of the present invention, the peaks and valleys are continuous along the entire length of the insulation and are parallel (as extruded) to the conductor. The polymer-insulated conductors are twinned to form a twisted pair. In the course of twinning the individual polymer-insulated conductors are first back twisted by the twinning machine, followed by the pair of polymer-insulated conductors being twisted together. The effect of the back twisting is to change the disposition of the peaks and valleys on the insulation exterior surface, from parallel to helical. The twinning is carried out with the helical longitudinally running peaks and valleys of the two polymer-insulated conductors being disposed in the same direction. The twinning of the longitudinally running helical peaks and valleys thus results in a peak from one insulation nesting within a valley of the other insulation of the twisted pair.
Examples of fluoropolymer that can be used as the polymer insulation, whether to form unfoamed insulation, with or without an unfoamed surface layer, or an unfoamed polymer insulation are preferably copolymers of tetrafluoroethylene (TFE) and hexafluoropropylene (HFP). In these copolymers, the HFP content is typically about 6-17 wt %, preferably 9-17 wt % (calculated from HFPI×3.2). HFPI (HFP Index) is the ratio of infrared radiation (IR) absorbances at specified IR wavelengths as disclosed in U.S. Statutory Invention Registration H130. Preferably, the TFE/HFP copolymers include a small amount of additional comonomer to improve properties. The preferred TFE/HFP copolymer is TFE/HFP/perfluoro(alkyl vinyl ether) (PAVE), wherein the alkyl group contains 1 to 4 carbon atoms. Preferred PAVE monomers are perfluoro(ethyl vinyl ether) (PEVE) and perfluoro(propyl vinyl ether) (PPVE). Preferred TFE/HFP copolymers containing the additional comonomer have an HFP content of about 6-17 wt %, preferably 9-17 wt % and PAVE content, preferably PEVE, of about 0.2 to 3 wt %, with the remainder of the copolymer being TFE to total 100 wt % of the copolymer. Examples of FEP compositions are those disclosed in U.S. Pat. No. 4,029,868 (Carlson), U.S. Pat. No. 5,677,404 (Blair), and U.S. Pat. No. 6,541,588 (Kaulbach et al.) and in U.S. Statutory Invention Registration H130. The FEP is partially crystalline, that is, it is not an elastomer. By partially crystalline is meant that the polymers have some crystallinity and are characterized by a detectable melting point measured according to ASTM D 3418, and a melting endotherm of at least about 3 J/g.
Other fluoropolymers can be used, i.e. polymers containing at least 35 wt % fluorine, that are melt fabricable so as to be melt extrudable, but FEP is preferred because of its high speed extrudability and relatively low cost. In particular applications, ethylene/tetrafluoroethylene (ETFE) polymers will be suitable, but perfluoropolymers are preferred, these including copolymers of tetrafluoroethylene (TFE) and perfluoro(alkyl vinyl ether) (PAVE), commonly known as PFA, and in certain cases MFA. PAVE monomers include perfluoro(ethyl vinyl ether) (PEVE), perfluoro(methyl vinyl ether) (PMVE), and perfluoro(propyl vinyl ether) (PPVE). TFE/PEVE and TFE/PPVE are preferred PFAs. MFA is TFE/PPVE/PMVE copolymer. However, as stated above, FEP is the most preferred polymer.
The fluoropolymers used in the present invention are also melt-fabricable, i.e. the polymer is sufficiently flowable in the molten state that it can be fabricated by melt processing such as extrusion, to produce wire insulation having sufficient strength so as to be useful. The melt flow rate (MFR) of the perfluoropolymers used in the present invention is preferably in the range of about 5 g/10 min to about 50 g/10, preferably at least 20 g/10 min, and more preferably at least 25 g/10 min.
MFR is typically controlled by varying initiator feed during polymerization as disclosed in U.S. Pat. No. 7,122,609 (Chapman). The higher the initiator concentration in the polymerization medium for given polymerization conditions and copolymer composition, the lower the molecular weight, and the higher the MFR. MFR may also be controlled by use of chain transfer agents (CTA). MFR is measured according to ASTM D-1238 using a 5 kg weight on the molten polymer and at the melt temperature of 372° C. as set forth in ASTM D 2116-91a (for FEP), ASTM D 3307-93 (PFA), and ASTM D 3159-91a (for ETFE).
Fluoropolymers made by aqueous polymerization, as-polymerized contain at least about 400 end groups per 106 carbon atoms. Most of these end groups are unstable in the sense that when exposed to heat, such as encountered during extrusion, they undergo chemical reaction such as decomposition, either discoloring the extruded polymer or filling it with non-uniform bubbles or both. Examples of these unstable end groups include —COF, —CONH2, —COOH, —CF═CF2 and/or —CH2OH and are determined by such polymerization aspects as choice of polymerization medium, initiator, chain transfer agent, if any, buffer if any. Preferably, the fluoropolymer is stabilized to replace substantially all of the unstable end groups by stable end groups. The preferred methods of stabilization are exposure of the fluoropolymer to steam or fluorine, the latter being applicable to perfluoropolymers, at high temperature. Exposure of the fluoropolymer to steam is disclosed in U.S. Pat. 3,085,083 (Schreyer). Exposure of the perfluoropolymer to fluorine is disclosed in U.S. Pat. No. 4,742,122 (Buckmaster et al.) and U.S. Pat. No. 4,743,658 (Imbalzano et al.). These processes can be used in the present invention. The analysis of end groups is described in these patents. The presence of the —CF3 stable end group (the product of fluorination) is deduced from the absence of unstable end groups existing after the fluorine treatment, and this is the preferred stable end group, providing reduced dissipation factor as compared to the —CF2H end group stabilized fluoropolymer (the product of steam treatment). Preferably, the total number of unstable end groups constitute no more than about 80 such end groups per 106 carbon atoms, preferably no more than about 40 such end groups per 106 carbon atoms, and most preferably, no greater than about 20 such end groups per 106 carbon atoms.
Examples of non-fluorinated thermoplastic polymers include polyolefins, polyamides, polyesters, and polyaryleneetherketones, such as polyetherketone (PEK), polyetheretherketone (PEEK), and polyetherketoneketone (PEKK).
Examples of polyolefins that can be used as foamed or unfoamed insulation according to the present invention include polypropylene, e.g. isotactic polypropylene, linear polyethylenes such as high density polyethylenes (HDPE), linear low density polyethylenes (LLDPE), e.g. having a specific gravity of 0.89 to 0.92. The linear low density polyethylenes made by the INSITE® catalyst technology of Dow Chemical Company and the EXACT® polyethylenes available from Exxon Chemical Company can be used in the present invention; these resins are generically called (mLLDPE). These linear low density polyethylenes are copolymers of ethylene with small proportions of higher alpha monoolefins, e.g. containing 4 to 8 carbon atoms, typically butene or octene. Any of these thermoplastic polymers can be a single polymer or a blend of polymers. Thus, the EXACT® polyethylenes are often a blend of polyethylenes of different molecular weights.
The polyolefins are easier to extrude than fluoropolymers in the sense that polyolefins can be extruded faster than fluoropolymers without causing defects in the polymer insulation, such as surface roughening indicating the onset of melt fracture, dimensional irregularities or gaps in the insulation. Thus, the polyolefins used to form polymer insulations according to the present invention can obtain adequate production rate when pressure extrusion coating is used. Fluoropolymers will generally require the use of melt draw down extrusion to obtain adequate production rate. The polymer forming the insulation can also contain other additives that are commonly used in polymer insulations, such as pigments, extrusion aids, fillers, flame retardants, and antioxidants, depending on the identity of the polymer being used and properties to be enhanced.
The conductor used in the present invention is any material that is useful for transmitting signals as required for service in a communications cable. Such material can be in the form of a single strand or can be multiple strands twisted together or otherwise united to form a unitary strand. The most common such material is copper or copper containing. For example, cooper conductor may be plated with a different metal such as silver, tin or nickel.
The fluoropolymer used in these Examples is a commercially available (from DuPont) fluoropolymer containing 10 to 11 wt % HFP and 1-1.5 wt % PEVE, the remainder being TFE. This FEP has an MFR 30 g/10 min and has been stabilized by exposure to fluorine using the extruder fluorination procedure of Example 2 of U.S. Pat. No. 6,838,545 (Chapman) except that the fluorine concentration is reduced from 2500 ppm in the '545 Example to 1200 ppm. The foam cell nucleating agent is a mixture of 91.1 wt % boron nitride, 2.5 wt % calcium tetraborate and 6.4 wt % of the barium salt of telomer B sulfonic acid, to total 100% of the combination of these ingredients, as disclosed in U.S. Pat. No. 4,877,815 (Buckmaster et al.). To form a foamable fluoropolymer composition, the fluoropolymer is dry blended with the foam cell nucleating agent to provide a concentration thereof of 0.4 wt % based on the total weight of the fluoropolymer plus foam cell nucleating agent, and then the resultant mixture is compounded in an extruder and extruded as pellets, which are then used in the extrusion wire coating/foaming process. The fluoropolymer used to form the unfoamed regions of the polymer insulation is the same fluoropolymer by itself.
The conductor used in the Examples unless otherwise indicated is copper single strand wire having a diameter of 22.6 mils (565 μm). The polymer insulation of the Examples have a void content of 20% unless otherwise specified and have an unfoamed layer forming both surfaces of the polymer insulation. The unfoamed layers are formed by the same extruder providing the foamable polymer for the remainder of the polymer insulation. The unfoamed layer at the inner surface of the insulation is observable by viewing a cross section of the polymer-insulated conductor under magnification. The unfoamed exterior surface of the insulation is observable by the surface of the insulation being void free in appearance.
The foamed polymer insulation of this Example resembles that of
When this polymer-insulated conductor is twinned with another of the same polymer-insulated conductors at a twinning rate of 2000 turns/min to form a lay of 0.3 in (7.6 mm) for the twisted pair, a peak of one insulation nests in a valley of the other insulation as a result of the back-twisting of the individual polymer-insulated conductors prior to twinning. The impedance of this twisted pair is 2 ohms greater than for a twisted pair of uniform thickness of a greater weight of polymer. In this comparison, the foamed polymer insulation with the peaks and valleys weighed 0.706 lb/1000 ft, while the foamed polymer insulation (same void content) weight 0.725 lb/1000 ft.
The greater crush resistance of the polymer insulation containing the peaks and valleys is manifested by improvement in impedance such as is demonstrated by this comparison.
The foamed polymer insulation of this Example resembles that of
The foamed polymer insulation of this Example resembles that of
A coaxial cable is made by extrusion coating a copper conductor (same as above) by melt draw down extrusion with foamed fluoropolymer, followed by applying a metallized tape to the insulation and a braided wire covering over the tape to form the outer conductor of the coaxial cable. In one experiment, the foamed fluoropolymer insulation is 74 mils (1.88 mm) in diameter, and 0.918 lb (0.416 kg) of the fluoropolymer is used to produce 1000 ft (305 m) of the coaxial cable. In another experiment, the foamed insulation has twelve peaks resembling those of
Number | Date | Country | |
---|---|---|---|
61037060 | Mar 2008 | US | |
61123811 | Apr 2008 | US |