The disclosure relates to methods and systems for reducing divergence between computed tomography images and a patient through the use of cone beam computed tomography imaging.
Pulmonary disease may cause one or more portions of a patient's lungs may lose its ability to function normally and thus may need to be treated. Lung treatment procedures may be very complex and would be greatly aided if the surgeon performing the procedure can visualize the way airways and other structures in the patient's lungs are shaped and where tools are located. Traditional pre-operative images are helpful, to an extent, with the former, but provide no guidance with regard to the latter.
Systems for displaying images and tracking tools in the patient's lungs generally rely on pre-operative data, such as from computed tomography (CT) scans performed before, sometimes days or weeks in advance, the treatment procedure begins. However, such systems do not account for changes that may have occurred after the CT scan was performed, or for movement occurring during the treatment procedure. Systems, devices, and methods for improving on the process of identifying and visualizing a patient's lungs, as well as structures and tools located therein, are described below.
The disclosure is directed to a systems and method of a method of registering an image to a luminal network including detecting a position of a sensor in a luminal network. The method of registering also includes receiving images for 3D reconstruction of the luminal network with the sensor within the luminal network; presenting the 3D reconstruction image on a user interface; receiving indication of location of target in the 3D reconstruction image; generating pathway through the luminal network to a target; and determining if the sensor moved from detected position following receipt of the images for 3D reconstruction, where when it is determined that the position of the sensor is the same as detected position, the luminal network and the 3D reconstruction are registered. Other embodiments of this aspect include corresponding computer systems, apparatus, and computer programs recorded on one or more computer storage devices, each configured to perform the actions of the methods.
Implementations may include one or more of receiving survey data when it is determined that the position of the sensor has changed, registering the luminal network to the 3D reconstruction based on the survey data or generating a 3D model of the luminal network. The method may further include displaying the pathway on in the 3D reconstruction, 2D slices images derived from the 3D reconstruction, a 3D model derived from the 3D reconstruction, or a virtual bronchoscopy. Additionally, or alternatively, the method may further include displaying the position of the sensor along the pathway in a user interface.
Another aspect of the disclosure is a method of registering an image to a luminal network including receiving a pre-operative computed tomography (CT) image of the luminal network, receiving an indication of a target within the luminal network, generating a pathway through the luminal network to the target. The method of registering also includes receiving images for 3D reconstruction of the luminal network, transforming coordinates of the pre-operative CT image to coordinates of the 3D reconstruction to register the pre-operative CT image to the 3D reconstruction, and updating a position of a catheter in the 3D reconstruction image or a 3D model upon detection of movement of the catheter.
The method may further include displaying the 3D reconstruction, 2D slices images derived from the 3D reconstruction, a 3D model derived from the 3D reconstruction, or a virtual bronchoscopy on a user interface. In another aspect the method includes generating a 3D model from the 3D reconstruction image before transforming the pre-operative CT coordinates and the 3D reconstruction coordinates and may also include matching features from the CT images to the 3D reconstruction and 3D model derived from the 3D reconstruction. Alternatively, the method includes generating a 3D model from the 3D reconstruction after transferring the target and pathway from the pre-operative CT image to the 3D reconstruction. The method may include receiving survey data, where the survey data is received prior to receipt of the 3D reconstruction or the survey data is received after transfer of the target and pathway to the 3D reconstruction from the pre-operative CT image to register the 3D reconstruction to the luminal network.
A further aspect of the disclosure is a method for registering an image to a luminal network including receiving a pre-operative computed tomography (CT) image of the luminal network, receiving an indication of a target within the luminal network, generating a pathway through the luminal network to the target, generating a CT 3D model, detecting a position of a catheter within the luminal network, registering the pre-operative CT image to the detected position of the catheter, receiving an indication of a location of a sensor in the pre-operative CT or CT 3D model and update the location in a user interface until proximate the target, receiving images for 3D reconstruction of the luminal network, and detecting a position of the catheter and updating the position on a use interface.
The method may further include generating a 3D model from the 3D reconstruction. Still further the method may include recalling survey data from memory, presenting the 3D reconstruction on a user interface, receive an indication of a location of a target in the 3D reconstruction, and generating a pathway in the 3D reconstruction or 3D model. Still further the method may further include determining a relative position of the target and the catheter in the 3D reconstruction and updating the relative position of the target and the catheter in the pre-operative CT image and CT 3D model based on the determined relative position in the 3D reconstruction or 3D model. Additionally, the method may include registering the pre-operative CT image with the 3D reconstruction and transferring the target and pathway from the pre-operative CT image and 3D model to the 3D reconstruction and 3D model.
Various aspects and features of the disclosure are described hereinbelow with references to the drawings, wherein:
The disclosure is directed to a system and method for using a cone beam computed tomography (CBCT) image or a 3D fluoroscopy image in connection with intraluminal navigation techniques and systems.
There exist a number of systems that utilize the output from a pre-procedural computed tomography (CT) scan (e.g., CT image data) for purposes of identifying areas of interest or targets to which navigation of an endoscope or catheter is desired. Typically, this navigation will be of luminal networks such as the airways of the lungs or the biliary tract, but they could also be of spaces such as the thoracic cavity generally or other locations within a patient. These systems generally have two phases. A first phase is a planning phase where the targets are identified, and a three-dimensional (3D) model is generated. A second phase is a navigation phase where the location of the catheter within the patient is detected and depicted on the 3D model or other images to allow the clinician to navigate to the identified targets. By updating the position of a catheter within the 3D model, the clinician is able to perform procedures such as biopsy or treatment at the target location. One such systems is the ILLUMISITE system sold by Medtronic PLC, which is an electromagnetic navigation (EMN) system.
Bronchoscope 50 is configured for insertion through the patient's mouth and/or nose into the patient's airways. Bronchoscope 50 includes a source of illumination and a video imaging system (not explicitly shown) and is coupled to monitoring equipment 30, for example, a video display, for displaying the video images received from the video imaging system of bronchoscope 50. In an embodiment, bronchoscope 50 may operate in conjunction with a catheter guide assembly 90. Catheter guide assembly 90 includes a locatable guide (LG) 92 and catheter 96. Catheter 96 may act as an extended working channel (EWC) and be configured for insertion through a working channel of bronchoscope 50 into the patient's airways (although the catheter guide assembly 90 may alternatively be used without bronchoscope 50). Catheter guide assembly 90 includes a handle 91 connected to catheter 96, and which can be manipulated by rotation and compression to steer LG 92 and catheter 96, catheter 96 is sized for placement into the working channel of bronchoscope 50. In the operation of catheter guide assembly 90, LG 92, including an EM sensor 94, is inserted into catheter 96 and locked into position such that EM sensor 94 extends a desired distance beyond a distal tip 93 of catheter 96. The location of EM sensor 94, and thus distal tip 93 of catheter 96, within an EM field generated by EM field generator 76, can be derived by tracking module 72 and computing device 80.
LG 92 and catheter 96 are selectively lockable relative to one another via a locking mechanism 99. A six degrees-of-freedom tracking system 70 is utilized for performing navigation, although other configurations are also contemplated. Tracking system 70 may be configured for use with catheter guide assembly 90 to track a position of EM sensor 94 as it moves in conjunction with catheter 96 through the airways of the patient, as detailed below. In an embodiment, tracking system 70 includes a tracking module 72, a plurality of reference sensors 74, and an EM field generator 76. As shown in
Although EM sensor 94 is described above as being included in LG 92, it is also envisioned that EM sensor 94 may be embedded or incorporated within a treatment tool, such as a biopsy tool 62 or an treatment tool 64 (e.g. an ablation catheter), where the treatment tool may alternatively be utilized for navigation without need of LG 92 or the necessary tool exchanges that use of LG 92 requires. EM sensor 94 may also be embedded or incorporated within catheter 96, such as at a distal portion of catheter 96, thereby enabling tracking of the distal portion of catheter 96 without the need for LG 92.
According to an embodiment, biopsy and treatment tools 62, 64 are configured to be insertable into catheter guide assembly 90 following navigation to a target location and removal of LG 92. Biopsy tool 62 may be used to collect one or more tissue samples from the target location, and in an embodiment, is further configured for use in conjunction with tracking system 70 to facilitate navigation of biopsy tool 62 to the target location, and tracking of a location of biopsy tool 62 as it is manipulated relative to the target location to obtain the tissue sample. Treatment tool 64 is configured to be operated with a generator 66, such as a radio frequency generator or a microwave generator and may include any of a variety of ablation tools and/or catheters. Though shown as a biopsy tool and microwave ablation tool in
A radiographic imaging device 20, such as a C-arm imaging device capable of capturing images of at least a portion of the patient's lungs is used in conjunction with system 100. Radiographic imaging device 20 captures images from which a 3D reconstruction can be generated such as a CBCT device or a 3D fluoroscopy device. Generally, both CBCT images and 3D fluoroscopy images are captured by sweeping the radiographic imaging device 20 through a defined sweep angle (e.g., 30-180 degrees and any integer value within that range). By processing the individual images or video captured during the sweep, a 3D reconstruction can be generated which is similar to a traditional CT image. As will be understood CBCT images have similar resolution to CT images whereas fluoroscopy images have a lower resolution.
As shown in
Computing device 80 includes software and/or hardware, such as application 81, used to facilitate the various phases of an EMN procedure, including generating the 3D model, identifying a target location, planning a pathway to the target location, registering the 3D model with the patient's actual airways, navigating to the target location, and performing treatment at the target location. For example, computing device 80 utilizes data acquired from a CT scan, CBCT scan, magnetic resonance imaging (MRI) scan, positron emission tomography (PET) scan, and/or any other suitable imaging modality to generate and display the 3D model of the patient's airways, to enable identification of a target location on the 3D model (automatically, semi-automatically or manually) by analyzing the image data and/or 3D model, and allow for the determination and selection of a pathway through the patient's airways to the target location. While the image data may have gaps, omissions, and/or other imperfections included in the image data, the 3D model is a smooth representation of the patient's airways, with any such gaps, omissions, and/or imperfections in the image data filled in or corrected. The 3D model may be presented on a display monitor associated with computing device 80, or in any other suitable fashion.
Though described herein generally as generating a 3D model from either pre-operative CT images, CBCT images, or 3D fluoroscopy images, application 81 may not need to generate the 3D model or even a 3D reconstruction. Instead, that functionality may reside in the computing device associated with the radio graphic imaging device 20 or the PACS server. In such scenarios, the application 81 need merely import the 3D reconstruction or 3D model generated from a CT image, CBCT image, fluoroscopy images by the radiographic imaging device 20 or the PACS server.
Using computing device 80, various views of the image data and/or 3D model may be displayed to and manipulated by a clinician to facilitate identification of the target location. As noted above, the target location may be a site within the patient's lungs where treatment is to be performed. For example, the treatment target may be located in lung tissue adjacent to an airway. The 3D model may include, among other things, a model airway tree corresponding to the actual airways of the patient's lungs, and show the various passages, branches, and bifurcations of the patient's actual airway tree. Additionally, the 3D model may include lesions, markers, blood vessels and vascular structures, lymphatic vessels and structures, organs, other physiological structures, and/or a 3D rendering of the pleural surfaces and fissures of the patient's lungs. Some or all of the aforementioned elements may be selectively displayed, such that the clinician may choose which elements should be displayed when viewing the 3D model.
After identifying the target location, application 81 may determine a pathway between the patient's trachea and the target location via the patient's airways. In instances where the target location is located in lung tissue that is not directly adjacent an airway, at least a portion of the pathway will be located outside of the patient's airways to connect an exit point on an airway wall to the target location. In such instances, LG 92 and catheter 96 will first be navigated along a first portion of the pathway through the patient's airways to the exit point on the airway wall. LG 94 may then be removed from catheter 96 and an access tool, such as a piercing or puncture tool, inserted into catheter 96 to create an opening in the airway wall at the exit point, catheter 96 may then be advanced through the airway wall into the parenchyma surrounding the airways. The access tool may then be removed from catheter 96 and LG 92 and/or tools 62, 64 reinserted into catheter 96 to navigate catheter 96 along a second portion of the pathway outside of the airways to the target location.
During a procedure, EM sensor 94, in conjunction with tracking system 70, enables tracking of EM sensor 94 (and thus distal tip 93 of catheter 96 or tools 62, 64) as EM sensor 94 is advanced through the patient's airways following the pathway planned during the planning phase. Though generally described herein in connection with EM sensors 94, the disclosure is not so limited. Rather, the position of the bronchoscope 50, catheter 96 or tools 62, 64 can be determined through the use of flex sensors (E.g., Fiber-Bragg sensors) which are used to match the shape of the catheter 96 with the shape of the airways in the 3D model. By sensing the shape of the sensors, and matching the sensor's shape the airways, an accurate determination of the position of the sensor or a distal portion of the bronchoscope 50, catheter 96 or tools 62, 64 can be determined and displayed on the 3D model.
As an initial step of the procedure, when using a 3D model generated from CT scan, the 3D model must be registered with the patient's actual airways to enable application 81 to display an indication of the location of EM sensor 94 on the 3D model corresponding to the location of EM sensor 94 within the patient's airways. The registration is necessary because the CT scan may have been taken days, and even weeks or months prior to the actual procedure. Even if the CT scan were taken the same day, such CT scans are not undertaken within a surgical suite thus registration is still necessary.
One potential method of registration involves performing a survey of the patient's lungs by navigating LG 92 into each lobe of the patient's lungs to at least the second bifurcation of the airways of that lobe. The position of LG 92 is tracked during this registration phase, and the 3D model is iteratively updated based on the tracked position of the sensor 94 within the actual airways of the patient's lungs. While the registration process focuses on aligning the patient's actual airways with the airways of the 3D model, registration also ensures that the position of vascular structures, pleural surfaces, and fissures of the lungs are accurately determined.
Registration, however, does not achieve a perfect match of the position of the patient's lungs and the 3D model. There are a number of reasons for this mismatch, typically called CT-to-body divergence. As an initial matter, traditional CT images are taken at full breath hold. That is, the patient is asked to expand their lungs to a maximum and hold that position while undergoing the imaging. This has the benefit of inflating the airways and increasing their visibility in the CT images and make it easier to generate a highly detailed 3D model. However, when performing the procedure, the patient is not at a full breath hold, rather they are typically sedated and experiencing tidal volume breathing. This results in a difference in shape and position of the airways in the lungs of the patient during the procedure as compared to during the CT imaging. As a result, even when the airways have been registered to the 3D model (e.g., using the airway sweep or another method) there will be differences between the relative positions of the airways or targets identified in the lungs in the model and the actual relative positions of the patient's airways and the target.
One method of addressing the CT-to-body divergence is to utilize a CBCT image data set from radiographic imaging device 20 and not a traditional CT scans as the starting point for the procedure. In this process, the CBCT image data is used to generate and display the 3D model of the patient's airways, to enable identification of a target location on the 3D model (automatically, semi-automatically or manually) by analyzing the image data and/or 3D model, and allow for the determination and selection of a pathway through the patient's airways to the target location. Though the following techniques are described in connection with CBCT images those of skill in the art will appreciate that they are equally applicable to any imaging technique capable of generating a 3D reconstruction such as 3D fluoroscopy, as noted above.
Radiographic imaging device 20 may then be engaged and the computing device 80 receives the CBCT at step 204. The computing device 80 includes one or more applications for processing the CBCT data and presenting it on one or more user interfaces for manipulation and assessment. At step 206, the application analyzes the CBCT data and generates a 3D model of the airways. This 3D model can be manipulated by the user via a user-interface to ensure that it has sufficient resolution and sufficiently captures the airways of the patient (e.g., to a particular bifurcation point). A rejection of the 3D model may be received by the application at which point a further CBCT image may be acquired and the process restarted at step 204. The rejection may be based for example, on the clinician not being satisfied with the 3D model (e.g., insufficient bifurcation generation, missing a lobe or a significant portion thereof), alternatively, the 3D model may simply appear incorrect based on the clinician's experience with the physiology of patients. These types of deficiencies may be the result of improper or insufficient CBCT imaging or an improper setting on the radio graphic imaging device 120.
Acceptance of the 3D model is received by the application at step 208 and the user-interface presents CBCT images or virtual CBCT images of the patient's lungs from the CBCT at step 210. These CBCT images are slice images either taken at or generated for different points of the patient's lungs in cross section. The user interface allows the user to scroll through these images which show one or more of the axial, coronal or sagittal planes (though others are also possible) of the lungs and allows the user to identify a target within the images. The application receives the indication of a target at step 212 and generates a pathway to reach the target through airways at step 214. The target indication may be a manual marking by a clinician providing the indication through a user interface on computing device 80. Alternatively, the application 81 may perform an image analysis and automatically detect the target and provide the indication of its location. The user interface then displays the pathway though the airways in one or more CBCT images, virtual CBCT images, or a virtual bronchoscopy view of the 3D model at step 216. The user interface may additionally or alternatively display the pathway on one or more of CBCT images or virtual CBCT images.
The CBCT images will also show the presence of the bronchoscope 50 or catheter 96 that had been previously inserted into the patient. At step 217 the application can determine whether the sensor 94 has moved since the acquisition of the CBCT images. If the sensor 94 has not moved since the taking of the CBCT images in step 204, then the position of the EM sensor detected in step 202 corresponds to the position of the distal end of the bronchoscope 50 or catheter 96 in the images. As such the EM coordinate system and the CBCT image system are registered to one another and no further steps need be taken to register the patient's lungs to the 3D model generated from the CBCT images and further navigation can be undertaken following the planned pathway through the 3D model with confidence.
If the determination at step 217 is that the sensor 94 has moved, or moved greater than some threshold, then an indicator can be presented on the user interface suggesting that the user perform a survey, as described above, and the application 81 receives the survey data at step 218. The survey involves the insertion of the EM sensor 94 into the lobes of the lungs receipt by the tracking system 70 of the position of the EM sensor as it moves through the airways. As many hundreds or thousands of these positions (EMN coordinates) are collected a point cloud of positions is created. The point cloud, of which all points are assumed to be taken from within the luminal network has a 3D dimensional shape that can then be matched to the 3D shape of the airways to register to the 3D model and the airways of the patient. Once registered the detected position of the EM sensor can be used to follow a pathway in the 3D model to the identified target. The detected position of the EM sensor relative to the pathway and the target is continually updated on the user interface at step 220 until determining that the target has been is arrived at step 222 and a procedure is undertaken at step 224. The procedure may be a biopsy or a treatment of the target such as ablation (e.g., RF, microwave, cryo, thermal, chemical, immunotherapy, or combinations of these).
Whether the patient and the CBCT images are registered because the sensor 94 did not move following the imaging (step 216), or by use of the survey (step 218), this registration using a CBCT image should essentially eliminate any CT-to-body divergence issue as the CBCT images were acquired with the patient in exactly the same position as when the navigation procedure commences. Moreover, the CBCT images are taken while the patient is undergoing tidal breathing as opposed to full breath hold, thus the differences between the patient's lungs and the 3D modeling when tradition CT images are used while the patient is at full breath hold.
Though not described in detail here, the positioning and navigation of the EM sensor 94 (e.g., on bronchoscope 50, catheter 96, or other tools) may be done manually as described above in connection with catheter guide assembly 90 or may be achieved using a robotically driven catheter guide assembly.
A further method 300 that may be used with system 100 is described in connection with
At optional step 306, which may be at any time following completion of the planning phase, the patient is situated on the table 40 and the data from an survey (e.g., insertion of an EM sensor 94 into the airways) is received by the tracking system 70 and processed by application 81 in computing device 80. At step 308 CBCT image is acquired by application 81 of the desired portion of the patient using radiographic imaging device 20. This CBCT image may include the bronchoscope 50 or another device including EM sensor 94. Optionally, at step 310 a CBCT 3D model may be generated from the CBCT image. Alternatively, the acquired CBCT image received at step 308 may include a 3D model that was generated by software resident on the radio graphic imaging device 20, or on the PACS server, and supplied to the computing device 80 and application 81 with the CBCT image.
Both the pre-operative CT image that was used for the planning phase and the CBCT image acquired in step 308 are in Digital Imaging and Communications in Medicine (DICOMM) format. The DICOMM format includes reference to the coordinate system with which the image was acquired. As a result, the application 81, at step 312 transforms the coordinate system of the pre-operative CT image with the coordinate system of the CBCT image taken by the radiographic imaging device 20. Step 312 effectively registers the pre-operative CT image with the CBCT image.
Alternatively, at step 311 the application 81 aligns the CBCT 3D model generated at step 310 a 3D model generated from the pre-operative CT image and received at step 302. The alignment of the two 3D models registers the pre-operative CT image with the CBCT image. The application may present either or both of the pre-operative CT 3D model and the CBCT 3D model on a user interface and request confirmation of alignment by a user or allow for interaction by the user to finalize the orientation of the two 3D models relative to each other to finalize the registration of the two 3D models. Alternatively, this may be automatically performed by application 81.
A further alternative with respect to registration is to make an assumption as to alignment of the patient in the pre-operative CT image and the CBCT image. This process relies on the fact that during imaging with the radiographic imaging device 20 the patient is always lying flat on the table 40 with their chest away from the table 40 along the length of the table 40 and that they will be in essentially this position during the acquisition of the pre-operative CT. In this registration process, the application 81 may request via the user interface that the clinician identify a common point in both the pre-operative CT and the CBCT image. This point could be the target, as described above with respect to method 200, or it could be a point such as a main carina of the lungs or a rib or some other feature which appears in both image data sets. Alternatively, the application 81 may utilize various image processing techniques to identify these common features in the two image data sets and to register them to one another. Once identified, either manually or automatically, because of the assumption that the patient is aligned on the table 40 essentially in the same position in both images, the two image data sets (e.g., pre-operative CT and CBCT images) are registered to one another. As will be appreciated, the identification of 2, 3, 4, 5, 10 points, either automatically or by a clinician using the user interface will refine the registration even more, where desired. In some aspects this may be achieved using mutual information techniques of image brightness matching. This may be assisted by various deep learning methodologies where empirical algorithms are developed by the processing of hundreds or thousands or more images and performing the registration.
At step 314, once the two CT images or 3D models are registered to one another, all the planning data that was generated using the pre-operative CT image can be transferred to the CBCT image acquired at step 308 or to the 3D model acquired at step 310. With features such as the target and a pathway to the target, among others, transferred from the pre-operative CT image to the CBCT image, if a 3D model of the CBCT image was not generated at step 310, it can now be generated at step 316 and will include the target and pathway that has been transferred from the pre-operative CT image to the CBCT image at step 312. Alternatively, where the CBCT 3D model was generated at step 310, but the pre-operative CT 3D model and the CBCT 3D model were not registered to one another at step 311, the features transferred can be matched to the CBCT 3D model at optional step 318. Regardless of when the transfer to the features occurs, the application 81 can cause a user interface to display the CBCT 3D model and CBCT images and the features from the planning phase identified in the pre-operative CT image can be displayed therein on a user interface at step 320.
In instances where a survey was not undertaken at step 306, a survey can be undertaken at step 322. This survey registers the CBCT image and the CBCT 3D model to the patient's lungs by navigating the sensor 94, which is embodied on the bronchoscope 50, catheter 96 or another tool, into the airways of the patient, generating the point cloud discussed above. As will be appreciated, other methods of registration may also be employed without departing from the scope of the present disclosure. If the survey were conducted in step 306, above, the application may proceed during the acquisition of the CBCT image at step 308 to conduct the EM sensor 94 movement analysis, described above in step 216 to register the patient's airways to the CBCT image and 3D model generated therefrom. Once registered the detected position of the EM sensor can be used to follow a pathway in the CBCT 3D model to the target originally identified in the pre-operative CT image. The detected position of the EM sensor 94 relative to the pathway and the target is continually updated on the user interface at step 324 until the application 81 determines that the target has been arrived at step 326 and a procedure may be undertaken upon arrival at step 328. As an alternative, to use of an EM sensor 94 and detection of its position, the radiographic imaging device 20 may be capable of generating fluoroscopic images. The position of the catheter 96 may be detected in one or more fluoroscopic images that are acquired by the radio graphic imaging device 20. This detection may be manual by the clinician using a user interface on computing device 80 or may be performed by the application 81 via image processing techniques. Because the coordinate system is the same between the CBCT images and the fluoroscopic images acquired by the same device, the detected position of the catheter 96 in the fluoroscopic images can be transferred to the CBCT images or CBCT 3D model. The fluoroscopic images may be acquired periodically as the catheter 96 is navigated towards the target. The procedure may be a biopsy or a treatment of the target such as ablation (e.g., RF, microwave, cryo, thermal, chemical, immunotherapy, or combinations of these).
As with the method of
A method 400 is described with reference to
After the planning phase is complete, the patient may be placed on the table 40 and a bronchoscope 50 or catheter 96 inserted such that a sensor 94 can be detected by the tracking system 70 and that data provided to the application 81 at step 406. Next a survey can be conducted and a point cloud of positions of the sensor 94 received by the tracking system 70 as the survey is conducted at step 408. With the point cloud, the patient and the pre-operative CT image as well as the 3D model generated therefrom are registered to one another at step 410. As noted above, the sensor 94 may be an EM sensor, a flex sensor, or other sensor useable to determine a position of the catheter 96 or bronchoscope in a patient and depict that position in the pre-operative, thus registering the patient and the pre-operative CT image and 3D model.
With the patient and the pre-operative CT image registered navigation can commence with the tracking system 70 receiving indications of new locations of the sensor 94 as it is moved through the airways of the patient and the detected positions being updated on a user interface at step 412 as the pathway is followed to an identified target.
Once the sensor 94, and more particularly the bronchoscope 50, catheter 96, or other tool including the sensor 94, is proximate the target a CBCT image can be generated with radiographic imaging device 20 at step 414. At this point at least two different options are available. In accordance with one option, at step 416, a CBCT 3D model is generated from the CBCT image. Next at step 418 the point cloud that was generated by the survey at step 408 may be recalled from a memory in the computerized device 80 in which it is stored, and fit to the CBCT image, and the CBCT 3D model. Alternatively, the method may skip forward to step 420, where the CBCT model and the CBCT images are registered by any of the methods described herein and can be presented on a user interface. Because the CBCT image and 3D model are registered with the patient based on the survey from step 408, the pathway and targets identified at step 404 can be transferred from the pre-operative CT image 3D model to the CBCT image and CBCT 3D model at step 422 in
As noted above, after step 414 an alternative method can be followed. At a step 430 the CBCT image, which includes the bronchoscope 50 or catheter 96 (or other tool) with sensor 94 therein is within the CBCT image, the CBCT image and/or CBCT 3D model can be analyzed to determine the relative position of the target and a distal end of the bronchoscope 50 or catheter 96. This relative position determination can be automatically derived by the application 81. Alternatively, the relative position can be determined by receipt of an indication of the location of the bronchoscope 50 or catheter 96 via the user interface, where one or more of the target and the distal end of the bronchoscope 50 or catheter 96 are shown in 2D images or the 3D model. The position of the target can be assumed to be the same in both the pre-operative CT image and the CBCT image. The relative position data can then be used by the application 81 at step 432 to update the detected position of the sensor 94 in the pre-operative CT image and the 3D model derived from the pre-operative CT. This update of position will account for the CT-to-body divergence that results from the use of the pre-operative CT image and the 3D model for navigation. Again, the last mile movement of the sensor 94 to the target can be detected at step 426 and a procedure can be performed at step 428.
As will be appreciated, the system 100, and particularly application 81 being run on computing device 80, can be configured to control operation of the radiographic imaging device 20. This control may be via user input to a user interface. As such according to this Alternatively, the application, can be configured, following registration of the pre-operative CT or an initial CBCT image to a patient (if required) and the identification of target, to adjust the imaging field of the CBCT to focus on the target. The application 81 may, using the location of the target in the patient, focus all future CBCT imaging on the target. This may be done without any intervention by the user. Similarly, the application 81 may initiate CBCT imaging at points during any of the methods described with respect to methods 200-400, without interaction from a user. For example in connection with a method 500 depicted in
The CBCT image is acquired via radiographic imaging device 20 and received by application 81 at step 506. This CBCT image may be used as described particularly with respect to the CBCT imaging described in the method 400. Alternatively, the use of CBCT imaging may be reviewed and considered completely separate from methods 200-400 and simply as another visual tool employed by the clinician to confirm placement, locations, and other clinical observations.
A further aspect of the disclosure is directed to breathing detection to assist in CBCT imaging. The method 600 is described with respect to
If the CBCT image is the first CT image acquired for a procedure, the application 81 can at step 608 direct the radiographic imaging device to only acquire images when the reference sensors are within a tolerance of a desired portion of the breathing phase (e.g., nearing end of exhale phase, or nearing end of inhale phase). For example, nearing the end of the inhale phase may allow for the airways to be in an expanded state resulting in potentially cleaner images that can generate a more accurate 3D model due to the contrast of the airways that results from airways being expanded. Alternatively, when the breathing phase is approaching the end of the exhale phase, there may be a longer duration of the breathing cycle where there is substantially no movement of the lungs, thus allowing for more images to be captured and enhancing the stability of the images as they are acquired in the CBCT image.
At step 610 the application 81 signals the radiographic imaging device 20 to being imaging. When application 81 determines at step 612 that the desired portion of breathing phase is about to end the application signals the radiographic imaging device 20 to stop imaging the patient at step 614. At step 616 the application can determine whether the CBCT imaging is complete. If not, the method continues to step 618 where the application 81 determines that the desired breathing phase is about to be entered, by monitoring the position of the reference sensors 74, and the method returns to step 610 where the radiographic imaging device 20 again acquires images during the desired portion of the breathing phase. If the CBCT imaging is complete at step 616, then the application 81 stops the radiographic imaging device 20 at step 6192 and proceeds to the next steps in methods 200-400.
Where a registration is desired between a either a pre-operative CT image or a previously acquired CBCT image, the application 81 can at step 608 signal the radiographic imaging device 20 to acquire images only during those portions of the breathing cycle that most closely match the breathing cycle of the previously acquired CT or CBCT images. By matching the breathing cycles as closely as possible, the two image data sets will more closely resemble one another making registration between the two easier and to transfer features such as a target or a pathway from the first CT image to a second. For example, in instances where registration to a pre-operative CT image is desired, the radiographic imaging device 20, can be directed by the application 81 to acquire CBCT images only during portions of the breathing cycle approaching the maximum inhale of normal tidal breathing position. When it is two CBCT images that are to be acquired the application 81 can store in memory the breathing phase of the first CBCT image and direct the radiographic imaging device 20 acquire images at the same phase of breathing at step 608.
As will be appreciated, by limiting imaging to a specified portion of the breathing phase the time required to acquire a CBCT image may be increased and may take several breathing cycles to complete. This may minimally extend the time required to acquire the CBCT image but results in greater fidelity of the captured image as the lungs are always imaged in about the same position of the breathing cycle. In addition, by monitoring the reference sensors 74, if a patient were to cough or move on the table 40 during the imaging process, the application 81 which is monitoring the positions of the reference sensors 74 thorough the breathing cycle can detect the rapid movement of the sensor 74. If such a movement is detected during imaging by the radiographic imaging device 20 at step 622, the application 81 can reject the most recently acquired portion of the CBCT image at step 624. The application 81 can then direct the radiographic imaging device 20 to reposition itself at step 626 to reacquire a portion of the CBCT image that corresponds to that which was rejected in the next breathing phase and the method proceeds back to step 610.
Turning now to
Memory 702 may include any non-transitory computer-readable storage media for storing data and/or software that is executable by processor 704 and which controls the operation of computing device 80. In an embodiment, memory 507 may include one or more solid-state storage devices such as flash memory chips. Alternatively, or in addition to the one or more solid-state storage devices, memory 702 may include one or more mass storage devices connected to the processor 704 through a mass storage controller (not shown) and a communications bus (not shown). Although the description of computer-readable media contained herein refers to a solid-state storage, it should be appreciated by those skilled in the art that computer-readable storage media can be any available media that can be accessed by the processor 704. That is, computer readable storage media includes non-transitory, volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. For example, computer-readable storage media includes RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, Blu-Ray or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computing device 80.
Network interface 708 may be configured to connect to a network such as a local area network (LAN) consisting of a wired network and/or a wireless network, a wide area network (WAN), a wireless mobile network, a Bluetooth network, and/or the internet. Input device 710 may be any device by means of which a user may interact with computing device 80, such as, for example, a mouse, keyboard, foot pedal, touch screen, and/or voice interface. Output module 712 may include any connectivity port or bus, such as, for example, parallel ports, serial ports, universal serial busses (USB), or any other similar connectivity port known to those skilled in the art.
Following identification, at step 808 the computing device 80 can register the CBCT scan data with the electromagnetic field generated by the tracking system 70. Registration may be undertaken in a variety of ways. If, for example, the coordinate system of the radiological image device 20 is perpendicular to the operating table 40, all that is required is translation of the CBCT coordinates to match the tracking system (e.g., EM coordinates of the field produced by EM field generator 76). Alternatively, registration may be achieved utilizing a pose estimation technique.
To determine the pose for each slice making up the CBCT scan, fiducial markers which are formed in or on the EM field generator 76 placed under the patient are analyzed. The markers may be evenly spaced or may be varyingly spaced from one another in a known pattern. Regardless of how spaced, the orientation and placement of the markers is know and the spacing and positioning of the markers in any slice of the CBCT can be analyzed to determine the angle of the device relative to the radiographic imaging device 20 relative to the EM field generator 76. With the known position of the markers, and both a marked position of the distal portion of the catheter 96 and a detected position of the catheter as identified by the tracking system 70, a mathematical transform from the coordinate system of the CBCT scan data to the coordinate system of the tracking system 70 (e.g., EM coordinates).
Once registration is complete, at step 810, a 3D model of the patient's lungs can be generated from the CBCT scan, similar to the process described above with the pre-procedure CT image. At step 312, a pathway is generated through the 3D model from the marked position of the distal portion of the catheter 96 to the marked position of the target. This pathway may be manually created by a user, semi-automatically, or automatically derived, much as it might be in a 3D model from a pre-procedure CT scan. Navigation to the target may now be undertaken. If at any time during the navigation the user wishes to perform another CBCT scan, the decision can be made at step 814 and the process can revert back to step 302. The use of multiple CBCT scans may be desirable, for example, when performing microwave or RF ablation procedures within the lungs to ensure accurate placement of an ablation catheter in a desired location in the target. Once navigated to an appropriate location, a user or a robot may remove the LG 92 to allow for placement of an ablation catheter or other tool (e.g., a biopsy tool) to perform a procedure at step 816.
While several aspects of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular aspects.
Number | Name | Date | Kind |
---|---|---|---|
1576781 | Philips | Mar 1926 | A |
1735726 | Bornhardt | Nov 1929 | A |
2407845 | Nemeyer | Sep 1946 | A |
2650588 | Drew | Sep 1953 | A |
2697433 | Zehnder | Dec 1954 | A |
3016899 | Stenvall | Jan 1962 | A |
3017887 | Heyer | Jan 1962 | A |
3061936 | De | Nov 1962 | A |
3073310 | Mocarski | Jan 1963 | A |
3109588 | Polhemus et al. | Nov 1963 | A |
3121228 | Kalmus | Feb 1964 | A |
3294083 | Alderson | Dec 1966 | A |
3367326 | Frazier | Feb 1968 | A |
3439256 | Robert | Apr 1969 | A |
3519436 | Bauer et al. | Jul 1970 | A |
3577160 | White | May 1971 | A |
3600625 | Asahide et al. | Aug 1971 | A |
3605725 | Bentov | Sep 1971 | A |
3614950 | Graham | Oct 1971 | A |
3644825 | Davis et al. | Feb 1972 | A |
3674014 | Hans | Jul 1972 | A |
3702935 | Carey et al. | Nov 1972 | A |
3704707 | Halloran | Dec 1972 | A |
3821469 | Whetstone et al. | Jun 1974 | A |
3822697 | Komiya | Jul 1974 | A |
3868565 | Kuipers | Feb 1975 | A |
3941127 | Froning | Mar 1976 | A |
3983474 | Kuipers | Sep 1976 | A |
4017858 | Kuipers | Apr 1977 | A |
4037592 | Kronner | Jul 1977 | A |
4052620 | Brunnett | Oct 1977 | A |
4054881 | Raab | Oct 1977 | A |
4117337 | Staats | Sep 1978 | A |
4135184 | Pruzick | Jan 1979 | A |
4173228 | Childress et al. | Nov 1979 | A |
4182312 | Mushabac | Jan 1980 | A |
4202349 | Jones | May 1980 | A |
4228799 | Anichkov et al. | Oct 1980 | A |
4249167 | Purinton et al. | Feb 1981 | A |
4256112 | David et al. | Mar 1981 | A |
4262306 | Renner | Apr 1981 | A |
4287809 | Egli et al. | Sep 1981 | A |
4298874 | Kuipers | Nov 1981 | A |
4308530 | Kip et al. | Dec 1981 | A |
4314251 | Raab | Feb 1982 | A |
4317078 | Weed et al. | Feb 1982 | A |
4319136 | Randolph | Mar 1982 | A |
4328548 | Crow et al. | May 1982 | A |
4328813 | Ray | May 1982 | A |
4339953 | Iwasaki | Jul 1982 | A |
4341220 | Perry | Jul 1982 | A |
4341385 | Doyle et al. | Jul 1982 | A |
4346384 | Raab | Aug 1982 | A |
4358856 | Stivender et al. | Nov 1982 | A |
4368536 | Pfeiler | Jan 1983 | A |
4394831 | Egli et al. | Jul 1983 | A |
4396885 | Constant | Aug 1983 | A |
4396945 | Dimatteo et al. | Aug 1983 | A |
4403321 | Krueger | Sep 1983 | A |
4418422 | Richter et al. | Nov 1983 | A |
4419012 | Stephenson et al. | Dec 1983 | A |
4422041 | Lienau | Dec 1983 | A |
4425511 | Brosh | Jan 1984 | A |
4431005 | Mccormick | Feb 1984 | A |
4447224 | Decant, Jr. et al. | May 1984 | A |
4447462 | Tafuri et al. | May 1984 | A |
4485815 | Amplatz et al. | Dec 1984 | A |
4506676 | Duska | Mar 1985 | A |
4543959 | Sepponen | Oct 1985 | A |
4548208 | Niemi | Oct 1985 | A |
4571834 | Fraser et al. | Feb 1986 | A |
4572198 | Codrington | Feb 1986 | A |
4583538 | Onik et al. | Apr 1986 | A |
4584577 | Temple | Apr 1986 | A |
4586491 | Carpenter | May 1986 | A |
4587975 | Salo et al. | May 1986 | A |
4608977 | Brown | Sep 1986 | A |
4613866 | Blood | Sep 1986 | A |
4617925 | Laitinen | Oct 1986 | A |
4618978 | Cosman | Oct 1986 | A |
4621628 | Brudermann | Nov 1986 | A |
4625718 | Olerud et al. | Dec 1986 | A |
4638798 | Hunter et al. | Jan 1987 | A |
4642786 | Hansen | Feb 1987 | A |
4645343 | Stockdale et al. | Feb 1987 | A |
4649504 | Krouglicof et al. | Mar 1987 | A |
4651732 | Frederick | Mar 1987 | A |
4653509 | Oloff et al. | Mar 1987 | A |
4659971 | Suzuki et al. | Apr 1987 | A |
4660970 | Ferrano | Apr 1987 | A |
4673352 | Hansen | Jun 1987 | A |
4686695 | Macovski | Aug 1987 | A |
4688037 | Krieg | Aug 1987 | A |
4696544 | Costella | Sep 1987 | A |
4697595 | Breyer et al. | Oct 1987 | A |
4701049 | Beckman et al. | Oct 1987 | A |
4704602 | Asbrink | Nov 1987 | A |
4705395 | Hageniers | Nov 1987 | A |
4705401 | Addleman et al. | Nov 1987 | A |
4706665 | Gouda | Nov 1987 | A |
4709156 | Murphy et al. | Nov 1987 | A |
4710708 | Rorden et al. | Dec 1987 | A |
4719419 | Dawley | Jan 1988 | A |
4722056 | Roberts et al. | Jan 1988 | A |
4722336 | Kim et al. | Feb 1988 | A |
4723544 | Moore et al. | Feb 1988 | A |
4726355 | Okada | Feb 1988 | A |
4727565 | Ericson | Feb 1988 | A |
4733969 | Case et al. | Mar 1988 | A |
4737032 | Addleman et al. | Apr 1988 | A |
4737794 | Jones | Apr 1988 | A |
4737921 | Goldwasser et al. | Apr 1988 | A |
4742356 | Kuipers | May 1988 | A |
4742815 | Ninan et al. | May 1988 | A |
4743770 | Lee | May 1988 | A |
4743771 | Sacks et al. | May 1988 | A |
4745290 | Frankel et al. | May 1988 | A |
4750487 | Zanetti | Jun 1988 | A |
4753528 | Hines et al. | Jun 1988 | A |
4761072 | Pryor | Aug 1988 | A |
4764016 | Johansson | Aug 1988 | A |
4771787 | Wurster et al. | Sep 1988 | A |
4779212 | Levy | Oct 1988 | A |
4782239 | Hirose et al. | Nov 1988 | A |
4784117 | Miyazaki | Nov 1988 | A |
4788481 | Niwa | Nov 1988 | A |
4791934 | Brunnett | Dec 1988 | A |
4793355 | Crum et al. | Dec 1988 | A |
4794262 | Sato et al. | Dec 1988 | A |
4797907 | Anderton | Jan 1989 | A |
4803976 | Frigg et al. | Feb 1989 | A |
4804261 | Kirschen | Feb 1989 | A |
4805615 | Carol | Feb 1989 | A |
4809694 | Ferrara | Mar 1989 | A |
4821200 | Deberg | Apr 1989 | A |
4821206 | Arora | Apr 1989 | A |
4821731 | Martinelli et al. | Apr 1989 | A |
4822163 | Schmidt | Apr 1989 | A |
4825091 | Breyer et al. | Apr 1989 | A |
4829250 | Rotier | May 1989 | A |
4829373 | Leberl et al. | May 1989 | A |
4836778 | Baumrind et al. | Jun 1989 | A |
4838265 | Cosman et al. | Jun 1989 | A |
4841967 | Chang et al. | Jun 1989 | A |
4845771 | Wislocki et al. | Jul 1989 | A |
4849692 | Blood | Jul 1989 | A |
4860331 | Williams et al. | Aug 1989 | A |
4862893 | Martinelli | Sep 1989 | A |
4869247 | Howard, III et al. | Sep 1989 | A |
4875165 | Fencil et al. | Oct 1989 | A |
4875478 | Chen | Oct 1989 | A |
4884566 | Mountz et al. | Dec 1989 | A |
4889526 | Rauscher et al. | Dec 1989 | A |
4896673 | Rose et al. | Jan 1990 | A |
4905698 | Strohl, Jr. et al. | Mar 1990 | A |
4923459 | Nambu | May 1990 | A |
4931056 | Ghajar et al. | Jun 1990 | A |
4945305 | Blood | Jul 1990 | A |
4945912 | Langberg | Aug 1990 | A |
4945914 | Allen | Aug 1990 | A |
4951653 | Fry et al. | Aug 1990 | A |
4955891 | Carol | Sep 1990 | A |
4961422 | Alexander et al. | Oct 1990 | A |
4977655 | Martinelli | Dec 1990 | A |
4989608 | Ratner | Feb 1991 | A |
4991579 | Allen | Feb 1991 | A |
5002058 | Martinelli | Mar 1991 | A |
5005592 | Cartmell | Apr 1991 | A |
5013047 | Schwab | May 1991 | A |
5013317 | Dean et al. | May 1991 | A |
5016639 | Allen | May 1991 | A |
5017139 | Mushabac | May 1991 | A |
5023102 | Given, Jr. | Jun 1991 | A |
5027818 | Bova et al. | Jul 1991 | A |
5030196 | Inoue | Jul 1991 | A |
5030222 | Calandruccio et al. | Jul 1991 | A |
5031203 | Trecha | Jul 1991 | A |
5042486 | Pfeiler et al. | Aug 1991 | A |
5047036 | Koutrouvelis | Sep 1991 | A |
5050608 | Watanabe et al. | Sep 1991 | A |
5054492 | Scribner et al. | Oct 1991 | A |
5057095 | Fabian | Oct 1991 | A |
5059789 | Salcudean | Oct 1991 | A |
5070462 | Chau | Dec 1991 | A |
5078140 | Kwoh | Jan 1992 | A |
5079699 | Tuy et al. | Jan 1992 | A |
5082286 | Ryan et al. | Jan 1992 | A |
5086401 | Glassman et al. | Feb 1992 | A |
5088928 | Chan | Feb 1992 | A |
5094241 | Allen | Mar 1992 | A |
5097839 | Allen | Mar 1992 | A |
5098426 | Alfred et al. | Mar 1992 | A |
5099845 | Besz et al. | Mar 1992 | A |
5099846 | Hardy | Mar 1992 | A |
5104393 | Isner et al. | Apr 1992 | A |
5105829 | Fabian et al. | Apr 1992 | A |
5107839 | Houdek et al. | Apr 1992 | A |
5107843 | Aarnio et al. | Apr 1992 | A |
5107862 | Fabian et al. | Apr 1992 | A |
5109194 | Cantaloube | Apr 1992 | A |
5119817 | Allen | Jun 1992 | A |
5127408 | Parsons et al. | Jul 1992 | A |
5129654 | Bogner | Jul 1992 | A |
5142930 | Allen et al. | Sep 1992 | A |
5143076 | Hardy et al. | Sep 1992 | A |
5152277 | Honda et al. | Oct 1992 | A |
5152288 | Hoenig et al. | Oct 1992 | A |
5160337 | Cosman | Nov 1992 | A |
5161536 | Vilkomerson et al. | Nov 1992 | A |
5178130 | Kaiya | Jan 1993 | A |
5178164 | Allen | Jan 1993 | A |
5178621 | Cook et al. | Jan 1993 | A |
5186174 | Schloendorff et al. | Feb 1993 | A |
5187475 | Wagener et al. | Feb 1993 | A |
5188126 | Fabian et al. | Feb 1993 | A |
5188368 | Ryan | Feb 1993 | A |
5190059 | Fabian et al. | Mar 1993 | A |
5190285 | Levy et al. | Mar 1993 | A |
5193106 | Desena | Mar 1993 | A |
5196928 | Karasawa et al. | Mar 1993 | A |
5197476 | Nowacki et al. | Mar 1993 | A |
5197965 | Cherry et al. | Mar 1993 | A |
5198768 | Keren | Mar 1993 | A |
5198877 | Schulz | Mar 1993 | A |
5203337 | Feldman | Apr 1993 | A |
5207688 | Carol | May 1993 | A |
5211164 | Allen | May 1993 | A |
5211165 | Dumoulin et al. | May 1993 | A |
5211176 | Ishiguro et al. | May 1993 | A |
5212720 | Landi et al. | May 1993 | A |
5214615 | Bauer | May 1993 | A |
5219351 | Teubner et al. | Jun 1993 | A |
5222499 | Allen et al. | Jun 1993 | A |
5224049 | Mushabac | Jun 1993 | A |
5228442 | Imran | Jul 1993 | A |
5230338 | Allen et al. | Jul 1993 | A |
5230623 | Guthrie et al. | Jul 1993 | A |
5233990 | Barnea | Aug 1993 | A |
5237996 | Waldman et al. | Aug 1993 | A |
5249581 | Horbal et al. | Oct 1993 | A |
5251127 | Raab | Oct 1993 | A |
5251635 | Dumoulin et al. | Oct 1993 | A |
5253647 | Takahashi et al. | Oct 1993 | A |
5255680 | Darrow et al. | Oct 1993 | A |
5257636 | White | Nov 1993 | A |
5257998 | Ota et al. | Nov 1993 | A |
5261404 | Mick et al. | Nov 1993 | A |
5262722 | Hedengren et al. | Nov 1993 | A |
5265610 | Darrow et al. | Nov 1993 | A |
5265611 | Hoenig et al. | Nov 1993 | A |
5269759 | Hernandez et al. | Dec 1993 | A |
5271400 | Dumoulin et al. | Dec 1993 | A |
5273025 | Sakiyama et al. | Dec 1993 | A |
5274551 | Corby, Jr. | Dec 1993 | A |
5279309 | Taylor et al. | Jan 1994 | A |
5285787 | Machida | Feb 1994 | A |
5291199 | Overman et al. | Mar 1994 | A |
5291889 | Kenet et al. | Mar 1994 | A |
5295483 | Nowacki et al. | Mar 1994 | A |
5297549 | Beatty et al. | Mar 1994 | A |
5299253 | Wessels | Mar 1994 | A |
5299254 | Dancer et al. | Mar 1994 | A |
5299288 | Glassman et al. | Mar 1994 | A |
5300080 | Clayman et al. | Apr 1994 | A |
5301061 | Nakada et al. | Apr 1994 | A |
5305091 | Gelbart et al. | Apr 1994 | A |
5305203 | Raab | Apr 1994 | A |
5306271 | Zinreich et al. | Apr 1994 | A |
5307072 | Jones, Jr. | Apr 1994 | A |
5307816 | Hashimoto et al. | May 1994 | A |
5309913 | Kormos et al. | May 1994 | A |
5315630 | Sturm et al. | May 1994 | A |
5316024 | Hirschi et al. | May 1994 | A |
5318025 | Dumoulin et al. | Jun 1994 | A |
5320111 | Livingston | Jun 1994 | A |
5325728 | Zimmerman et al. | Jul 1994 | A |
5325873 | Hirschi et al. | Jul 1994 | A |
5327889 | Imran | Jul 1994 | A |
5329944 | Fabian et al. | Jul 1994 | A |
5330485 | Clayman et al. | Jul 1994 | A |
5333168 | Fernandes et al. | Jul 1994 | A |
5341807 | Nardella | Aug 1994 | A |
5347289 | Elhardt | Sep 1994 | A |
5353795 | Souza et al. | Oct 1994 | A |
5353800 | Pohndorf et al. | Oct 1994 | A |
5353807 | Demarco | Oct 1994 | A |
5357253 | Van et al. | Oct 1994 | A |
5359417 | Mueller et al. | Oct 1994 | A |
5368030 | Zinreich et al. | Nov 1994 | A |
5371778 | Yanof et al. | Dec 1994 | A |
5375596 | Twiss et al. | Dec 1994 | A |
5376795 | Hasegawa et al. | Dec 1994 | A |
5377678 | Dumoulin et al. | Jan 1995 | A |
5383454 | Bucholz et al. | Jan 1995 | A |
5383852 | Stevens-Wright et al. | Jan 1995 | A |
5385146 | Goldreyer | Jan 1995 | A |
5385148 | Lesh et al. | Jan 1995 | A |
5386828 | Owens et al. | Feb 1995 | A |
5389073 | Imran | Feb 1995 | A |
5389101 | Heilbrun et al. | Feb 1995 | A |
5391199 | Ben-Haim | Feb 1995 | A |
5394457 | Leibinger et al. | Feb 1995 | A |
5394875 | Lewis et al. | Mar 1995 | A |
5397321 | Houser et al. | Mar 1995 | A |
5397329 | Allen | Mar 1995 | A |
5398684 | Hardy | Mar 1995 | A |
5398691 | Martin et al. | Mar 1995 | A |
5399146 | Nowacki et al. | Mar 1995 | A |
5400384 | Fernandes et al. | Mar 1995 | A |
5400771 | Pirak et al. | Mar 1995 | A |
5402801 | Taylor | Apr 1995 | A |
5405346 | Grundy et al. | Apr 1995 | A |
5408409 | Glassman et al. | Apr 1995 | A |
5409000 | Imran | Apr 1995 | A |
5413573 | Koivukangas | May 1995 | A |
5417210 | Funda et al. | May 1995 | A |
5419325 | Dumoulin et al. | May 1995 | A |
5423334 | Jordan | Jun 1995 | A |
5425367 | Shapiro et al. | Jun 1995 | A |
5425382 | Golden et al. | Jun 1995 | A |
5426683 | O'farrell et al. | Jun 1995 | A |
5426687 | Goodall et al. | Jun 1995 | A |
5427097 | Depp | Jun 1995 | A |
5429132 | Guy et al. | Jul 1995 | A |
5433198 | Desai | Jul 1995 | A |
5435573 | Oakford | Jul 1995 | A |
5437277 | Dumoulin et al. | Aug 1995 | A |
5443066 | Dumoulin et al. | Aug 1995 | A |
5443489 | Ben-Haim | Aug 1995 | A |
5444756 | Pai et al. | Aug 1995 | A |
5445144 | Wodicka et al. | Aug 1995 | A |
5445150 | Dumoulin et al. | Aug 1995 | A |
5445166 | Taylor | Aug 1995 | A |
5446548 | Gerig et al. | Aug 1995 | A |
5447154 | Cinquin et al. | Sep 1995 | A |
5447156 | Dumoulin et al. | Sep 1995 | A |
5448610 | Yamamoto et al. | Sep 1995 | A |
5453686 | Anderson | Sep 1995 | A |
5456254 | Pietroski et al. | Oct 1995 | A |
5456664 | Heinzelman et al. | Oct 1995 | A |
5456689 | Kresch et al. | Oct 1995 | A |
5456718 | Szymaitis | Oct 1995 | A |
5457641 | Zimmer et al. | Oct 1995 | A |
5458718 | Venkitachalam | Oct 1995 | A |
5464446 | Dreessen et al. | Nov 1995 | A |
5469847 | Zinreich et al. | Nov 1995 | A |
5472441 | Edwards et al. | Dec 1995 | A |
5476100 | Galel | Dec 1995 | A |
5476495 | Kordis et al. | Dec 1995 | A |
5478341 | Cook et al. | Dec 1995 | A |
5478343 | Ritter | Dec 1995 | A |
5480422 | Ben-Haim | Jan 1996 | A |
5480439 | Bisek et al. | Jan 1996 | A |
5483961 | Kelly et al. | Jan 1996 | A |
5485849 | Panescu et al. | Jan 1996 | A |
5487391 | Panescu | Jan 1996 | A |
5487729 | Avellanet et al. | Jan 1996 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5489256 | Adair | Feb 1996 | A |
5490196 | Rudich et al. | Feb 1996 | A |
5492131 | Galel | Feb 1996 | A |
5492713 | Sommermeyer | Feb 1996 | A |
5493517 | Frazier | Feb 1996 | A |
5494034 | Schloendorff et al. | Feb 1996 | A |
5503416 | Aoki et al. | Apr 1996 | A |
5513637 | Twiss et al. | May 1996 | A |
5514146 | Lam et al. | May 1996 | A |
5515160 | Schulz et al. | May 1996 | A |
5515853 | Smith et al. | May 1996 | A |
5517990 | Kalfas et al. | May 1996 | A |
5520059 | Garshelis | May 1996 | A |
5522814 | Bernaz | Jun 1996 | A |
5522815 | Durgin, Jr. et al. | Jun 1996 | A |
5531227 | Bret | Jul 1996 | A |
5531520 | Grimson et al. | Jul 1996 | A |
5531686 | Lundquist et al. | Jul 1996 | A |
5542938 | Avellanet et al. | Aug 1996 | A |
5543951 | Moehrmann | Aug 1996 | A |
5545200 | West et al. | Aug 1996 | A |
5546940 | Panescu et al. | Aug 1996 | A |
5546949 | Frazin et al. | Aug 1996 | A |
5546951 | Ben-Haim | Aug 1996 | A |
5551429 | Michael et al. | Sep 1996 | A |
5555883 | Avitall | Sep 1996 | A |
5558091 | Acker et al. | Sep 1996 | A |
5566681 | Manwaring et al. | Oct 1996 | A |
5568384 | Robb et al. | Oct 1996 | A |
5568809 | Ben-Haim | Oct 1996 | A |
5571083 | Lemelson | Nov 1996 | A |
5572999 | Funda et al. | Nov 1996 | A |
5573533 | Strul | Nov 1996 | A |
5575794 | Walus et al. | Nov 1996 | A |
5575798 | Koutrouvelis | Nov 1996 | A |
5577991 | Akui et al. | Nov 1996 | A |
5583909 | Hanover et al. | Dec 1996 | A |
5588033 | Yeung | Dec 1996 | A |
5588430 | Bova et al. | Dec 1996 | A |
5590215 | Allen | Dec 1996 | A |
5592939 | Martinelli | Jan 1997 | A |
5595193 | Walus et al. | Jan 1997 | A |
5596228 | Anderton et al. | Jan 1997 | A |
5599305 | Hermann et al. | Feb 1997 | A |
5600330 | Blood | Feb 1997 | A |
5603318 | Heilbrun et al. | Feb 1997 | A |
5606975 | Liang et al. | Mar 1997 | A |
5611025 | Lorensen et al. | Mar 1997 | A |
5617462 | Bruce | Apr 1997 | A |
5617857 | Chader et al. | Apr 1997 | A |
5619261 | Larry | Apr 1997 | A |
5620734 | Wesdorp et al. | Apr 1997 | A |
5622169 | Golden et al. | Apr 1997 | A |
5622170 | Schulz | Apr 1997 | A |
5627873 | Hanover et al. | May 1997 | A |
5628315 | Vilsmeier et al. | May 1997 | A |
5630431 | Taylor | May 1997 | A |
5636634 | Kordis et al. | Jun 1997 | A |
5636644 | Hart et al. | Jun 1997 | A |
5638819 | Manwaring et al. | Jun 1997 | A |
5640170 | Anderson | Jun 1997 | A |
5642395 | Larry et al. | Jun 1997 | A |
5643175 | Adair | Jul 1997 | A |
5643268 | Vilsmeier et al. | Jul 1997 | A |
5645065 | Shapiro et al. | Jul 1997 | A |
5646524 | Gilboa | Jul 1997 | A |
5646525 | Gilboa | Jul 1997 | A |
5647361 | Damadian | Jul 1997 | A |
5651047 | Moorman et al. | Jul 1997 | A |
5660856 | Adler-Moore et al. | Aug 1997 | A |
5662108 | Budd et al. | Sep 1997 | A |
5662111 | Cosman | Sep 1997 | A |
5664001 | Tachibana et al. | Sep 1997 | A |
5668844 | Webber | Sep 1997 | A |
5674296 | Bryan et al. | Oct 1997 | A |
5676673 | Ferre et al. | Oct 1997 | A |
5681260 | Ueda et al. | Oct 1997 | A |
5682886 | Delp et al. | Nov 1997 | A |
5682890 | Kormos et al. | Nov 1997 | A |
5690108 | Chakeres | Nov 1997 | A |
5694945 | Ben-Haim | Dec 1997 | A |
5695500 | Taylor et al. | Dec 1997 | A |
5695501 | Carol et al. | Dec 1997 | A |
5696500 | Diem | Dec 1997 | A |
5697377 | Wittkampf | Dec 1997 | A |
5699799 | Xu et al. | Dec 1997 | A |
5701898 | Adam et al. | Dec 1997 | A |
5702406 | Vilsmeier et al. | Dec 1997 | A |
5704361 | Seward et al. | Jan 1998 | A |
5711299 | Manwaring et al. | Jan 1998 | A |
5713369 | Tao et al. | Feb 1998 | A |
5713853 | Clark et al. | Feb 1998 | A |
5713946 | Ben-Haim | Feb 1998 | A |
5715822 | Watkins et al. | Feb 1998 | A |
5715836 | Kliegis et al. | Feb 1998 | A |
5718241 | Ben-Haim et al. | Feb 1998 | A |
5727552 | Ryan | Mar 1998 | A |
5727553 | Saad | Mar 1998 | A |
5729129 | Acker | Mar 1998 | A |
5730129 | Darrow et al. | Mar 1998 | A |
5730130 | Michael et al. | Mar 1998 | A |
5732703 | Kalfas et al. | Mar 1998 | A |
5735278 | Hoult et al. | Apr 1998 | A |
5738096 | Ben-Haim | Apr 1998 | A |
5740802 | Nafis et al. | Apr 1998 | A |
5740808 | Panescu et al. | Apr 1998 | A |
5741214 | Ouchi et al. | Apr 1998 | A |
5741320 | Thornton et al. | Apr 1998 | A |
5742394 | Hansen | Apr 1998 | A |
5744802 | Muehllehner et al. | Apr 1998 | A |
5744953 | Hansen | Apr 1998 | A |
5748767 | Raab | May 1998 | A |
5749362 | Funda et al. | May 1998 | A |
5749835 | Glantz | May 1998 | A |
5752513 | Acker et al. | May 1998 | A |
5752518 | Mcgee et al. | May 1998 | A |
5755725 | Druais | May 1998 | A |
5758667 | Slettenmark | Jun 1998 | A |
5760335 | Gilboa | Jun 1998 | A |
5762064 | Polvani | Jun 1998 | A |
5767699 | Bosnyak et al. | Jun 1998 | A |
5767960 | Orman | Jun 1998 | A |
5769789 | Wang et al. | Jun 1998 | A |
5769843 | Abela et al. | Jun 1998 | A |
5769861 | Vilsmeier | Jun 1998 | A |
5772594 | Barrick | Jun 1998 | A |
5775322 | Silverstein et al. | Jul 1998 | A |
5776050 | Chen et al. | Jul 1998 | A |
5776064 | Kalfas et al. | Jul 1998 | A |
5782762 | Vining | Jul 1998 | A |
5782765 | Jonkman | Jul 1998 | A |
5782828 | Chen et al. | Jul 1998 | A |
5787886 | Kelly et al. | Aug 1998 | A |
5792055 | Mckinnon | Aug 1998 | A |
5795294 | Luber et al. | Aug 1998 | A |
5797849 | Vesely et al. | Aug 1998 | A |
5799055 | Peshkin et al. | Aug 1998 | A |
5799099 | Wang et al. | Aug 1998 | A |
5800352 | Ferre et al. | Sep 1998 | A |
5800535 | Howard, III | Sep 1998 | A |
5802719 | O'farrell et al. | Sep 1998 | A |
5803084 | Olson | Sep 1998 | A |
5803089 | Ferre et al. | Sep 1998 | A |
5807252 | Hassfeld et al. | Sep 1998 | A |
5810007 | Holupka et al. | Sep 1998 | A |
5810008 | Dekel et al. | Sep 1998 | A |
5810728 | Kuhn | Sep 1998 | A |
5810735 | Halperin et al. | Sep 1998 | A |
5820553 | Hughes | Oct 1998 | A |
5820591 | Thompson et al. | Oct 1998 | A |
5823192 | Kalend et al. | Oct 1998 | A |
5823958 | Truppe | Oct 1998 | A |
5828725 | Levinson | Oct 1998 | A |
5828770 | Leis et al. | Oct 1998 | A |
5829444 | Ferre et al. | Nov 1998 | A |
5831260 | Hansen | Nov 1998 | A |
5833608 | Acker | Nov 1998 | A |
5834759 | Glossop | Nov 1998 | A |
5836954 | Heilbrun et al. | Nov 1998 | A |
5837001 | Mackey | Nov 1998 | A |
5840024 | Taniguchi et al. | Nov 1998 | A |
5840025 | Ben-Haim | Nov 1998 | A |
5842984 | Avitall | Dec 1998 | A |
5843051 | Adams et al. | Dec 1998 | A |
5843076 | Webster, Jr. et al. | Dec 1998 | A |
5846183 | Chilcoat | Dec 1998 | A |
5848967 | Cosman | Dec 1998 | A |
5851183 | Bucholz | Dec 1998 | A |
5853327 | Gilboa | Dec 1998 | A |
5857997 | Cimino et al. | Jan 1999 | A |
5865726 | Katsurada et al. | Feb 1999 | A |
5865846 | Bryan et al. | Feb 1999 | A |
5868673 | Vesely | Feb 1999 | A |
5868674 | Glowinski et al. | Feb 1999 | A |
5868675 | Henrion et al. | Feb 1999 | A |
5871445 | Bucholz | Feb 1999 | A |
5871455 | Ueno | Feb 1999 | A |
5871487 | Warner et al. | Feb 1999 | A |
5871523 | Fleischman et al. | Feb 1999 | A |
5873822 | Ferre et al. | Feb 1999 | A |
5881124 | Giger et al. | Mar 1999 | A |
5882304 | Ehnholm et al. | Mar 1999 | A |
5884410 | Prinz | Mar 1999 | A |
5889834 | Vilsmeier et al. | Mar 1999 | A |
5891030 | Johnson et al. | Apr 1999 | A |
5891034 | Bucholz | Apr 1999 | A |
5891134 | Goble et al. | Apr 1999 | A |
5891157 | Day et al. | Apr 1999 | A |
5893885 | Webster, Jr. | Apr 1999 | A |
5899860 | Pfeiffer et al. | May 1999 | A |
5902239 | Buurman | May 1999 | A |
5902324 | Thompson et al. | May 1999 | A |
5904691 | Barnett et al. | May 1999 | A |
5907395 | Schulz et al. | May 1999 | A |
5909476 | Wang et al. | Jun 1999 | A |
5913820 | Bladen et al. | Jun 1999 | A |
5916210 | Winston | Jun 1999 | A |
5919147 | Jain | Jul 1999 | A |
5919188 | Shearon et al. | Jul 1999 | A |
5920319 | Vining et al. | Jul 1999 | A |
5920395 | Schulz | Jul 1999 | A |
5921992 | Costales et al. | Jul 1999 | A |
5923727 | Navab | Jul 1999 | A |
5928248 | Acker | Jul 1999 | A |
5930329 | Navab | Jul 1999 | A |
5935160 | Auricchio et al. | Aug 1999 | A |
5938585 | Donofrio | Aug 1999 | A |
5938602 | Lloyd | Aug 1999 | A |
5938603 | Ponzi | Aug 1999 | A |
5938694 | Jaraczewski et al. | Aug 1999 | A |
5941251 | Panescu et al. | Aug 1999 | A |
5944023 | Johnson et al. | Aug 1999 | A |
5947925 | Ashiya et al. | Sep 1999 | A |
5947980 | Jensen et al. | Sep 1999 | A |
5947981 | Cosman | Sep 1999 | A |
5950629 | Taylor et al. | Sep 1999 | A |
5951461 | Nyo et al. | Sep 1999 | A |
5951475 | Gueziec et al. | Sep 1999 | A |
5951571 | Audette | Sep 1999 | A |
5954647 | Bova et al. | Sep 1999 | A |
5954649 | Chia et al. | Sep 1999 | A |
5954796 | Mccarty et al. | Sep 1999 | A |
5957844 | Dekel et al. | Sep 1999 | A |
5966090 | Mcewan | Oct 1999 | A |
5967980 | Ferre et al. | Oct 1999 | A |
5967982 | Barnett | Oct 1999 | A |
5968047 | Reed | Oct 1999 | A |
5971767 | Kaufman et al. | Oct 1999 | A |
5971997 | Guthrie et al. | Oct 1999 | A |
5976127 | Lax | Nov 1999 | A |
5976156 | Taylor et al. | Nov 1999 | A |
5980504 | Sharkey et al. | Nov 1999 | A |
5980535 | Barnett et al. | Nov 1999 | A |
5983126 | Wittkampf | Nov 1999 | A |
5987349 | Schulz | Nov 1999 | A |
5987960 | Messner et al. | Nov 1999 | A |
5999837 | Messner et al. | Dec 1999 | A |
5999840 | Grimson et al. | Dec 1999 | A |
6001130 | Bryan et al. | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6006126 | Cosman | Dec 1999 | A |
6006127 | Brug et al. | Dec 1999 | A |
6013087 | Adams et al. | Jan 2000 | A |
6014580 | Blume et al. | Jan 2000 | A |
6016439 | Acker | Jan 2000 | A |
6019724 | Gronningsaeter et al. | Feb 2000 | A |
6019725 | Vesely et al. | Feb 2000 | A |
6019728 | Iwata et al. | Feb 2000 | A |
6022578 | Miller | Feb 2000 | A |
6024695 | Taylor et al. | Feb 2000 | A |
6024739 | Ponzi et al. | Feb 2000 | A |
6032675 | Rubinsky | Mar 2000 | A |
6035229 | Silverstein et al. | Mar 2000 | A |
6047080 | Chen et al. | Apr 2000 | A |
6050724 | Schmitz et al. | Apr 2000 | A |
6059718 | Taniguchi et al. | May 2000 | A |
6061588 | Thornton et al. | May 2000 | A |
6063022 | Ben-Haim | May 2000 | A |
6064390 | Sagar et al. | May 2000 | A |
6071288 | Carol et al. | Jun 2000 | A |
6073043 | Schneider | Jun 2000 | A |
6076008 | Bucholz | Jun 2000 | A |
6077257 | Edwards et al. | Jun 2000 | A |
6083162 | Vining | Jul 2000 | A |
6096036 | Bowe et al. | Aug 2000 | A |
6096050 | Audette | Aug 2000 | A |
6104294 | Andersson et al. | Aug 2000 | A |
6104944 | Martinelli | Aug 2000 | A |
6106517 | Zupkas | Aug 2000 | A |
6112111 | Glantz | Aug 2000 | A |
6115626 | Whayne et al. | Sep 2000 | A |
6117476 | Eger et al. | Sep 2000 | A |
6118845 | Simon et al. | Sep 2000 | A |
6122538 | Sliwa, Jr. et al. | Sep 2000 | A |
6122541 | Cosman et al. | Sep 2000 | A |
6123979 | Hepburn et al. | Sep 2000 | A |
6131396 | Duerr et al. | Oct 2000 | A |
6138045 | Kupinski et al. | Oct 2000 | A |
6139183 | Graumann | Oct 2000 | A |
6147480 | Osadchy et al. | Nov 2000 | A |
6149592 | Yanof et al. | Nov 2000 | A |
6151404 | Pieper | Nov 2000 | A |
6156067 | Bryan et al. | Dec 2000 | A |
6161032 | Acker | Dec 2000 | A |
6165181 | Heilbrun et al. | Dec 2000 | A |
6167296 | Shahidi | Dec 2000 | A |
6171303 | Ben-Haim et al. | Jan 2001 | B1 |
6172499 | Ashe | Jan 2001 | B1 |
6175756 | Ferre et al. | Jan 2001 | B1 |
6178345 | Vilsmeier et al. | Jan 2001 | B1 |
6179809 | Khairkhahan et al. | Jan 2001 | B1 |
6181348 | Geiger | Jan 2001 | B1 |
6183444 | Glines et al. | Feb 2001 | B1 |
6188355 | Gilboa | Feb 2001 | B1 |
6192280 | Sommer et al. | Feb 2001 | B1 |
6194639 | Botella et al. | Feb 2001 | B1 |
6201387 | Govari | Mar 2001 | B1 |
6203493 | Ben-Haim | Mar 2001 | B1 |
6203497 | Dekel et al. | Mar 2001 | B1 |
6208884 | Kumar et al. | Mar 2001 | B1 |
6210362 | Ponzi | Apr 2001 | B1 |
6211666 | Acker | Apr 2001 | B1 |
6213995 | Steen et al. | Apr 2001 | B1 |
6213998 | Shen et al. | Apr 2001 | B1 |
6216027 | Parker et al. | Apr 2001 | B1 |
6216029 | Paltieli | Apr 2001 | B1 |
6223067 | Vilsmeier et al. | Apr 2001 | B1 |
6226543 | Gilboa et al. | May 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6236875 | Bucholz et al. | May 2001 | B1 |
6245020 | Moore et al. | Jun 2001 | B1 |
6246231 | Ashe | Jun 2001 | B1 |
6246784 | Summers et al. | Jun 2001 | B1 |
6246898 | Vesely et al. | Jun 2001 | B1 |
6246899 | Chia et al. | Jun 2001 | B1 |
6248074 | Ohno et al. | Jun 2001 | B1 |
6253770 | Acker et al. | Jul 2001 | B1 |
6259942 | Westermann et al. | Jul 2001 | B1 |
6264654 | Swartz et al. | Jul 2001 | B1 |
6266551 | Osadchy et al. | Jul 2001 | B1 |
6272371 | Shlomo | Aug 2001 | B1 |
6273896 | Franck et al. | Aug 2001 | B1 |
6285902 | Kienzle et al. | Sep 2001 | B1 |
6289235 | Webber et al. | Sep 2001 | B1 |
6298262 | Franck et al. | Oct 2001 | B1 |
6304769 | Arenson et al. | Oct 2001 | B1 |
6306097 | Park et al. | Oct 2001 | B1 |
6314310 | Ben-Haim et al. | Nov 2001 | B1 |
6319250 | Falwell et al. | Nov 2001 | B1 |
6331116 | Kaufman et al. | Dec 2001 | B1 |
6331156 | Haefele et al. | Dec 2001 | B1 |
6332089 | Acker et al. | Dec 2001 | B1 |
6335617 | Osadchy et al. | Jan 2002 | B1 |
6341231 | Ferre et al. | Jan 2002 | B1 |
6345112 | Summers et al. | Feb 2002 | B1 |
6346940 | Fukunaga | Feb 2002 | B1 |
6351513 | Bani-Hashemi et al. | Feb 2002 | B1 |
6351659 | Vilsmeier | Feb 2002 | B1 |
6366799 | Acker et al. | Apr 2002 | B1 |
6366800 | Vining et al. | Apr 2002 | B1 |
6373240 | Govari | Apr 2002 | B1 |
6373916 | Inoue et al. | Apr 2002 | B1 |
6380732 | Gilboa | Apr 2002 | B1 |
6381485 | Hunter et al. | Apr 2002 | B1 |
6383144 | Mooney et al. | May 2002 | B1 |
6387092 | Burnside et al. | May 2002 | B1 |
6405072 | Cosman | Jun 2002 | B1 |
6423009 | Downey et al. | Jul 2002 | B1 |
6424856 | Vilsmeier et al. | Jul 2002 | B1 |
6427314 | Acker | Aug 2002 | B1 |
6428547 | Vilsmeier et al. | Aug 2002 | B1 |
6434415 | Foley et al. | Aug 2002 | B1 |
6437567 | Schenck et al. | Aug 2002 | B1 |
6443894 | Sumanaweera et al. | Sep 2002 | B1 |
6445943 | Ferre et al. | Sep 2002 | B1 |
6447504 | Ben-Haim et al. | Sep 2002 | B1 |
6453190 | Acker et al. | Sep 2002 | B1 |
6466815 | Saito et al. | Oct 2002 | B1 |
6468265 | Evans et al. | Oct 2002 | B1 |
6470207 | Simon et al. | Oct 2002 | B1 |
6473634 | Barni | Oct 2002 | B1 |
6473635 | Rasche | Oct 2002 | B1 |
6474341 | Hunter et al. | Nov 2002 | B1 |
6478802 | Kienzle et al. | Nov 2002 | B2 |
6484049 | Seeley et al. | Nov 2002 | B1 |
6484118 | Govari | Nov 2002 | B1 |
6490475 | Seeley et al. | Dec 2002 | B1 |
6493573 | Martinelli et al. | Dec 2002 | B1 |
6496188 | Deschamps et al. | Dec 2002 | B1 |
6498477 | Govari et al. | Dec 2002 | B1 |
6498944 | Ben-Haim et al. | Dec 2002 | B1 |
6499488 | Hunter et al. | Dec 2002 | B1 |
6501848 | Carroll et al. | Dec 2002 | B1 |
6501981 | Schweikard et al. | Dec 2002 | B1 |
6503195 | Keller et al. | Jan 2003 | B1 |
6505065 | Yanof et al. | Jan 2003 | B1 |
6516046 | Froehlich et al. | Feb 2003 | B1 |
6517534 | Mcgovern et al. | Feb 2003 | B1 |
6522907 | Bladen et al. | Feb 2003 | B1 |
6526162 | Asano et al. | Feb 2003 | B2 |
6527443 | Vilsmeier et al. | Mar 2003 | B1 |
6535756 | Simon et al. | Mar 2003 | B1 |
6551325 | Neubauer et al. | Apr 2003 | B2 |
6556696 | Summers et al. | Apr 2003 | B1 |
6558333 | Gilboa et al. | May 2003 | B2 |
6574492 | Ben-Haim et al. | Jun 2003 | B1 |
6574498 | Gilboa | Jun 2003 | B1 |
6578579 | Burnside et al. | Jun 2003 | B2 |
6580938 | Acker | Jun 2003 | B1 |
6584174 | Schubert et al. | Jun 2003 | B2 |
6585763 | Keilman et al. | Jul 2003 | B1 |
6591129 | Ben-Haim et al. | Jul 2003 | B1 |
6593884 | Gilboa et al. | Jul 2003 | B1 |
6603868 | Ludwig et al. | Aug 2003 | B1 |
6609022 | Vilsmeier et al. | Aug 2003 | B2 |
6611700 | Vilsmeier et al. | Aug 2003 | B1 |
6611793 | Burnside et al. | Aug 2003 | B1 |
6615155 | Gilboa | Sep 2003 | B2 |
6618612 | Acker et al. | Sep 2003 | B1 |
6628980 | Atalar et al. | Sep 2003 | B2 |
6650927 | Keidar | Nov 2003 | B1 |
6651669 | Burnside | Nov 2003 | B1 |
6694163 | Vining | Feb 2004 | B1 |
6757557 | Bladen et al. | Jun 2004 | B1 |
6783523 | Qin et al. | Aug 2004 | B2 |
6792390 | Burnside et al. | Sep 2004 | B1 |
6829379 | Knoplioch et al. | Dec 2004 | B1 |
6833814 | Gilboa et al. | Dec 2004 | B2 |
6850794 | Shahidi | Feb 2005 | B2 |
6892090 | Verard et al. | May 2005 | B2 |
6898263 | Avinash et al. | May 2005 | B2 |
6909913 | Vining | Jun 2005 | B2 |
6920347 | Simon et al. | Jul 2005 | B2 |
6925200 | Wood et al. | Aug 2005 | B2 |
7006677 | Manjeshwar et al. | Feb 2006 | B2 |
7072501 | Wood et al. | Jul 2006 | B2 |
7085400 | Holsing et al. | Aug 2006 | B1 |
7096148 | Anderson et al. | Aug 2006 | B2 |
7149564 | Vining et al. | Dec 2006 | B2 |
7167180 | Shibolet | Jan 2007 | B1 |
7174202 | Bladen et al. | Feb 2007 | B2 |
7179220 | Kukuk | Feb 2007 | B2 |
7236558 | Saito et al. | Jun 2007 | B2 |
7301332 | Govari et al. | Nov 2007 | B2 |
7315639 | Kuhnigk | Jan 2008 | B2 |
7324104 | Bitter et al. | Jan 2008 | B1 |
7336809 | Zeng et al. | Feb 2008 | B2 |
7397937 | Schneider et al. | Jul 2008 | B2 |
7428334 | Schoisswohl et al. | Sep 2008 | B2 |
7452357 | Megele et al. | Nov 2008 | B2 |
7505809 | Strommer et al. | Mar 2009 | B2 |
7517320 | Wibowo et al. | Apr 2009 | B2 |
7518619 | Stoval et al. | Apr 2009 | B2 |
7551759 | Hristov et al. | Jun 2009 | B2 |
7630752 | Viswanathan | Dec 2009 | B2 |
7630753 | Simon et al. | Dec 2009 | B2 |
7659912 | Akimoto et al. | Feb 2010 | B2 |
7702153 | Hong et al. | Apr 2010 | B2 |
7751865 | Jascob et al. | Jul 2010 | B2 |
7756316 | Odry et al. | Jul 2010 | B2 |
7788060 | Schneider | Aug 2010 | B2 |
7792565 | Vining | Sep 2010 | B2 |
7805269 | Glossop | Sep 2010 | B2 |
7809176 | Gündel | Oct 2010 | B2 |
7811294 | Strommer et al. | Oct 2010 | B2 |
7822461 | Geiger et al. | Oct 2010 | B2 |
7901348 | Soper et al. | Mar 2011 | B2 |
7907772 | Wang et al. | Mar 2011 | B2 |
7916918 | Suri et al. | Mar 2011 | B2 |
7929014 | Akimoto et al. | Apr 2011 | B2 |
7951070 | Ozaki et al. | May 2011 | B2 |
7969142 | Krueger et al. | Jun 2011 | B2 |
7985187 | Wibowo et al. | Jul 2011 | B2 |
8009891 | Vaan | Aug 2011 | B2 |
8049777 | Akimoto et al. | Nov 2011 | B2 |
8055323 | Sawyer | Nov 2011 | B2 |
8102416 | Ito et al. | Jan 2012 | B2 |
8126241 | Zarkh et al. | Feb 2012 | B2 |
8131344 | Strommer et al. | Mar 2012 | B2 |
8170328 | Masumoto et al. | May 2012 | B2 |
8199981 | Koptenko et al. | Jun 2012 | B2 |
8200314 | Bladen et al. | Jun 2012 | B2 |
8202213 | Ito et al. | Jun 2012 | B2 |
8208708 | Homan et al. | Jun 2012 | B2 |
8219179 | Ganatra et al. | Jul 2012 | B2 |
8257346 | Qin et al. | Sep 2012 | B2 |
8267927 | Dalal et al. | Sep 2012 | B2 |
8290228 | Cohen et al. | Oct 2012 | B2 |
8298135 | Ito et al. | Oct 2012 | B2 |
8335359 | Fidrich et al. | Dec 2012 | B2 |
8391952 | Anderson | Mar 2013 | B2 |
8417009 | Mizuno | Apr 2013 | B2 |
8482606 | Razzaque et al. | Jul 2013 | B2 |
8494612 | Vetter et al. | Jul 2013 | B2 |
8509877 | Mori et al. | Aug 2013 | B2 |
8625869 | Harder et al. | Jan 2014 | B2 |
8672836 | Higgins et al. | Mar 2014 | B2 |
8682045 | Vining et al. | Mar 2014 | B2 |
8696549 | Holsing et al. | Apr 2014 | B2 |
8698806 | Kunert et al. | Apr 2014 | B2 |
8700132 | Ganatra et al. | Apr 2014 | B2 |
8706184 | Mohr et al. | Apr 2014 | B2 |
8706193 | Govari et al. | Apr 2014 | B2 |
8709034 | Keast et al. | Apr 2014 | B2 |
8730237 | Ruijters et al. | May 2014 | B2 |
8768029 | Helm et al. | Jul 2014 | B2 |
8784400 | Roschak | Jul 2014 | B2 |
8798227 | Tsukagoshi et al. | Aug 2014 | B2 |
8798339 | Mielekamp et al. | Aug 2014 | B2 |
8801601 | Prisco et al. | Aug 2014 | B2 |
8819591 | Wang et al. | Aug 2014 | B2 |
8827934 | Chopra et al. | Sep 2014 | B2 |
8828023 | Neff et al. | Sep 2014 | B2 |
8862204 | Sobe et al. | Oct 2014 | B2 |
9008754 | Steinberg et al. | Apr 2015 | B2 |
9129048 | Stonefield et al. | Sep 2015 | B2 |
9247992 | Ladtkow et al. | Feb 2016 | B2 |
9259269 | Ladtkow et al. | Feb 2016 | B2 |
9433390 | Nathaniel et al. | Sep 2016 | B2 |
9459770 | Baker | Oct 2016 | B2 |
9575140 | Zur | Feb 2017 | B2 |
9592095 | Panescu et al. | Mar 2017 | B2 |
9603668 | Weingarten et al. | Mar 2017 | B2 |
9770216 | Brown et al. | Sep 2017 | B2 |
9833167 | Cohen et al. | Dec 2017 | B2 |
9848953 | Weingarten et al. | Dec 2017 | B2 |
9888898 | Imagawa et al. | Feb 2018 | B2 |
9918659 | Chopra et al. | Mar 2018 | B2 |
9974525 | Weingarten et al. | May 2018 | B2 |
10127629 | Razzaque et al. | Nov 2018 | B2 |
10130316 | Funabasama et al. | Nov 2018 | B2 |
10373719 | Soper et al. | Aug 2019 | B2 |
10376178 | Chopra | Aug 2019 | B2 |
10405753 | Sorger | Sep 2019 | B2 |
10478162 | Barbagli et al. | Nov 2019 | B2 |
10480926 | Froggatt et al. | Nov 2019 | B2 |
10524866 | Srinivasan et al. | Jan 2020 | B2 |
10555788 | Panescu et al. | Feb 2020 | B2 |
10610306 | Chopra | Apr 2020 | B2 |
10638953 | Duindam et al. | May 2020 | B2 |
10674970 | Averbuch et al. | Jun 2020 | B2 |
10682070 | Duindam | Jun 2020 | B2 |
10706543 | Donhowe et al. | Jul 2020 | B2 |
10709506 | Coste-Maniere et al. | Jul 2020 | B2 |
10772485 | Schlesinger et al. | Sep 2020 | B2 |
10796432 | Mintz et al. | Oct 2020 | B2 |
10823627 | Sanborn et al. | Nov 2020 | B2 |
10827913 | Ummalaneni et al. | Nov 2020 | B2 |
10835153 | Rafii-Tari et al. | Nov 2020 | B2 |
10842575 | Panescu et al. | Nov 2020 | B2 |
10885630 | Li et al. | Jan 2021 | B2 |
10896506 | Zhao et al. | Jan 2021 | B2 |
20010007918 | Vilsmeier et al. | Jul 2001 | A1 |
20010031919 | Strommer et al. | Oct 2001 | A1 |
20010034530 | Malackowski et al. | Oct 2001 | A1 |
20010036245 | Kienzle et al. | Nov 2001 | A1 |
20010038705 | Rubbert et al. | Nov 2001 | A1 |
20020022837 | Mazzocchi et al. | Feb 2002 | A1 |
20020045916 | Gray et al. | Apr 2002 | A1 |
20020045919 | Johansson-Ruden et al. | Apr 2002 | A1 |
20020065461 | Cosman | May 2002 | A1 |
20020082498 | Wendt et al. | Jun 2002 | A1 |
20020095081 | Vilsmeier | Jul 2002 | A1 |
20020128565 | Rudy | Sep 2002 | A1 |
20020137014 | Anderson et al. | Sep 2002 | A1 |
20020143324 | Edwards et al. | Oct 2002 | A1 |
20020165448 | Ben-Haim et al. | Nov 2002 | A1 |
20020173689 | Kaplan | Nov 2002 | A1 |
20020193686 | Gilboa | Dec 2002 | A1 |
20030013972 | Makin | Jan 2003 | A1 |
20030018251 | Solomon | Jan 2003 | A1 |
20030074011 | Gilboa et al. | Apr 2003 | A1 |
20030086599 | Armato et al. | May 2003 | A1 |
20030095692 | Mundy et al. | May 2003 | A1 |
20030099390 | Zeng et al. | May 2003 | A1 |
20030142753 | Gunday | Jul 2003 | A1 |
20030144658 | Schwartz et al. | Jul 2003 | A1 |
20030160721 | Gilboa et al. | Aug 2003 | A1 |
20030164952 | Deichmann et al. | Sep 2003 | A1 |
20030197686 | Usuda | Oct 2003 | A1 |
20030216639 | Gilboa et al. | Nov 2003 | A1 |
20040000249 | Avetisian | Jan 2004 | A1 |
20040006268 | Gilboa et al. | Jan 2004 | A1 |
20040015049 | Zaar | Jan 2004 | A1 |
20040019350 | O'brien et al. | Jan 2004 | A1 |
20040024309 | Ferre et al. | Feb 2004 | A1 |
20040086161 | Sivaramakrishna et al. | May 2004 | A1 |
20040097804 | Sobe | May 2004 | A1 |
20040122310 | Lim | Jun 2004 | A1 |
20040138548 | Strommer et al. | Jul 2004 | A1 |
20040143317 | Stinson et al. | Jul 2004 | A1 |
20040169509 | Czipott et al. | Sep 2004 | A1 |
20040215181 | Christopherson et al. | Oct 2004 | A1 |
20040249267 | Gilboa | Dec 2004 | A1 |
20040254454 | Kockro | Dec 2004 | A1 |
20050018885 | Chen et al. | Jan 2005 | A1 |
20050027193 | Mitschke et al. | Feb 2005 | A1 |
20050033149 | Strommer et al. | Feb 2005 | A1 |
20050059890 | Deal et al. | Mar 2005 | A1 |
20050085715 | Dukesherer et al. | Apr 2005 | A1 |
20050090818 | Pike, Jr. et al. | Apr 2005 | A1 |
20050107688 | Strommer | May 2005 | A1 |
20050119527 | Banik et al. | Jun 2005 | A1 |
20050154282 | Li et al. | Jul 2005 | A1 |
20050182295 | Soper et al. | Aug 2005 | A1 |
20050197566 | Strommer et al. | Sep 2005 | A1 |
20050207630 | Chan et al. | Sep 2005 | A1 |
20050272971 | Ohnishi et al. | Dec 2005 | A1 |
20060015126 | Sher | Jan 2006 | A1 |
20060058647 | Strommer et al. | Mar 2006 | A1 |
20060064006 | Strommer et al. | Mar 2006 | A1 |
20060079759 | Vaillant et al. | Apr 2006 | A1 |
20060116575 | Willis | Jun 2006 | A1 |
20060149134 | Soper et al. | Jul 2006 | A1 |
20060241396 | Fabian et al. | Oct 2006 | A1 |
20060241399 | Fabian | Oct 2006 | A1 |
20060253030 | Altmann et al. | Nov 2006 | A1 |
20070078334 | Scully et al. | Apr 2007 | A1 |
20070163597 | Mikkaichi et al. | Jul 2007 | A1 |
20070167714 | Kiraly et al. | Jul 2007 | A1 |
20070167738 | Timinger et al. | Jul 2007 | A1 |
20070167743 | Honda et al. | Jul 2007 | A1 |
20070167801 | Webler et al. | Jul 2007 | A1 |
20070167804 | Park et al. | Jul 2007 | A1 |
20070167806 | Wood et al. | Jul 2007 | A1 |
20070225553 | Shahidi | Sep 2007 | A1 |
20070232882 | Glossop et al. | Oct 2007 | A1 |
20070232898 | Huynh et al. | Oct 2007 | A1 |
20070265639 | Danek et al. | Nov 2007 | A1 |
20070287901 | Strommer et al. | Dec 2007 | A1 |
20080008367 | Franaszek et al. | Jan 2008 | A1 |
20080008368 | Matsumoto | Jan 2008 | A1 |
20080018468 | Volpi et al. | Jan 2008 | A1 |
20080033452 | Vetter et al. | Feb 2008 | A1 |
20080086051 | Voegele | Apr 2008 | A1 |
20080097154 | Makower et al. | Apr 2008 | A1 |
20080097187 | Gielen et al. | Apr 2008 | A1 |
20080118135 | Averbuch et al. | May 2008 | A1 |
20080123921 | Gielen et al. | May 2008 | A1 |
20080132909 | Jascob et al. | Jun 2008 | A1 |
20080132911 | Sobe | Jun 2008 | A1 |
20080139886 | Tatsuyama | Jun 2008 | A1 |
20080139915 | Dolan et al. | Jun 2008 | A1 |
20080144909 | Wiemker et al. | Jun 2008 | A1 |
20080147000 | Seibel et al. | Jun 2008 | A1 |
20080154172 | Mauch | Jun 2008 | A1 |
20080157755 | Kruger et al. | Jul 2008 | A1 |
20080161682 | Kendrick et al. | Jul 2008 | A1 |
20080162074 | Schneider | Jul 2008 | A1 |
20080183071 | Strommer et al. | Jul 2008 | A1 |
20080183073 | Higgins et al. | Jul 2008 | A1 |
20080188749 | Rasche et al. | Aug 2008 | A1 |
20080212881 | Hirakawa | Sep 2008 | A1 |
20080243142 | Gildenberg | Oct 2008 | A1 |
20080247622 | Aylward et al. | Oct 2008 | A1 |
20090012390 | Pescatore et al. | Jan 2009 | A1 |
20090030306 | Miyoshi et al. | Jan 2009 | A1 |
20090082665 | Anderson | Mar 2009 | A1 |
20090096807 | Silverstein et al. | Apr 2009 | A1 |
20090182224 | Shmarak et al. | Jul 2009 | A1 |
20090189820 | Saito et al. | Jul 2009 | A1 |
20090284255 | Zur | Nov 2009 | A1 |
20090318797 | Hadani | Dec 2009 | A1 |
20100016658 | Zou et al. | Jan 2010 | A1 |
20100290693 | Cohen et al. | Nov 2010 | A1 |
20100310146 | Higgins et al. | Dec 2010 | A1 |
20100312094 | Guttman et al. | Dec 2010 | A1 |
20110085720 | Averbuch | Apr 2011 | A1 |
20110236868 | Bronstein et al. | Sep 2011 | A1 |
20110237897 | Gilboa | Sep 2011 | A1 |
20110251607 | Kruecker et al. | Oct 2011 | A1 |
20120120091 | Koudijs et al. | May 2012 | A1 |
20120184844 | Gielen et al. | Jul 2012 | A1 |
20120188352 | Wittenberg et al. | Jul 2012 | A1 |
20120190923 | Kunz et al. | Jul 2012 | A1 |
20120203065 | Higgins et al. | Aug 2012 | A1 |
20120249546 | Tschirren et al. | Oct 2012 | A1 |
20120280135 | Bal | Nov 2012 | A1 |
20120287238 | Onishi et al. | Nov 2012 | A1 |
20130063434 | Miga et al. | Mar 2013 | A1 |
20130165854 | Sandhu et al. | Jun 2013 | A1 |
20130231556 | Holsing et al. | Sep 2013 | A1 |
20130303945 | Blumenkranz et al. | Nov 2013 | A1 |
20130317352 | Case et al. | Nov 2013 | A1 |
20140035798 | Kawada et al. | Feb 2014 | A1 |
20140066766 | Stonefield et al. | Mar 2014 | A1 |
20140336461 | Reiter et al. | Nov 2014 | A1 |
20150148690 | Chopra et al. | May 2015 | A1 |
20150265257 | Costello et al. | Sep 2015 | A1 |
20150265368 | Chopra et al. | Sep 2015 | A1 |
20150305612 | Hunter et al. | Oct 2015 | A1 |
20160000302 | Brown et al. | Jan 2016 | A1 |
20160000356 | Brown et al. | Jan 2016 | A1 |
20160005193 | Markov et al. | Jan 2016 | A1 |
20160005220 | Weingarten et al. | Jan 2016 | A1 |
20160038248 | Bharadwaj et al. | Feb 2016 | A1 |
20160073854 | Zeien | Mar 2016 | A1 |
20160157939 | Larkin et al. | Jun 2016 | A1 |
20160183841 | Duindam et al. | Jun 2016 | A1 |
20160192860 | Allenby et al. | Jul 2016 | A1 |
20160287344 | Donhowe et al. | Oct 2016 | A1 |
20170035379 | Weingarten | Feb 2017 | A1 |
20170112576 | Coste-Maniere et al. | Apr 2017 | A1 |
20170135760 | Girotto et al. | May 2017 | A1 |
20170156685 | Dickhans | Jun 2017 | A1 |
20170172664 | Weingarten et al. | Jun 2017 | A1 |
20170209071 | Zhao et al. | Jul 2017 | A1 |
20170258526 | Lang | Sep 2017 | A1 |
20170265952 | Donhowe et al. | Sep 2017 | A1 |
20170280970 | Sartor et al. | Oct 2017 | A1 |
20170311844 | Zhao et al. | Nov 2017 | A1 |
20170319165 | Averbuch | Nov 2017 | A1 |
20170345155 | Higgins et al. | Nov 2017 | A1 |
20170361093 | Yoo et al. | Dec 2017 | A1 |
20180078318 | Barbagli et al. | Mar 2018 | A1 |
20180085079 | Krimsky | Mar 2018 | A1 |
20180146839 | Friedlander et al. | May 2018 | A1 |
20180153621 | Duindam et al. | Jun 2018 | A1 |
20180235709 | Donhowe et al. | Aug 2018 | A1 |
20180240237 | Donhowe et al. | Aug 2018 | A1 |
20180256262 | Duindam et al. | Sep 2018 | A1 |
20180263706 | Averbuch | Sep 2018 | A1 |
20180279852 | Rafii-Tari et al. | Oct 2018 | A1 |
20180325419 | Zhao et al. | Nov 2018 | A1 |
20190000559 | Berman et al. | Jan 2019 | A1 |
20190000560 | Berman et al. | Jan 2019 | A1 |
20190008413 | Duindam et al. | Jan 2019 | A1 |
20190027252 | Calhoun et al. | Jan 2019 | A1 |
20190038359 | Weingarten et al. | Feb 2019 | A1 |
20190038365 | Soper et al. | Feb 2019 | A1 |
20190065209 | Mishra et al. | Feb 2019 | A1 |
20190110839 | Rafii-Tari et al. | Apr 2019 | A1 |
20190139216 | Georgescu et al. | May 2019 | A1 |
20190175062 | Rafii-Tari et al. | Jun 2019 | A1 |
20190183318 | Froggatt et al. | Jun 2019 | A1 |
20190183585 | Rafii-Tari et al. | Jun 2019 | A1 |
20190183587 | Rafii-Tari et al. | Jun 2019 | A1 |
20190192234 | Gadda et al. | Jun 2019 | A1 |
20190209016 | Herzlinger et al. | Jul 2019 | A1 |
20190209043 | Zhao et al. | Jul 2019 | A1 |
20190216548 | Ummalaneni | Jul 2019 | A1 |
20190239723 | Duindam et al. | Aug 2019 | A1 |
20190239831 | Chopra | Aug 2019 | A1 |
20190250050 | Sanborn et al. | Aug 2019 | A1 |
20190254649 | Walters et al. | Aug 2019 | A1 |
20190269470 | Barbagli et al. | Sep 2019 | A1 |
20190272634 | Li et al. | Sep 2019 | A1 |
20190298160 | Ummalaneni et al. | Oct 2019 | A1 |
20190298451 | Wong et al. | Oct 2019 | A1 |
20190320878 | Duindam et al. | Oct 2019 | A1 |
20190320937 | Duindam et al. | Oct 2019 | A1 |
20190336238 | Yu et al. | Nov 2019 | A1 |
20190343424 | Blumenkranz et al. | Nov 2019 | A1 |
20190350659 | Wang et al. | Nov 2019 | A1 |
20190365199 | Zhao et al. | Dec 2019 | A1 |
20190365479 | Rafii-Tari | Dec 2019 | A1 |
20190365486 | Srinivasan et al. | Dec 2019 | A1 |
20190380787 | Ye et al. | Dec 2019 | A1 |
20200000319 | Saadat et al. | Jan 2020 | A1 |
20200000526 | Zhao | Jan 2020 | A1 |
20200008655 | Schlesinger et al. | Jan 2020 | A1 |
20200015925 | Scheib | Jan 2020 | A1 |
20200030044 | Wang et al. | Jan 2020 | A1 |
20200030461 | Sorger | Jan 2020 | A1 |
20200038750 | Kojima | Feb 2020 | A1 |
20200043207 | Lo et al. | Feb 2020 | A1 |
20200046431 | Soper et al. | Feb 2020 | A1 |
20200046436 | Tzeisler et al. | Feb 2020 | A1 |
20200054399 | Duindam et al. | Feb 2020 | A1 |
20200060771 | Lo et al. | Feb 2020 | A1 |
20200069192 | Sanborn et al. | Mar 2020 | A1 |
20200077870 | Dicarlo et al. | Mar 2020 | A1 |
20200078095 | Chopra et al. | Mar 2020 | A1 |
20200078103 | Duindam et al. | Mar 2020 | A1 |
20200085514 | Blumenkranz | Mar 2020 | A1 |
20200109124 | Pomper et al. | Apr 2020 | A1 |
20200129045 | Prisco | Apr 2020 | A1 |
20200129239 | Bianchi et al. | Apr 2020 | A1 |
20200138515 | Wong | May 2020 | A1 |
20200155116 | Donhowe et al. | May 2020 | A1 |
20200170623 | Averbuch | Jun 2020 | A1 |
20200170720 | Ummalaneni | Jun 2020 | A1 |
20200179058 | Barbagli et al. | Jun 2020 | A1 |
20200188038 | Donhowe et al. | Jun 2020 | A1 |
20200188047 | Itkowitz et al. | Jun 2020 | A1 |
20200205903 | Srinivasan et al. | Jul 2020 | A1 |
20200205904 | Chopra | Jul 2020 | A1 |
20200214664 | Zhao et al. | Jul 2020 | A1 |
20200229679 | Zhao et al. | Jul 2020 | A1 |
20200242767 | Zhao et al. | Jul 2020 | A1 |
20200275860 | Duindam | Sep 2020 | A1 |
20200297442 | Adebar et al. | Sep 2020 | A1 |
20200315554 | Averbuch et al. | Oct 2020 | A1 |
20200330795 | Sawant et al. | Oct 2020 | A1 |
20200352427 | Deyanov | Nov 2020 | A1 |
20200364865 | Donhowe et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
0013237 | Jul 2003 | BR |
0116004 | Jun 2004 | BR |
964149 | Mar 1975 | CA |
103068294 | Apr 2013 | CN |
486540 | Sep 2016 | CZ |
2709512 | Aug 2017 | CZ |
2884879 | Jan 2020 | CZ |
3042343 | Jun 1982 | DE |
3508730 | Sep 1986 | DE |
3520782 | Dec 1986 | DE |
3717871 | Dec 1988 | DE |
3831278 | Mar 1989 | DE |
3838011 | Jul 1989 | DE |
4213426 | Oct 1992 | DE |
4225112 | Dec 1993 | DE |
4233978 | Apr 1994 | DE |
19715202 | Oct 1998 | DE |
19751761 | Oct 1998 | DE |
19832296 | Feb 1999 | DE |
19747427 | May 1999 | DE |
10085137 | Nov 2002 | DE |
102009043523 | Apr 2011 | DE |
0062941 | Oct 1982 | EP |
0119660 | Sep 1984 | EP |
0155857 | Sep 1985 | EP |
0319844 | Jun 1989 | EP |
0326768 | Aug 1989 | EP |
0350996 | Jan 1990 | EP |
0419729 | Apr 1991 | EP |
0427358 | May 1991 | EP |
0456103 | Nov 1991 | EP |
0581704 | Feb 1994 | EP |
0600610 | Jun 1994 | EP |
0651968 | May 1995 | EP |
0655138 | May 1995 | EP |
0796633 | Sep 1997 | EP |
0829229 | Mar 1998 | EP |
0857461 | Aug 1998 | EP |
0894473 | Feb 1999 | EP |
0908146 | Apr 1999 | EP |
0922966 | Jun 1999 | EP |
0930046 | Jul 1999 | EP |
1078644 | Feb 2001 | EP |
2096523 | Sep 2009 | EP |
2117436 | Nov 2009 | EP |
1499235 | Aug 2016 | EP |
3413830 | Sep 2019 | EP |
3478161 | Feb 2020 | EP |
3641686 | Apr 2020 | EP |
3644885 | May 2020 | EP |
3644886 | May 2020 | EP |
2417970 | Sep 1979 | FR |
2618211 | Jan 1989 | FR |
2094590 | Sep 1982 | GB |
2164856 | Apr 1986 | GB |
2197078 | May 1988 | GB |
S63240851 | Oct 1988 | JP |
H03267054 | Nov 1991 | JP |
H06194639 | Jul 1994 | JP |
H07159378 | Jun 1995 | JP |
H08233601 | Sep 1996 | JP |
H08299305 | Nov 1996 | JP |
H0325752 | Nov 1997 | JP |
2002306403 | Oct 2002 | JP |
2003290131 | Oct 2003 | JP |
2005287900 | Oct 2005 | JP |
2006204635 | Aug 2006 | JP |
2009018184 | Jan 2009 | JP |
2009078133 | Apr 2009 | JP |
2010279695 | Dec 2010 | JP |
2011193885 | Oct 2011 | JP |
2013506861 | Feb 2013 | JP |
PA03005028 | Jan 2004 | MX |
225663 | Jan 2005 | MX |
226292 | Feb 2005 | MX |
246862 | Jun 2007 | MX |
265247 | Mar 2009 | MX |
284569 | Mar 2011 | MX |
2000010456 | Mar 2000 | WO |
2001067035 | Sep 2001 | WO |
03086498 | Oct 2003 | WO |
03086498 | Oct 2003 | WO |
2009138871 | Nov 2009 | WO |
2011102012 | Aug 2011 | WO |
2013192598 | Dec 2013 | WO |
2015149040 | Oct 2015 | WO |
Entry |
---|
Extended European Search Report issued in European Patent Application No. 20188309.7 dated Mar. 31, 2021. |
Communication pursuant to Article 94(3) EPC issued in European Patent Application No. 20188309.7 dated Oct. 17, 2023. |
Number | Date | Country | |
---|---|---|---|
20210030482 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
62880489 | Jul 2019 | US |