1. Field of the Invention
This invention relates generally to reconstruction of the derisity function of a three-dimensional object from a set of cone-beam projections, such as from an X-ray source. More particularly, the invention relates to methods for cone beam reconstruction using backprojection of locally filtered projections and an X-ray computed tomography (CT) apparatus incorporating the method.
2. Description of Related Art
Technology for X-ray detection in cone-beam (CB) geometry is rapidly improving and offers more and more potential for the construction of robust computed tomography (CT) systems for fast high-resolution volume imaging. However, to optimally build such systems, the problem of CB image reconstruction needs to be fully understood.
The successive works of H. Tuy, “An Inversion Formula for Cone-Beam Reconstruction,” SIAM J. Appl. Math., No. 43, pp. 546-52, 1983, B. D. Smith, “Image Reconstruction from Cone-Beam Projections: Necessary and Sufficient Conditions and Reconstruction Methods,” IEEE Trans. Med. Imag., Vol. MI-4, pp. 1425, 1985 and P. Grangeat, “Mathematical Framework of Cone-Beam 3D Reconstruction via the First Derivative of the Radon Transform,” in Mathematical Methods in Tomography, G. T. Herman, A. K, Louis, and F. Natterer, Eds. Berlin, Germany: Springer-Verlag, 1991, Vol. 1497, Lecture Notes in Mathematics, pp. 66-97, have shown that exact reconstruction at a given location is possible if every plane passing through that location intersects the trajectory of the X-ray source. However, this well-known result, which is fundamental and clearly represented a breakthrough, is not sufficient for most practical applications because its derivative assumed complete CB projections. When only part of the imaged object is illuminated at a given source position, the CB projection is said to be incomplete or truncated. Exact and accurate reconstruction from truncated projections is more complicated than from complete projections. An overview of the problem of reconstructing from truncated projections may be found in R. Clackdoyle, M. Defrise and F. Noo, “Early Results on General Vertex Sets and Truncated Projections in Cone-Beam Tomography,” in Computational Radiology and Imaging: Therapy and Diagnostics, C. Brgers and F. Natterer, Eds. Berlin, Germany: Springer-Verlag, 1999, Vol. 110, IMA Volumes in Mathematics and Its Applications, pp. 113-135. Under some conditions, the problem of reconstructing from truncated projections may even be impossible, see e.g., F. Natterer, The Mathematics of CT, Philadelphia, Pa.: SIAM, 2001.
A general theory to handle CB data truncation remains elusive. Solutions have been found only for particular measurement geometries. Many of these solutions were obtained using a clever handling of data redundancy in a CB filtered-backprojection (FBP) reconstruction framework. See e.g., H. Kudo and T. Saito, “An Extended Completeness Condition for Exact Cone-Beam Reconstruction and Its Applications,” in Conf. Rec. 1994 IEEE Nuclear Science Symp. Medical Imaging Conf., Norfolk Va., 1995, pp. 1710-14; F. Noo, R. Clackdoyle, and M. Defrise, “Direct Reconstruction of Cone-Beam Data Acquired with a Vertex Path Containing a Circle,” IEEE Trans, Image Process., Vol. 7, No. 6, pp. 854-67, Jun. 1998; R. H. Johnson, H. Hu, S. T. Haworth, P. S. Cho, C. A. Dawson and J. H. Linehan, “Feldkamp and Circle and Line Cone-Beam Reconstruction for 3D Micro-CT of Vascular Networks,” Phys. Med. Biol. Vol. 43, pp. 929-40, 1998; H. Kudo and T. Saito, “Fast and Stable Cone-Beam Filtered Backprojection Method for Nonplanar Orbits,” Phys. Med. Biol., Vol. 43, pp. 747-60, 1998; H. Kudo, F. Noo and M. Defrise, “Quasi-Exact Filtered Backprojection Algorithm for Long-Object Problem in Helical Cone-Beam Tomography,” IEEE Trans, Med. Imag., Vil. 19, No. 9, pp. 902-21, Sep. 2000; G. Lauritsch, K. C. Tam, K. Sourbelle and S. Schaller, “Exact Local Region-of-Interest Reconstruction in Spiral Cone-Beam Filtered-Backprojection CT: Numerical Implementation and First Image Results,” in Proc. SPIE Medical Imaging Conf. (Image Processing), Vol. 3979, 2000, pp. 520-32; K. C. Tam, G. Lauritsch and K. Sourbelle, “Filtering Point Spread Function in Backprojection Cone-Beam CT and Its Applications in Long Object Imaging,” Phys, Med. Biol., Vol. 47, pp. 2685-703, 2002; A. Katesevich, “A General Scheme for Constructing Inversion Algorithms for Cone-Beam CT,” I.J.M.M.S., Vol. 21, pp. 1305-21, 2003; G. H. Chen, “An Alternative Derivation of Katsevich's Cone-Beam Reconstruction Formula,” Med. Phys., Vol. 30, No. 12, pp. 3217-26, 2003; J. D. Pack, F. Noo and H. Kudo, “Investigation of Saddle Trajectories for Cardiac CT Imaging in Cone-Beam Geometry,” Phys. Med. Biol., Vol. 49, No. 11, pp. 2317-36; and H. Kudo, F. Noo and M. Defrise, “Cone-Beam Filtered-Backprojection Algorithm for Truncated Helical Data,” Phys. Med. Biol., Vol. 43, pp. 2885-909, 1998.
Other solutions for CB reconstructing from truncated projections for particular measurement geometries were obtained using the formula posed by Grangeat or its truncated version, see H. Kudo, F. Foo, and M. Defrise, “Cone-Beam Filtered-Backprojection Algorithm for Truncated Helical Data,” Phys. Med. Biol., Vol. 43, pp. 2885-909, 1998, in combination with properties of the three-dimensional (3-D) radon transform. See, e.g., H. Kudo and T. Saito, “Extended Cone-Beam Reconstruction Using Radon Transform,” in Conf. Rec. 1996 IEEE Nuclear Science Symp. Medical Imaging Conf., Anaheim, Calif., 1997, pp. 1693-97; K. C. Tam, S. Samarasekera and F. Sauer, “Exact Cone-Beam CT with a Spiral Scan,” Phys. Med. Biol, Vol. 43, pp. 1015-24, 1998; S. Schaller, F. Noo, F. Sauer, K. C. Tam, G. Lauritsch and T. Flohr, “Exact Radon Rebinning Algorithm for the Long Object Problem in Helical Cone-Beam CT,”IEEE Trans, Med. Imag., Vol. 19, No. 5, pp. 361-75, May 2000; and X. Tang and R. Ning, “A Cone Beam Filtered Backprojection (CB-FBP) Reconstruction Algorithm for a Circle-Plus-Two-Arc Orbit,” Med. Phys., Vol. 28, No. 6, pp. 1042-55, 2001.
Many advances in CB reconstruction have been made recently in reconstruction methods for use in helical CB tomography (HCBT). Two of the most interesting results achieved in the HCBT context are disclosed in A. I. Katsevich, “An Improved Exact Filtered Backprojection Algorithm for Spiral Computed Tomography,” Adv. Appl. Math., Vol. 32, No. 4, pp. 681-97, 2004 and Y. Zou and X. Pan, “Exact Image Reconstruction on PI Lines from Minimum Data in Helical Cone-Beam CT,” Phys. Med. Biol., Vol. 49, pp. 941-59, 2004.
Katsevich showed that exact and accurate FBP reconstruction can be achieved with a simple one-dimensional (1-D) Hilbert transform of a derivative of the projection, using a minimum overscan and just slightly more than the data in the Tam-Danielsson (TD) window, see e.g., K. C. Tam, S. Samarasekera and F. Sauer, “Exact Cone-Beam CT with a Spiral Scan,” Phys. Med. Biol, Vol. 43, pp. 1015-24, 1998; and P. E. Danielsson, P. Edholm, J. Eriksson and M. Magnusson Seger, “Toward Exact Reconstruction for Helical Cone-Beam Scanning of Long Objects: A New Detector Arrangement and a New Completeness Condition,” in Proc. 1997 Meeting Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, D. W. Townsend and P. E. Kinahan, Eds., Pittsburgh, Pa., 1997, pp. 141-44. Katsevich has also generalized his formula to general CB tomography and showed incidentally that his formula belongs to the family of methods that can be obtained using a clever handling of data redundancy in a CB-FBP reconstruction framework, see e.g., A. Katesevich, “A General Scheme for Constructing Inversion Algorithms for Cone-Beam CT,” I.J.M.M.S., Vol. 21, pp. 1305-21, 2003.
Zou and Pan investigated the effect of skipping the 1-D Hilbert transform in the reconstruction steps of Katsevich's formula. They argued that by so doing the outcome of the backprojection on any π-line is the Hilbert transform of the values of the density function, ƒ, on this π-line, and they devised from this argument and information on the support of ƒ an accurate algorithm that has the same overscan and efficiency as Katsevich's formula but uses only the data in the TD window. Recall that a π-line is any line segment that connects two points of the helix separated by less than one helix turn, see e.g., P. E. Danielsson, P. Edholm, J. Eriksson and M. Magnusson Seger, “Toward Exact Reconstruction for Helical Cone-Beam Scanning of Long Objects. A New Detector Arrangement and a New Completeness Condition,” in Proc. 1997 Meeting Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, D. W. Townsend and P. E. Kinahan, Eds., Pittsburgh, Pa., 1997, pp. 141-44.
None of these conventional approaches appears to achieve CB reconstruction on various measured lines using virtually arbitrary source trajectories. A measured line is any line that contains a source position and is part of the measurements. Thus, it would be highly advantageous to provide a method for CB reconstruction using backprojection of locally filtered projections and an X-ray CT apparatus incorporating such a method.
Embodiments of the present invention achieve reconstruction on various measured lines (M-lines) using (almost) arbitrary source trajectories. Embodiments of the present invention include applying the processing steps of the well-known algorithm disclosed in L. A. Feldkamp, L. C. Davis and J. W. Kress, “Practical Cone-Beam Algorithm,” J. Opt. Soc. Am. A, Vol. 1, pp. 612-19, 1984, to segments of source trajectories using a simple derivative along the detector rows instead of the ramp filter and obtain a portion of the Hilbert transform of ƒ on various measured lines. Embodiments of the present invention further include achieving the reconstruction of ƒ on these measured lines by obtaining a 1-D function from its Hilbert transform when the latter is only known over the region where the 1-D function is nonzero.
An embodiment of a method to obtain ƒ on line segments that connect two source positions is disclosed according to the present invention. Such line segments are referred to herein as R-lines, which is a short-hand notation for redundantly measured lines. When the X-ray source trajectory is a helix and the extremities of the R-line are separated by less than one helix turn, the R-line is a π-line. In general, there is no guarantee for a voxel to belong to an R-line, so the methods of the present invention do not allow reconstruction at arbitrary locations. The locations where reconstruction is achievable is dependent on the source trajectory and the extent of the detector. Fortunately, a large number of data acquisition geometries have their field-of-view (FOV) entirely covered by R-lines, see, e.g., Danielsson et al. for the helix and Pack et al. for the class of saddle trajectories. To the inventors' knowledge, CB image reconstruction on R-lines of general source trajectories was first suggested by Palamodov, who developed a three-term convolution-based FBP formula, see, e.g., V. P. Palamodov, “Reconstruction from Ray Integrals with Sources on a Curve,” Inv. Prob., Vol. 20, pp. 239-42, 2004. However, the methods of the present invention require less data than Palamodov's for reconstruction on an R-line and can accommodate a certain degree of transverse data truncation (in addition to axial truncation) for reconstruction on some surfaces of R-lines in the case of the helix or a saddle trajectory.
Another embodiment of a method to compute ƒ on some of the measured lines that have only one intersection with the source trajectory is disclosed according to the present invention. This method offers more flexibility in the design of reconstruction algorithms. In the HCBT context, the method enables transverse truncation to be handled over a much larger region than that allowed by the R-lines approach and also offers a way to incorporate redundant data into the reconstruction process for possible reduction of image noise.
Additional features and advantages of the invention will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of embodiments of the present invention.
The following drawings illustrate exemplary embodiments for carrying out the invention. Like reference numerals refer to like parts in different views or embodiments of the present invention in the drawings.
FIGS. 16A-D are illustrations of the parameters involved in the extended DBP formula according to embodiments of the present invention.
This detailed description describes a flexible new methodology for accurate cone-beam reconstruction with source positions on a curve (or set of curves). Embodiments of the methods disclosed herein include inversion formulas that are based on first backprojecting a simple derivative in the projection space and then applying a Hilbert transform inversion in the image space. The local nature of the projection space filtering distinguishes this approach from conventional filtered-backprojection methods. This characteristic together with a degree of flexibility in choosing the direction of the Hilbert transform used for inversion offers two important features for the design of data acquisition geometries, reconstruction algorithms and apparatuses employing the methods of the present invention. First, the size of the detector necessary to acquire sufficient data for accurate reconstruction of a given region is often smaller than that required by previously documented approaches. In other words, more data truncation is allowed. Second, redundant data can be incorporated for the purpose of noise reduction. The validity of the inversion formulas along with the application of these two properties are illustrated with reconstructions from computer simulated data as disclosed herein. In particular, with reference to the helical cone beam geometry context, it is shown that 1) intermittent transaxial truncation has no effect on the reconstruction in a central region, which means that wider patients can be accommodated on existing scanners and, more importantly, that radiation expose can be reduced for region of interest imaging and, 2) at maximum pitch the data outside the Tam-Danielsson window can be used to reduce image noise and thereby improve dose utilization. Furthermore, the degree of axial truncation tolerated by our approach for saddle trajectories is shown to be larger than that of previous methods.
The following disclosure defines the Hilbert transform of a 3-D object density function on a line in space, and discusses how this transform can be inverted while being only known on the segment of the line where ƒ is nonzero. As will be seen in the next sections, the definitions and results presented here provide the foundations for a versatile theory for image reconstruction from CB projections.
Let θ be a unit vector and s be a point in space. Then let L(θ,s) be the line of direction θ through s, and let
r(t,θ,s)=s+tθ (1)
be a parameterization of the points on this line, with t∈(−∞,+∞), see
Now let
k(t,θ,s)=ƒ r(t,θ,s) (2)
be the function that assigns to any given t∈(−∞,+∞) the value of ƒ at location r(t,θ,s) on L(θ,s). We define the Hilbert transform of ƒ on the line L(θ,s) as the Hilbert transform of k(t,θ,s) in t, namely
where the singularity at t′=t is handled in the Cauchy Principal Value sense.
By definition, the behavior of K(t,θ,s) depends on the position of L(θ,s) in space. If L(θ,s) has no intersection with Ω, K(t,θ,s)=0 everywhere. On the other hand, if L(θ,s) intersects Ω, K(t,θ,s) is nonzero at almost any t, even though k(t,θ,s) is zero-outside region t∈(tmin,tmax).
Note that the geometrical meaning of t is retained through the Hilbert transform since the operation of equation (3) is shift-invariant. From this observation, the Hilbert transform of ƒ at location x on the line L(θ,s) has a clear meaning, namely that of K(t,θ,s)|t=(x−s)·θ. Furthermore, since x is on L(θ,s), this expression is independent of s and will be denoted as
From equations (1)-(4),
Also, note from this equation (5) that K*(θ,x) is odd in θ, i.e., K*(−θ,x)=−K*(θ,x).
The important parts of the above derivation are relations converting CB projections into values of K*(θ,x). If these values can be computed for points x that lie on the same line L(θ,s), a sampling of K(t,θ,s) is obtained as
K*(θ,x)|x=s=tθ=K(t,θ,s) (6)
and if that sampling covers the whole region [tmin,tmax], reconstruction of ƒ on L(θ,s) is possible as explained below.
It is well-known that the Hilbert transformation of K(t,θ,s) yields the negative of k(t,θ,s), i.e.,
but this inversion result disregards knowledge on the support of k(t,θ,s) and consequently requires K(t,θ,s) to be known for all t. Since k(t,θ,s) is continuous in t and zero outside (tmin,tmax), there exists a much less demanding inversion formula from the literature on integral equations. This equation (7) can be written as follows:
where C(θ,s) is a constant at fixed (θ,s),
Equation (8) shows that the portion of K(t,θ,s) defined with t∈(tmin,tmax) allows the recovery of k(t,θ,s) over its whole support up to a constant C(θ,s). This recovery essentially involves taking a simple Hilbert transform of a weighted version of K(t,θ,s) over the region t∈(tmin,tmax). It is, therefore, as efficient as equation (7), while less demanding on K(t,θ,s). Also, in the limit where tmin and tmax tend toward −∞ and +∞, respectively, equation (8) converges to equation (7) for a bounded C(θ,s), since w(t′,θ,s)/w(t,θ,s) converges toward 1. Equation (8) is a generalized version of equation (7).
The presence of the unknown, C(θ,s) in equation (8) shows, however, that k(t,θ,s) is not uniquely determined by the values of K(t,θ,s) over the region t∈(tmin,tmax). Additional information is needed to find C(θ,s). One approach is to use the sum of ƒ on the line L(θ,s). That is, if
is known, then from equation (8)
Alternatively, the vanishing of k(t,θ,s) at t=tmin and t=tmax can be used to get
C(θ,s)=k1(tmin,θ,s)=k1(tmax,θ,s) (13)
Both approaches are mathematically valid but present some challenges for numerical implementation. On one hand, equation (12) involves (integrable) singularities at t=tmin and t=tmax that require some careful numerical processing. On the other hand, equation (13) requires a very accurate knowledge of k1(t,θ,s) at t=tmin or t=tmax, which is not likely to be available in practice, due to discretization errors and data noise propagation.
Let ε be a small positive number and let tminε=tminε−ε and tmaxε=tmaxε+ε. To overcome numerical problems, we substitute tminε for tmin and tmaxε for tmax in the right hand side of both equations (9) and (10) to obtain new quantities called wε(t,θ,s) and k1ε(t,θ,s). This substitution requires K(t,θ,s) to be known over a slightly larger domain but simplifies the numerical implementation because equation (8) may be replaced by
where Cε(θ,s) is a new constant to be determined and where χε(t) is any function that tends to zero when t tends to tminε and tmaxε and is equal to one in the region [tmin,tmax] where k(t,θ,s) may be nonzero. For example
with d=(tmin,tmax)/2 and σ(t)=|t−(tmin+tmax))/2|. Repeating the process that led to equation (12) using equation (14) instead of equation (8) as a starting point, we get
which does not include any singularity. Or following the ideas that led to equation (13), we get
Note that χε(t) does not need to be smooth and could in particular be chosen as 1 for τ(t)<d and 0 otherwise, however, for the numerical implementation it is easier to use a smooth χε(t) like that of equation (15).
The two approaches, equations (16) and (17), have been tested by the inventors and as disclosed in a separate paper on two-dimensional (2-D) classical tomography, see, F. Noo, R. Clackdoyle and J. D. Pack, “A Two-Step Hilbert Transform Method for 2D Image Reconstruction,” Phys. Med. Biol., Vol. 49, pp. 3903-23, 2004. Both approaches appear to perform equally well when ε is large enough to include a statistically representative set of samples of k1ε(t,θ,s) over the regions tminε<t<tmin and tmax<t<tmaxε. Otherwise, equation (16) is more robust than equation (17). All the simulations disclosed below employ equation (16).
The following discussion defines the CB projections from which the reconstruction of ƒ is to be achieved, then introduces the concept of a differentiated backprojection (DBP) and shows how this concept links the CB projections to the Hilbert transform of ƒ on measured lines.
Let Ω+ be a bounded and convex neighborhood of Ω. The results disclosed herein apply to CB projections measured on a source trajectory that consists of a union of N≧1 smooth curves Γl,l=1, . . . ,N such that a neighborhood of each curve lies outside Ω+. To simplify the notation, this trajectory is described using a single parameter λ. The source position at λ is a(λ) and the domain of λ is a union of N disjoint intervals Λl,l=1, . . . ,N each of which corresponds to one of the curves Γl composing the trajectory, see, e.g.,
The smoothness of r, is related to the behavior of the tangent vector a′(λ)=da(λ)/d(λ) i.e., it is assumed that a′(λ) is bounded, continuous and nonzero over the interior of Λl for any l. The nonvanishing condition on a′(λ) prohibits corners (angular points) on the Γl curves. However, the source trajectory itself can have corners, for example a zigzag trajectory is admissible as it can be built by connections of line segments which are each smooth curves. Geometrically, the curves Γl may overlap, intersect each other, or be simply connected.
One simple example trajectory is the circle-plus-line trajectory (see, e.g., F. Noo, R. Clackdoyle, and M. Defrise, “Direct Reconstruction of Cone-Beam Data Acquired with a Vertex Path Containing a Circle,” IEEE Trans, Image Process., Vol. 7, No. 6, pp. 854-67, Jun. 1998,) which consists of a circle and a line orthogonal to the plane of the circle. This trajectory may be described using N=2, Λl=[0, 2π) and Λ2=[2π, 4π], with
where R1, R2, and H are free parameters (except for the condition that the source trajectory must be outside Ω+).
The CB projection at position λ is the set of integrals
obtained for all possible unit vectors α. However, since α(λ) is outside Ω+ and Ω+ is convex, there exists a half sphere of unit vectors α that do not point toward the object and for which g is consequently zero. Therefore, the CB projection can be fully described using a flat area detector placed on the opposite side of the object relative to the source, in a plane that intercepts all lines that diverge from the source and go through the object.
When using a flat area detector, the CB projection is denoted gd(λ,u,υ), where u and υ are Cartesian coordinates in the detector plane. For convenience, the orthogonal projection of the source onto that plane is chose as the origin (u, υ)=(0, 0). This choice gives
where ew is the unit vector orthogonal to the detector plane and pointing toward the source, eu and eυ are orthogonal unit vectors in the direction along which u and υ are measured, respectively, and D is the distance from the source to the detector plane (see
There exists an infinite number of possible orientations for a flat detector. When this orientation is such that eu and ew are, respectively, parallel and orthogonal to a′(λ), we say that the detector is well-oriented. Note that the requirement that the detector intercepts all lines diverging from the source toward the object is incompatible with having the detector well-oriented when the line of direction a′(λ) through a(λ) intersects the object. Hereafter, a reference to a well-oriented detector will always assume tacitly that the line of direction a′(λ) through a(λ) does not intersect Ω+, which is more that what is needed to avoid ambiguities but is convenient to simplify the developments.
By definition, the CB projection is truncated for a given source position a(λ) whenever there are values of u and υ for which gd(λ,u,υ) is known (measured) on all lines that diverge from a(λ) and pass through a neighborhood of that set.
The inventive method that allows conversion of CB projections into Hilbert transforms of ƒ on measured lines is a version of a filtered-backprojection procedure, referred to herein as the differentiated backprojection (DBP). This method may be applied to any segment of the smooth curves forming the source trajectory. The method may be best understood as a 3-D extension of the 2-D DBP introduced in F. Noo, R. Clackdoyle and J. D. Pack, “A Two-Step Hilbert Transform Method for 2D Image Reconstruction,” Phys. Med. Biol., Vol. 49, pp. 3903-23, 2004. For a well-oriented detector, a DBP appears equivalent to the application of the filtered backprojection steps of Feldkamp et al., upon removal of the Hilbert kernel from the ramp filter. This essentially corresponds to replacing the ramp filter of Feldkamp et al., by a differentiation filter. More specifically, a DBP for a well-oriented detector is achieved using the following three method steps. See
By definition, the outcome b of a DBP depends on the λ-interval over which the backprojection is carried out. This dependence is written down explicitly in the arguments of b, using the values λ1 and λ2 that define the endpoints of the backprojection range. Furthermore, as stated above in equation (24), there exists a value of l such that [υ1,λ2]⊂Λ1; the DBP is always defined over one smooth segment of the source trajectory.
The DBP concept is a CB generalization of a method that yields the Hilbert transform of ƒ from fan-beam projections in 2-D. However, since there may exist several ways to have a detector well-oriented, it seems natural to ask whether the DBP is really a well-defined (detector-independent) concept. The rest of this section of the detailed description proves this assertion and also explains how to extend the definition of the DBP to a flat detector that is not well-oriented.
To understand why the DBP of the present invention is independent of the way the detector is well-oriented, a more general expression needs to be adopted for b, namely
where gε is the homogeneous extension of degree-1 of the CB projection g in α, i.e.,
or, from equations (19) and (28)
Equation (27) is clearly detector-independent and, like equation (24), defines the DBP as a description of how a backprojection at a given x varies when x is slightly moved in the direction of a′(λ) during the backprojection.
To prove that equation (27) is equivalent to equation (24) for a well-oriented detector, note first from equation (28) that
where u*(λ,x) and υ*(λ,x) are the quantities of equations (25) and (26), and where {overscore (g)} is the weighted projection of equation (22), see
see again
for any well-oriented detector.
For a detector that is not well-oriented, the DBP is obtained from the substitution of x+ha′(λ2) for x in equation (30) that yields a detector-coordinate expression of equation (27). Straightforward but lengthy calculations show that the DBP for an arbitrarily oriented detector remains that of equation (24) provided the following expression for gF is used instead of equation (23)
where eT is the unit vector along a′(λ), i.e., eT=a′(λ)∥a′(λ)∥.
As stated above, the DBP provides a link between CB projections and the Hilbert transform of ƒ on measured lines. Using the equations (1)-(6), this link can be written in the following form: for any x∈Ω+,
1/πba(x,λ1,λ2)=K*(ω(λ2,x),x)−K*(ω(λ1,x),x) (34)
where
and where
is the DBP at x over the interval [λ1,λ2] with added boundary terms.
For a geometric interpretation of equation (34), picture the two lines L1 and L2 that connect a(λ1, ) and a(λ2, ) to x, respectively, as shown in
In general, the usefulness of equation (34) for CB reconstruction is not at all obvious since equation (34) only gives access to differences between Hilbert-transform values. However, when there exists an R-line through x, the situation becomes wholly different, and equation (34) is found to deliver two fundamental formulas for CB reconstruction. These two formulas can be stated as follows:
Formula F1: If a(λ1) and a(λ2) are two arbitrary positions on one of the smooth curves forming the source trajectory, then
for any x∈Ω+ that is on the line joining a(λ1) to a(λ2).
Formula F2: If a(λ1), a(λ2) and a(λ3) are three arbitrary positions on one of the smooth curves forming the source trajectory, then
for any x∈Ω+ that is on the line joining a(λ1) to a(λ2).
Formulas F1 and F2 each give a way to obtain samples of the Hilbert transform of ƒ on measured lines, and provide thereby a basis for CB reconstruction as discussed previously and expanded in the next section. Note, however, that formula F1 is more restrictive than formula F2 as it yields only samples of the Hilbert transform of ƒ on R-lines. In fact, formula F1 is just the particular case of formula F2 defined with λ3=λ1, but formula F1 is sufficiently useful to be individually stated.
To obtain formula F1, as previously stated that K* is odd in its first argument, and note that ω(λ2,x)=−ω(λ1,x) for x on the R-line from a(λ1) to a(λ2), Hence, under the conditions of formula F1, the right hand side of equation (34) is −2K*(ω(λ1,x),x), and equation (34) is equivalent to equation (37).
Formula F2 is obtained by applying equation (34) twice to get
1/πba(x,λ3,λ1)=K*(ω(λ1,x),x)−K*(ω(λ3,x),x) (39)
1/πba(x,λ3,λ2)=K*(ω(λ2,x),x)−K*(ω(λ3,x),x) (40)
Since K*(ω(λ2,x),x)=−K*(ω(λ1,x),x) under the conditions of formula F2, the addition of these two equations side to side immediately yields formula F2.
A proof of equation (34) is now given. Consider the general expression of equation (27) for the DBP using the notation Ge(λ,x) for the integrand in that expression. For x∈Ω+, equation (29) yields
because a(λ) is outside Ω+ while x+ha′(λ) is in Ω+ for h small enough since Ω+ is open. We insert the derivative with respect to h inside the integral of equation (41) and use the chain rule to find
Then, we apply again the chain rule to find
for ξ=a(λ)=t(x−a(λ)) and, thus, from equation (42)
which yields from t/(1−t)=−1+1/(1−t) and equation (29)
Next, the following change of variable
is applied along with equations (5), (28), and (35) to get
Integrating Ge(λ,x) in λ according to the expression of the DBP in equation (27), of which Ge(λ,x) is the integrand, yields directly equation (34) upon some rearrangement of the resulting terms. Note that the conditions assumed on ƒ, Ω+, and the source trajectory justifies the manipulations hereabove, but may not all be necessary; minimum conditions yielding equation (34) were not investigated.
The following discussion investigates the impact of formulas F1 and F2 on reconstruction from CB projections on a source trajectory that consists of a single smooth curve. The impact of formula F1 is discussed first. Next, the added advantages of formula F2 are investigated. In each case, results from computer-simulated data are provided in support of the theory. As in the previous sections, the theory presented here applies to general source trajectories. However, the discussion and examples are mostly focused on a helical trajectory because a good knowledge about the properties of the source trajectory is required for a proficient application of our results. Such properties have only been documented for the helix and the less familiar saddle trajectories, see e.g., J. D. Pack, F. Noo and H. Kudo, “Investigation of Saddle Trajectories for Cardiac CT Imaging in Cone-Beam Geometry,” Phys. Med. Biol., Vol. 49, No. 11, pp. 2317-36.
Note that we are only interested in recovering ƒ at points inside Ω. For this reason, Ω+ does not appear explicitly in the discussion and equations below. However, the fact that the DBP is defined over Ω+ is heavily used because the convex hull of the intersection of a line with Ω does not generally lie in Ω but in Ω+ and the DBP over that convex hull is needed for our developments.
The following is a discussion on reconstruction on R-lines. Recall from above that formula F1 provides a means to obtain samples of the Hilbert transform of ƒ on R-lines, and recall from Section II-B that ƒ can be recovered on any line L in space when the Hilbert transform of ƒ on L is known over the convex hull of the intersection of L with Ω. Combining these two results together, a procedure is obtained for reconstruction of ƒ on any R-line that intersects Ω. Let a(λ1) and a(λ2) be the endpoints of the R-line, and let θ12 be the unit vector in the direction from a(λ1) to a(λ2). Following the notation of developed above, the expression for ƒ on the R-line and its Hilbert transform are given by the functions k(t,θ12,a(λ1)) and K(t,θ12,a(λ1)), respectively, see equations (2) and (3). Using this notation the reconstruction procedure according to an embodiment of the present invention may be described in the following three steps.
The above reconstruction procedure is similar to the method suggested by Zou and Pan for reconstruction on π-lines in HCBT (helical CB tomography) but is not limited to π-lines nor to a helical trajectory. Even so, it only applies to points on R-lines and is, therefore, too restrictive for some source trajectories since the set of points where Tuy's condition is satisfied is in general larger than the set of points that belong to R-lines. However, this drawback is offset by a low request on detector coverage. To achieve reconstruction on an R-line as described above, we just need to guarantee the DBP (with boundary terms) in equation (48) can be computed at all required t. Using the visibility concept described above, this requirement yields the following data completeness condition:
This condition requires little compared to what all previously published CB reconstruction methods would require for reconstruction at points on an R-line. A good illustration of this feature is obtained in the particular case of HCBT, where the CB projection of a π-line from a source position between its endpoints is just a line segment connecting a point on the lower boundary of the TD (Tam-Danielsson) detector window to a point on the upper boundary of this window. See
The inventors have closely examined the R-line reconstruction procedure described herein in terms of transverse truncation in HCBT and have made the following observations. Consider a helical scan with a pitch small enough for the detector area to include the TD window, and consider a patient that extends outside the FOV in the x-direction (the direction orthogonal to sagittal slices) as illustrated in
Experiments from computer-simulated data of the FORBILD head phantom without the ears have been performed to test the accuracy of an embodiment of the R-line reconstruction method of the present invention described above. See Friedrich-Alexander-University Erlangen-Nuimberg, Institute of Medical Physics, Erlangen, Germany (online), available at: www.imp.uni-erlangen.de/forbild/english/results/index.htmfor a description of the FORBILD head phantom. These experiments used the helical trajectory of
and the saddle trajectory of
where in each case λ is the polar angle in the (x, z)-plane, and P and R are shaped parameters. Note that equation (5) was referred to as the X-saddle in J. D. Pack, F. Noo and H. Kudo, “Investigation of Saddle Trajectories for Cardiac CT Imaging in Cone-Beam Geometry,” Phys. Med. Biol., Vol. 49, No. 11, pp. 2317-36.
Helical CB projections were simulated with and without Poisson noise corresponding to an emission of 300,000 photons per ray, using R=57 cm and P=3.24 cm. There were 1160 projections per turn, the detector plane was parallel to the z-axis at distance D=104 cm from the source, the u-axis was parallel to the (x, y)-plane, and the projections were discretized on a grid of square pixels of size 0.14 cm. Reconstructions were then achieved on two sets of R-lines parallel to the (x, y)-plane as illustrated in
While counterintuitive, this increase in noise is not surprising when one considers what happens as R tends to so while P remains fixed. In that limit, the R-lines become identical to the π-lines, and the intervals [π/2, 3π/2], [3π/2,5π/2] and [5π/2,7π/2] of source positions each provide enough information for computation of the Hilbert transform of ƒ on the R-lines. However, the sign of the Hilbert transform given by the second interval of data is opposite to that of the other two, so that the sum of the three Hilbert transforms is a single Hilbert transform. As a consequence, the reconstruction on the R-lines has three times more noise power than the reconstruction on the π-lines since the noise is additive.
Saddle CB projections were simulated with and without Poisson noise. The added noise and the simulation parameters were the same as for the helical data, except that the value of P was 4.4 cm and the normal to the detector plane was chosen along the line joining the source position to the origin x=0. From these projections, reconstructions were achieved on 300 surfaces of R-lines, three of which are illustrated in
The following is a discussion of reconstruction on measured lines (M-lines). Let E be the subset of points in Ω+ that belong to an R-line, and let an M-line be any measured line that intersects Ω and has the convex hull of its intersection with Ω included in E. By construction, an M-line need not be an R-line, and formula F2 gives a means to obtain samples of the Hilbert transform of ƒ on any M-line. Combining this means with the results disclosed above, a method is obtained to reconstruct ƒ on any M-line. Let a(λ) and α be, respectively, the source position and the unit directional vector defining an M-line, and let k(t,α,a(λ)) and K(t,α,a(λ)) be respectively the expression for ƒ and its Hilbert transform on this line, following equations (2) and (3). Using this notation, the reconstruction method is described in the following four steps:
The above method defines a generalization of the R-line approach discussed previously. In comparison with the R-line approach, the M-line reconstruction is still limited to points in E, but there is now a degree of freedom in the selection of the line used for reconstruction at a given location x since this line need not be an R-line. Because the last reconstruction step is nonlocal, this degree of freedom increases imaging capabilities in the presence of truncation. For reconstruction on an M-line, we have the following data completeness condition:
Consider again the truncation problem illustrated in
D. M-Line Simulations
The inventors have tested the above HCBT result on transverse truncation using computer simulated data of an intermittently truncated helical CB scan of an abdomen phantom described in Table I.
This phantom, dubbed the Popeye phantom, was specifically designed with low contrast abdomen structures and large arms to demonstrate the ability to handle transverse truncation. All parameters used for the experiment were identical to those used for the helical simulations of discussed above except that the number of photons used to simulated noisy data and P were increased to 500,000 and 7.4 cm, respectively. Also, the number of detector elements per row was only large enough to cover a cylindrical FOV of radius 13 cm while the radius needed to avoid transverse truncation with the Popeye phantom is 25.5 cm.
The following is another important application of the M-line method to HCBT. Given the new freedom that the M-line method affords with regard to the direction along which the Hilbert inversion is performed for reconstruction at a given location, it is natural to wonder what effect, if any, this choice has on the noise properties of the final reconstruction. In the case of a 180° 2-D parallel-beam scan, no significant difference is observed when the inversion is performed along lines parallel to the x-axis in stead of the y-axis, see e.g., Noo-Clackdoyle-Pack cited above. However, in HCBT with a third-generation multi-row detector the situation is different because redundant data is always available at pitch values that provide complete data, i.e., data outside the TD window is always measured, see e.g., Proksa et al. cited above and D. Heusher, K. Brown and F. Noo, “Redundant Data and Exact Helical Cone-Beam Reconstruction,” Phys, Med. Biol., Vol. 49, 2004. Such redundant data can be incorporated into the reconstruction by applying the M-line method to M-lines that fall outside the TD window.
Let λin and λout be the first and the last source position at which a given point x is visible. Assuming no transaxial truncation and a FOV radius and pitch P low enough to avoid interrupted illumination, x is visible for all λ∈[λin,λout] and assuming the data is complete, the endpoints λ1 and λ2 of the π-line through x are such that λin<λ1<λ2<λout. Hence, reconstruction at x with the M-line method can be achieved using any M-line through x with λ∈[λin,λout], and in particular λ=λin and λ=λout, without introducing CB artifacts. Such nonapproximate incorporation of an arbitrary amount of redundant data in the reconstruction represents a novel achievement, but is only of value if it can improve noise performance. The fact that the use of redundant data in the π-window using the R-line method resulted in an increased noise level (
The results of Table II and the images in
The discussion in the previous section disregards trajectories that are formed from multiple smooth curves. If multiple source curves exist we can reconstruct using each one separately and merge the results. However, this approach is often too restrictive. For example, using the circle-plus-line trajectory of equation (18) we would only be able to reconstruct in the plane of the circle, while it is known that reconstruction over a much larger region is possible. See e.g., Tuy; Smith; and Noo-Clackdoyle-Defrise cited above. The following section extends the fundamental DBP equation (34) to a more general form in such a way that data from different source curves can be combined for reconstruction.
Consider a point x∈Ω+ and P intervals of source positions, [λp−,λp+], p=1, . . . P, such that 1) each interval defines a segment of one of the N smooth curves forming the source trajectory and 2) for each p=1, . . . P−1, either a(λp+)=a(λp+1−) or the line connecting a(λp+) to a(λp+1−) passes through x. FIGS. 16A-D illustrates this situation for three different source trajectories: 1) the circle-plus-line trajectory of equation (18), 2) two disconnected coplanar circle arcs, and 3) a “curl” trajectory that consists of a short-scan circular arc connected to two segments of line orthogonal to it. FIGS. 16A-D are illustrations of the parameters involved in the extended DBP formula according to embodiments of the present invention. More specifically,
Now, let kp=−1 when x is between a(λp+) and a(λp+1−), and kp=1 otherwise, for p=1, . . . P−1. Using these numbers and the equation (36) of the DBP with boundary terms, we have the following extended DBP formula for reconstruction at x.
where q1=1 and
and where ω(λ1−,x) and ω(λp°,x) are given by equation (35). This formula is easily proved from equation (34). Let LHS and RHS be, respectively, the left-hand and the right hand-sides of equation (52). From equation (34), we get
since K*(w(λp+),x)=K*(w(λp+1−x),x) for kp=1 and K*(w(λp+,x),x)=−K*(w(λp+1−,x),x) for kp=−1 due to K* being an odd function in its first argument.
As in the case of the nonextended DBP formula, we find the usefulness of equation (52) to be not at all obvious, except when x,a(λ1−) and a(λp+) are collinear. In that case, if qp=1 when x is between a(λ1−) and a(λp+), the right-hand side of equation (52) becomes 2−qpK*(w(λp+,x),x), and equation (52) yields, therefore, a way to obtain a sample of the Hilbert transform of ƒ on the line through a(λp+).
Going back to the examples of
Basically, the extended DBP equation (52) allows us to build the Hilbert transform of ƒ on R-lines and M-lines that were not reachable when considering separately each smooth curve forming the source trajectory. In some cases, these lines are reached by combining data from disconnected source curves using R-lines to jump from one curve to another. In other cases, these lines are reached by just noting that corners in the segment of source trajectory that connects the endpoints of an R-line are admissible in the DBP operation.
From a data completeness point of view, we note that reconstruction on an R-line or an M-line using equation (52) requires no more than the convex hull of the intersection of that line with Ω to be visible over the source trajectory. Hence, for such a reconstruction significant advantages are obtained in terms of data requirement over other previously published CB reconstruction methods. For example, in
The inventors have applied equation (52) to simulated projections of the FORBILD head phantom (without ears) on the curl trajectory of
from the truncated CB projections for any t∈(tmin,tmax), where r,(t,θ12, a(λ)) is the position vector on the R-line given by:
r(t,θ,s)=s+tθ. (1)
According to another embodiment of method 1800, reconstructing 1804 the density function, ƒ on the R-lines may include obtaining k(t,θ12,a(λ1)) from K(t,θ12, a(λ1)) for any t∈(tmin,tmax). According to another embodiment of method 1800, the measured lines may be M-lines. According to another embodiment of method 1800, performing a DBP on segments of the truncated CB projections may include determining a region [tmin, tmax] that defines a convex hull of an intersection of an M-line with Ω. The embodiment of method 1800 may further include obtaining a Hilbert transform of the density function, ƒ, on the M-line for any t∈(tmin, tmax). According to yet another embodiment of method 1800, obtaining a Hilbert transform of the density function, ƒ, on the M-line for any t∈(tmin, tmax), may include for each t∈(tmin,tmax), finding source positions λ*1 and λ*2 that define endpoints of an R-line through point r(t,α,a(λ)) on the M-line. The method 1800 may further include computing:
According to another embodiment of method 1800, reconstructing the density function, ƒ, on the M-lines may include obtaining k(t,α,a(λ)) from K(t,α,a(λ)) for any t∈(tmin,tmax).
In summary new methodology has been disclosed for accurate and stable reconstruction from CB projections obtained on a very general class of source trajectories. Compared to other reconstruction approaches, this methodology exhibits attractive features but also some drawbacks. Its key advantage is a low demand on detector coverage for reconstruction of a given ROI, which can be converted into increased imaging capabilities on a given system or into dose reduction techniques. Another advantage is its provision of an original means to incorporate redundant data into the reconstruction for the purpose of reducing data noise. Unfortunately, one necessary condition for reconstruction at a point x using this methodology is that x belong to an R-line. For some source trajectories, there are points that do not satisfy this condition, but do satisfy Tuy's condition. For example, consider the trajectory resulting from equation (50) if 2λ is replaced by 3λ in the definition of φ. The convex hull of this trajectory, which is the region where Tuy's condition is satisfied, includes a central portion of the z-axis of length PR/√{square root over (R2+P2)}. However, only one point on the z-axis belongs to an R-line, the point x=0. Fortunately, there are many data acquisition geometries for which the region where Tuy's condition is satisfied is completely covered by R-lines. The list includes the helix, the newly introduced saddle trajectories, and even the two-orthogonal-circle orbit of Tuy.
As disclosed herein, several implementation strategies using our new methodology are possible for reconstruction with a given data acquisition geometry. These strategies differ in the choice of R-lines or M-lines over which the inversion is carried out and have to be tailored to the data acquisition to obtain an optimal reconstruction algorithm. Also, these strategies do not in general allow for reconstruction directly onto a 3-D rectilinear grid since the samples for the post-backprojection Hilbert inversion have to be on R-lines or M-lines. However, there are widely accepted reconstruction methods (such as AMPR) that also exhibit this feature, see e.g., T. Flohr, K. Stierstorfer, H. Bruder, J. Simon, A. Polacin and S. Schaller, “Image Reconstruction and Image Quality Evaluation for a 16-Slice CT Scanner,” Med. Phys., Vol 30, No. 5, 2003.
The noise performance of embodiments of the new reconstruction methodology of the present invention was found to vary widely according to the implementation strategy. A comparison of the images in
The method of reconstruction on M-lines is remarkable in that it solves the intermittent transverse truncation problem in HCBT. This allows a smaller detector area to be used (and consequently a lower radiation dose to be delivered) for ROI imaging. Alternatively, wider patients can be accommodated on currently available clinical scanners. Note that this method of dealing with transverse truncation in HCBT can be as efficient as applying Katsevich's formula.
Finally, the inventors have observed that reconstruction from data acquired on a saddle trajectory can be achieved with the R-line reconstruction method using a significantly smaller detector than the methods of the prior art. In addition, the inventors have reason to believe that the R-line method is also more efficient, particularly in achieving high temporal resolution through the use of data from an appropriate limited segment of the saddle for each voxel.
While the foregoing advantages of the present invention are manifested in the detailed description and illustrated embodiments of the invention, a variety of changes can be made to the configuration, design and construction of the invention to achieve those advantages. Hence, reference herein to specific details of the structure and function of the present invention is by way of example only and not by way of limitation.
This nonprovisional patent application claims benefit and priority under 35 U.S.C. § 119(e) of the filing of U.S. Provisional Patent Application Ser. No. 60/694,652 filed on Jun. 28, 2005, titled “CONE-BEAM RECONSTRUCTION,” the contents of which are incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
60694652 | Jun 2005 | US |