Configurable adaptive global traffic control and management

Information

  • Patent Grant
  • 7822871
  • Patent Number
    7,822,871
  • Date Filed
    Monday, September 30, 2002
    22 years ago
  • Date Issued
    Tuesday, October 26, 2010
    14 years ago
Abstract
A framework for delivery of Internet content includes a subscriber server network; and at least one domain name server constructed and adapted to provide policy-based domain name service, wherein, in response to a request to resolve a hostname, the domain name server resolves the hostname to at least one address corresponding a server in the subscriber server network based on at least one policy consideration. The framework may include a content delivery network, distinct from the subscriber server network, wherein, in response to a request to resolve a hostname, the domain name server provides at least one addresses of a server in the content delivery network based at least on the location of the requestor and other policy considerations. An address returned by the domain name server is selected based on one or more of: (a) geographic policies; (b) load share policies; (c) overflow policies; and (d) network aware policies.
Description
RESERVATION OF COPYRIGHT

This patent document contains information subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent, as it appears in the U.S. Patent and Trademark Office files or records but otherwise reserves all copyright rights whatsoever.


FIELD OF THE INVENTION

Aspects of the present invention relate to network traffic management. Other aspects of the present invention relate to configurable, adaptive, global traffic control and management in networks such as the Internet.


BACKGROUND & SUMMARY

As the volume of Internet traffic grows, providers of web content and applications increasingly need to deliver content from multiple servers at widely-separated locations in order to sustain a good end-user experience under high traffic loads. This need generates several difficult challenges, including, among others:

    • how to guarantee the fault-tolerance of such a multiple-server system in the face of failure of one or more individual servers;
    • how to control the way in which requests from end-users are distributed to each server according to important content provider policy constraints imposed for economic, contractual or other reasons; and
    • how to guarantee high performance as experienced by end-users as network conditions change.


This invention solves these and other problems by providing a means to distribute network (e.g., Internet) traffic according to a configurable set of rules. The rules can be configured to take into account key factors such as:

    • server availability.
    • specific requirements of content providers who deploy the invention, e.g., distribution based upon geography, position in IP address space, load share, etc.
    • state of the network (Internet) at any given moment, including measures of network latency.


These rules together provide an extremely fine-grained level of network Internet traffic control to providers of Internet content and applications, enabling them to dramatically improve the end-user experience (measured by speed of request resolution, associated download time, and the availability of servers) over that provided by conventional web servers and mirrored server farms.


There are many potential uses for the invention. One use is to provide a stand-alone service directing traffic exclusively to a set of designated servers managed by a single organization. The invention may also be used in more general ways—for example, one or more of the designated destinations can refer to servers (or server collections) outside the organization's control. The latter case includes, for example, Content Delivery Networks (CDN's ), as well as local load-balancing servers, as potential destinations. The invention can also be used, e.g., to provide the DNS (Domain Name Service) component of a Content Delivery Network itself. It can be deployed as a service on behalf of subscribers, or it can be deployed as software to be used directly by subscribers themselves.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is further described in terms of exemplary embodiments, which will be described in detail with reference to the drawings. These embodiments are non-limiting exemplary embodiments, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:



FIG. 1 depicts a framework according to embodiments of the present invention;



FIG. 2 describes exemplary types of policies, according to embodiments of the present invention;



FIG. 3 shows an exemplary hierarchy or a decision tree built based on subscriber policies, according to embodiments of the present inventions;



FIG. 4 shows an exemplary relationship between a subscriber's network hierarchy and subscriber policies, according to embodiments of the present invention;



FIG. 5 depicts a high level architecture of an adaptive traffic control framework according to embodiments of the present invention;



FIG. 6 depicts a high level functional block diagram of an administrative master agent (AMA) according to embodiments of the present invention;



FIG. 7 depicts the internal functional block diagram of a monitoring mechanism, according to embodiments of the present invention;



FIG. 8(
a) is an exemplary flowchart of a process, in which a content delivery framework provides adaptive policy-based domain name service, according to embodiments of the present invention;



FIG. 8(
b) is an exemplary flowchart of a process, in which a domain name server resolves a hostname based on policies, according to embodiments of the present Invention;



FIG. 8(
c) is an exemplary flowchart of a process, in which a monitoring mechanism of a domain name server dynamically monitors the name service operations as well as the availability and the load share status of servers, according to embodiments of the present invention;



FIG. 8(
d) is an exemplary flowchart of a process, in which an ATC administrative network maintains dynamic policies and monitors the operations of a content delivery framework, according to embodiments of the present invention;



FIG. 8(
e) is an exemplary flowchart of a process, in which an ATC network monitoring mechanism traps events from different domain name servers and generates alerts when necessary, according to embodiments of the present invention;



FIG. 9(
a) shows an exemplary secure web based graphical interface, through which a subscriber may define load share and shed fraction policies among static resources, according to embodiments of the present invention;



FIG. 9(
b) shows an exemplary interface for defining policies for dynamic servers, according to embodiments of the present invention;



FIG. 9(
c) shows an exemplary graphical user interface through which an overflow server may be defined using a canonical name, according to embodiments of the present invention;



FIGS. 10(
a)-10(b) show example subscriber policies, defined based on a set of resource servers, that govern the selection according to geographical location of an incoming request and the time zone of each of the locations, according to embodiments of the present invention;



FIGS. 10(
c)-10(d) show example subscriber policies, defined based on geographical locations of an incoming request with overflow policies that allow the ATC mechanism 150 to direct traffic to pre-defined services when primary servers are not available, according to embodiments of the present invention; and



FIGS. 11(
a)-11(c) show exemplary archived log information that can be displayed and viewed through a graphical user interface, according to embodiments of the present invention.





DETAILED DESCRIPTION

The invention is described below, with reference to detailed illustrative embodiments. It will be apparent that the invention can be embodied in a wide variety of forms, some of which may be quite different from those of the disclosed embodiments. Consequently, the specific structural and functional details disclosed herein are merely representative and do not limit the scope of the invention.


Although there are a number of different scenarios in which the invention might be deployed, this description will focus, for clarity and example only, on a scenario in which DNS service is provided by a third party on behalf of a content or applications provider.



FIG. 1 depicts a high-level of a framework or system 100 according to embodiments of the present invention. A subscriber 102 provides content via a subscriber server network 104 which is made up of one or more server groups 106-1, . . . , 106-k (collectively 106).


As used in this description, the framework according to embodiments of this invention contemplates three groups of users:

    • An end-user who wishes to access content and/or applications over the Internet.
    • An operator who offers and supports the service on a managed network of computers.
    • A subscriber (typically a content or applications provider) who subscribes to the operator's service to help to support the needs of the end user.


The terminology end-user, operator and subscriber is used throughout this description to distinguish these three roles, although there are many scenarios in which more than one role can be taken by a single entity. Such scenarios are contemplated by this invention.


Each server group 106 may correspond to a server hierarchy which includes one or more tiers of servers. For example, the first tier of a server hierarchy may comprise one or more primary servers and the second tier of the server hierarchy may comprise possibly one or more overflow servers that are used when the primary servers in the first tier fail to function properly. In general, for the j-th server group, the primary servers at the first tier of server group 106-j are denoted 108-j, and the overflow servers at the second tier of server group 106-j are denoted 110-j.


Each server in a server group is any process or collection of processes that provide resources in response to requests, e.g., from a client. A server can be any off-the-shelf Web server. In some embodiments, servers are typically a Web server such as the Apache server or Netscape Communications Corporation's Enterprise™ server.


Client 112 accesses the subscriber server network 104 in order to obtain content from the subscriber. Content includes any kind of data, including, without limitation, video and audio data and the like. To achieve this access, a user at client 112 enters a resource locator, e.g., a Universal Resource Locator (“URL”), into a browser 114 on client 112. URLs specify the location of resources (information, data files, etc.) on the network. URLs are defined in detail in T. Berners-Lee et al, Uniform Resource Locators (URL), Network Working Group, Request for Comments: 1738, Category: Standards Track, December 1994, located at “http://ds.internic.net/rfc/rfc1738.txt”, which is hereby incorporated herein by reference. URLs generally have the following form:

    • scheme://host[:port]/url-path


where “scheme” can be a symbol such as “file” (for a file on the local system), “ftp” (for a file on an anonymous FTP file server), “http” (for a file on a file on a Web server), and “telnet” (for a connection to a Telnet-based service). Other schemes can also be used and new schemes are added every now and then. The port number is optional, the system substituting a default port number (depending on the scheme) if none is provided. The “host” field (the hostname) maps to one or more particular network addresses for particular computer(s). The “url-path” is relative to the computer specified in the “host” field. A url-path is typically, but not necessarily, the pathname of a file in a web server directory.


The framework or system 100 includes at least one Domain Name Service (DNS) name server 118-1. In preferred embodiments, the system 100 also includes DNS name servers 118-1, 118-2, . . . , 118-n, (collectively referred to as name servers 118) all operated by a single particular entity. In the embodiment shown in FIG. 1, one of the name servers 118-1 serves the U.S.A., another name server 118-2 serves the U.K., another name server 118-3 serves Japan, and so on. The various name servers 118-1, 118-2, . . . , 118-n can be configured (collectively or individually) to serve geographical regions, geopolitical regions, corporate structures or any other logical organizational structure. The structure and operation of each name server 118 is described below.


When the client's browser 114 obtains a request (e.g., in the form of a URL), the browser queries its resolver 116 for an address for the hostname specified in the requested URL. The resolver 116 eventually queries a particular name server (e.g., name server 118-1). The name server 118-1 returns (provides or attempts to provide) the IP (Internet Protocol) address (or addresses) of a server (or servers) in the subscriber server network. The determination of the particular IP address returned to the resolver 116 may be based on a number of factors, including the resolver's location (e.g., as determined from the resolver's IP address) and various policies (e.g., subscriber policies 120, other policies 122) in a policy database 124. The client's browser 114 is then able to communicate with the selected server in the subscriber server network in order to obtain the desired resource.


Name servers 118-1, 118-2, . . . , 118-n, according to embodiments of the present invention, include an adaptive traffic control (ATC) mechanism 126 which provides domain name service to a client based on policies in the policy database 124. Each name server 118 includes or has access to a location determination mechanism 128 for associating the client's request with the client's location. Such a mechanism 128 may be, e.g., the TraceWare™ product of Cable & Wireless PLC. TraceWare™ is suite of services which provide an Internet Atlas which gives real-time, geographic intelligence through its ability to recognize the originating country, region and metropolitan area of Internet consumers.


The subscriber server network 104 represents a network of servers that provides, on behalf of an underlying subscriber, Internet content or services. For example, a subscriber may be a content provider, which has its own network of servers that deliver content to end users' browsers via the Internet. The subscriber server network 104 may be configured in such a way that the processing of the service requests may be reasonably distributed among all the servers in the server network 104, according to some criteria. To achieve that distribution, the subscriber server network 104 may be organized, for example, to have one or more server groups (e.g., server group 1106-1, . . . , server group k 106-k), each of which may be responsible for processing a portion of the service requests. For example, service requests coming from Finland may be routed to a server group that is physically located in Europe.


Each server group 106 in the subscriber server network 104 may comprise a plurality of servers to further share the load. For example, a service request from Finland may be subsequently routed to a server located in Scandinavia. Routing service requests to different server groups and subsequently to different servers may be based on various criteria. For example, such routing may be based on the distance between the origin of the request and the location of the server. For example, for a service request originated from Finland, it may be more effective and efficient to direct the request to a server located in Norway instead of directing it to a server located in the U.S. Server load may also be used to determine where to route a service request. For example, a service request originated from the U.S. may be routed to a server group in Mexico if the server group in the U.S. is overloaded while the server group in Mexico is relatively idle.


Servers in a server group may be organized into a hierarchy with one or more tiers of servers. Servers at different tiers may have different designated purposes. For instance, servers at the first tier of a server hierarchy may include servers that are primary functioning servers, servers at the second tier may include servers that are used as overflow servers which become active only when the primary servers at the first tier become unavailable or overloaded, and servers at the third tier that are used as second layer overflow servers that become active only when the primary servers and the overflow (or first layer overflow) servers at the second tier become unavailable or overloaded, etc.


The first tier of a server group hierarchy may include one or more primary servers. When multiple primary servers are present, they may be configured in such a way that they share the load. For example, if there are five primary servers at the first tier, they may be configured so that each takes 20% of the total service requests routed to the server group. For each of such primary servers, it may be further configured so that when a particular server is overloaded or fails, the load share originally designated to this server may be shed or directed to other server(s). The load shed may also be configured when the server is not overloaded. The portion to be shed to other server(s) may be governed by certain pre-defined policies.


As discussed above, servers in a server group 106 may be classified into different categories based on specific functionality of the underlying servers. For example, a server in a server group 106 may be a primary server, a first layer overflow server, or a second layer overflow server, etc. A server may also be classified in terms of whether and how a server is to be dynamically monitored. For instance, in some embodiments, a server can be classified as either a monitored server or a managed server.


A classification of a monitored server indicates that the underlying server is to be monitored dynamically for its availability. In this case, the server may be probed for its availability according to some pre-determined schedule. Such a probe may be sent to the underlying server from different locations of the network so that the availability can be detected accurately. That is, if the underlying server failed to respond to one probe sent from one location, it does not necessarily indicate that the server is no longer available (could be due to that only part of the network is congested).


A probe can be realized in different fashion. It can be simply a signal sent to the server to request an acknowledgement. It can also be a poll operation in which a file stored at a designated location on the underlying server is polled. If the file can be successfully polled, the underlying server is considered to be available. The detected availability may be used to adjust or update policies associated with the server so that the network traffic management will respond to the dynamics related to the server.


A server that is classified as a managed server may be actively participating the adaptive policy-based management scheme. Similar to a monitored server, a managed server may be regularly probed for its availability. In addition, a managed server may dynamically provide information related to its load share or load shed. A managed server may update its load share or load shed fraction according to its changed capacity or its current load. For example, when a managed server is upgraded, its capacity may be increased so that it may increase its load share or decrease its load shed fraction. On the other hand, when a managed server is overloaded, it may revise its load share to a lower level or increase its load shed fraction to prevent failure. A managed server may revise its load share or load shed by updating the corresponding load share or load shed information in a designated file stored on the server and this file may be polled by a name server so that the dynamically changed load share and load shed information can be used to direct traffic accordingly.


The distribution of service requests (from a client 112) within the subscriber server network 104 may be controlled through a set of ATC policies (120, 122) stored in the policy database 124. Various authorities may influence the ATC policies and may create policies in the policy database 124. For example, the subscriber may set up policies to direct traffic with respect to considerations such as the geographical locations and the capacities of the underlying servers in the subscriber's network 104. Other policy entities 138, including, for example, the operator of the name servers 118 or various geo-political entities may also have policies regarding how the network traffic should be managed and directed. For example, governmental or some organizational agencies may regulate some aspects of network traffic policies. Such regulation policies may be required to be incorporated so that a service request from the client 112 can be routed in a manner that satisfies regulatory policies.


Thus, the ATC policies in the policy database 124 may be a combination of subscriber policies 120 and other policies 122 from different sources such as subscriber 102 and policy entity 138. Policies from different sources may be accessed by the ATC mechanism 126 from the policy database 124. From the point of view of the ATC mechanism 126, the source of a policy may not be relevant or even determinable. For example, policies may be defined in a textual file stored at a designated location, which may be downloaded to an ATC policy management mechanism 152 in an ATC administrative framework 142 and then broadcast to the database manager 132 located in each of the name servers in the ATC name server network 140. The download may be via either a graphical user interface (GUI), a file transfer protocol (FTP), or some other mechanism. Policy makers may also enter policies directly via a web-based GUI. For example, the subscriber 102 may enter subscriber policies 120 via a browser interface 156 connected with the ATC administrative framework via, preferably a secure interface (e.g., implemented using the “https” protocol).


The policies from the policy database 124 used by the ATC mechanism 126 are collectively referred to as ATC policies, which may include, not is not limited to, the subscriber policies 120 as well as other policies 122. The ATC policies may be organized in a manner that is appropriate to govern and/or control the traffic at different levels of the subscriber server network 104. FIG. 2 shows exemplary types of ATC policies 200 according to embodiments of the present invention.


The ATC policies (200) may be classified into different types such as geo-political policies 215, load share policies 240, failover policies 245, tiered failover policies 250, shedding policies 255, regulatory policies 260, and Classless Inter-Domain Routing (CIDR) block policies 210.


These exemplary policies in the policy database 124 are described in greater detail below:

    • Geographic Policy (215): Decisions are based on location of the end-user or an approximate thereof, e.g., using the IP address of an end-user's resolver. For example, if the IP address is within the U.S., the request may be directed to a “domestic” group of servers in the subscriber server network 104, otherwise it may be directed to “international” servers in the network. The request may be directed to a proprietary Content Delivery Network (CDN) or to another service specified by the subscriber.
    • Load Share Policy (240): The subscriber can explicitly specify the amount of traffic (load share) to be directed to each of their servers within a defined server set in the subscriber server network 104. Typically the load may be specified according to the capacity of each server. Based on such specification, the load share of each server may be derived as a percentage of the total load.
    • Failover policy (245): The subscriber may specify policies regarding a failover situation where some of the primary servers fail to function. To take care of such a scenario, a failover policy may instruct the ATC mechanism in terms of, for example, how often to monitor the availability of the servers and what strategy to adopt when a partial set of the primary servers are detected to be unavailable. For instance, a failover policy may specify to distribute the load of a failing server to other primary servers. It may also alternatively instruct the ATC framework to direct traffic to servers other than the primary servers.
    • Tiered Failover Policy (250): The subscriber may specify a strategy through tiered failover policies by which the load should be re-directed to servers at a next tier when one or more subscriber servers in a previous tier fail to function. For example, in defining the subscriber server network, each server group may be configured as a hierarchy, having the first tier of primary servers, the second tier of first layer overflow servers, and the third tier of second layer overflow servers, etc. In this case, a tiered failover policy may be defined to indicate when the load should be re-directed from the primary servers to the overflow servers. For instance, a tiered failover policy may indicate that when all the primary servers fail, the load should be directed to the second tier, and when servers at both the first tier and the second tier fail, the load should be directed to the overflow servers at the third tier. The traffic may also be re-directed to some other servers. For example, when a content delivery network (CDN) is available, the traffic may be re-directed to the entire CDN.
    • Shedding Policy (255): In some circumstances, a fraction of the “load” originally designated to a server may be shed or re-directed to one or more different servers. This may occur when the amount of traffic directed to the subscriber server exceeds a prescribed level. In these cases, a subscriber-specified fraction of traffic (shed fraction) that would otherwise be directed to the server may be shed to one or more other different servers. Such strategy may be adopted to prevent catastrophic failure due to overload. The servers that take the shed load may be an overflow server or some other servers such as a content delivery network. An overload situation may be detected according to the response time of the server. For example, if the response time from a server becomes long, it may indicate that the server is overloaded. In this case, shedding policies 255 may be invoked to re-direct the traffic elsewhere. For instance, if there are a total of 3 primary servers in a server group with load share of (0.3, 0.3, 0.4) and the primary server that is designated to take 40% of the total load is completely overloaded, a shedding policy may specify to shed the load of this server by re-directing 50% of its original load to, for example, the servers located in the CDN 105. A shedding policy may also specify a condition upon which the traffic will be directed again to the shedding server. Such a condition may relate to a desirable level of performance of the shedding server.
    • CIDR Policy (210): Policy decisions are supported based upon CIDR blocks of IP address space. CIDR denotes Classless Inter-Domain Routing, an IP addressing scheme that replaces the system based on classes A, B, and C. With CIDR, a single IP address can be used to designate many unique IP addresses.
    • Regulatory policy (260): Certain policies may be specified by some policy entities to control network traffic. Such policies may be enforced in system 100.


A policy may be static or dynamic. Selection of a server from the subscriber server network 104 may be based on an adaptive, regularly updated map of the state of the Internet as well as adaptively updated policies. The map may cluster IP addresses together according to their network latency to a selected set of network agents. This enables the subscriber servers to be selected according to their “network proximity” to an end user's browser, optimizing resulted download time. The policies may be defined in such an adaptive manner that they reflect the dynamic status of the servers such as the availability and load.


Geo-political policies 215 may govern the selection of a server according to where the client is located. As shown in FIG. 2, the geo-political policies 215 may be further classified into continental based distribution policies 220, country based distribution policies 225, region based distribution policies 230 and time zone based distribution policies 235. These policies may be set up to govern the process of selecting a particular server group according to different geographical or political criteria.


Geo-political policies differ from load based policies (described above). The former is designed to guide selections based on geographical criteria or time criteria. The latter concerns the selection process with respect to the dynamic capacity and load of the underlying servers. The load share policies 240 govern the selection according to the capacities of the servers. Partial failover or tiered failover policies (245 and 250) govern the traffic re-direction process when functioning servers in a server group are overloaded or failed.


The ATC policies 200 may be hierarchically constructed to form a decision tree. FIG. 3 depicts an exemplary subscriber policy hierarchy or a decision tree built based on various types of subscriber policies, according to an embodiment of the present invention. In FIG. 3, the continental based distribution policies 220 are used to first direct a selection process limited to a particular continent. For example, if the requesting client 112 is located in Asia, the continental based distribution policies 220 may direct the further selection within servers that are located in Asia. Similarly, if the client 112 is located in either North America or Europe, the further selection process may be directed to the appropriate servers located in the corresponding continent.


Once a DNS request is directed to an appropriate continent, the country based distribution policies 225 may further constrain the selection to particular servers that are in the same or close-by countries where the client 112 is located. For example, if the client 112 is located in the U.S., the country based policies 225 may direct the selection from the servers located in the U.S. Similarly, the region based distribution policies 230 may further constrain the selection to, for example, the west coast or east coast depending on where the client 112 is located.


When a particular server group is selected (e.g., after a hierarchical decisions based on the continent-based policies 220 and the region-based policies 230), the load share policies 240 govern the process whereby servers in a given server group should be selected. Such policies may be determined based on the servers' capacities or may be adaptively revised based on the dynamic performance or load of the underlying servers. The load share policies 240 may specify the percentage (share) of the total requests that each server in a server group should handle. For example, if a server group comprises a total of three primary servers (server 1, server 2, server 3), a load share policy for this server group may specify the load share as (0.3, 0.5, 0.2), indicating that server I should take 30% of the total load, server 2 should take 50% of the load, and server 3 should take 20% of the total load.


The tiered failover policies 250 govern the selection of a server when a particular default set of servers is no longer functioning or available. For example, primary servers in a server group may be considered as a default set of servers that provide service when operation is normal. Unavailability of such primary servers may be detected according to the response time of the server. For example, if a server is simply not responding, the server may be considered as not available. When all the primary servers are down, the tiered failover policies 250 govern where the traffic should be directed. For instance, the tiered failover policies 250 may specify to direct all traffic to the overflow servers at the next tier.



FIG. 4 depicts an exemplary relationship between the subscriber server network 104 and the subscriber policies 120, according to embodiments of the present invention. The subscriber server network 104 is depicted in FIG. 4 as a network hierarchy or a tree in which the subscriber server network 104 includes server group 1106-1 through server group k 106-k, and each server group may include its own primary server group 108 in the first tier and overflow server group 110 in the second tier (e.g., server group 1106-1 has primary server group 108-1 and overflow server group 110-1 associated therewith, while server group k 106-k has primary server group 108-k and overflow server group 110-k associated therewith).


The subscriber policies 120 govern selection of one or more servers within the subscriber server network 104 (or in some other network of servers) so that their IP addresses may be returned in response to DNS requests from the client 112 (resolver 116). To determine or to select appropriate servers in the subscriber server network 104, the decisions may be hierarchical. For example, as shown in FIG. 4, at the level of the subscriber server network 104, the ATC mechanism 126 may make geo-political distribution decisions 410 to determine which server group should be selected. Once a particular server group is selected, the ATC mechanism 126 may further determine which particular servers in the group should be selected according to, for example, how the traffic load should be shared among the servers within the server group. Decisions at server group level may be based on the load share policies 240. This decision making process illustrates that, at each branch node in the server hierarchy, appropriate ATC policies may be applied to govern the selection of an appropriate server or servers.


As illustrated in FIG. 4, the geo-political policies 215 may be applied to control the selection of a particular server group, the load share policies 240, the tiered failover policies 245 and 250, and the shedding policies 255 may be applied to re-direct traffic. That is, the subscriber server network 104 forms a tree and the ATC policies 200 govern the flow from the top of the tree to one or more leaves of the tree. The ATC mechanism 126 controls the flow by applying the ATC policies 200.



FIG. 5 depicts a high level architecture of an adaptive traffic control (ATC) framework according to embodiments of the present invention. The ATC framework comprises an ATC administrative framework 142 and an ATC name server network 140. The ATC administrative framework 142 is responsible for various administrative tasks associated with subscribers or other policy making entities (138), include manipulating and storing the ATC policies 200, propagating or broadcasting the ATC policies 200 to name servers in the ATC name server network 140, monitoring name server behavior, generating status reports to display monitoring results on appropriate media, and sending alert to a network operation center (NOC) 148 (see FIG. 1) and the subscriber 102.


The ATC name server network 140 is responsible for responding to DNS requests, including processing DNS requests, applying the ATC policies 200 to select one or more servers from the subscriber server network (or a different designated network), and replying with the IP address(es) of the selected server(s). The ATC name server network 140 dynamically maintains the ATC policies 200, that are either received from the ATC administrative framework 142 or updated according to the dynamic operational status of the servers. The ATC name server network 140 provides domain name-IP address resolutions based on dynamically updated ATC policies 200. The ATC name server network 140 may also monitor the operational status of individual name servers within the network and supply logging and monitoring data to the ATC administrative framework 142.


The ATC administrative framework 142 may be designed to have fault-tolerance. For example, as depicted in FIGS. 1 and 5, the ATC administrative framework 142 may include an administrative master agent (AMA) 144, and one or more AMA backups 146-1, . . . , 146-m (collectively 146). All AMA agents, including the master agent 144 and the backups 146 may be capable of performing the exact functions except that one of them (e.g., master AMA 144) may be a central or primary administrative master agent and others (e.g., AMA backups 146) may be backup or secondary or redundant master agents. The central or primary AMA 144 may be responsible for regularly backing up the AMA backup agents 146. When, for whatever reason, the primary AMA 144 is no longer functioning properly, one of the AMA backups 146 may take on the role of the central or master AMA 144.


The ATC name server network 140 may comprise a plurality of name server agents 118-1, 118-2, . . . , 118-k, each of which maybe designed to be responsible for the DNS requests of a particular geographical (or any other administrative or functional) region. For example, the name server agent 118-1 may be responsible for processing all the DNS requests from North America, the name server 118-2 may be responsible for Europe's DNS requests, and the name server 118-3 may be responsible for DNS requests from Japan. In addition, a name server agent may also serve as a back up name server agent for other name server agents in the network. For example, if the North America name server agent is not functioning properly, the Europe name server agent may be temporarily assigned to handle the DNS requests from North America. For that purpose, all ATC policies may be propagated to all of the name server agents in the ATC name server network 140.



FIG. 6 depicts a high level functional block diagram of an administrative master agent (AMA) 144 according to embodiments of the present invention. The AMA 144 comprises a secure web-based graphical user interface 160, a policy editing mechanism 162, an ATC policy database 124, an administrative policy update mechanism 164, an ATC administrative browser 166, an ATC policy management mechanism 152, a report generation mechanism 168, an ATC network monitoring mechanism 150, and an administrative master backup mechanism 170.


The ATC policy database 124 stores the ATC policies 200. As discussed above, the ATC policies 200 may include policies from different sources (e.g., from subscribers and from other entities that control network traffic). Both the subscriber policies 120 and other policies 122 may be defined and provided to the AMA 144. In the exemplary configuration shown in FIG. 6, the policies may be received at the AMA 144 through the secure web based GUI 160. There may be other means through which the policies can be delivered to the AMA 144 and will be discussed later. The policy editing mechanism 162 organizes the received policies to form the ATC policies 200 and then stores them in the ATC policy database 124.


The ATC policy management mechanism 152 may broadcast or propagate the ATC policies 200 to relevant name servers in the ATC name server network 140 so that the ATC policies 200 may be used to control the domain name translation service. The stored ATC policies may be dynamically updated via different means. For example, the policies may be updated through the ATC administrative browser 166, or the administrative policy update mechanism 164 may revise existing ATC policies.


Alternatively, the AMA 144 may also be provided with policies from different sources through the ATC policy management mechanism 152, which may regularly poll dynamically updated policies from different locations. Such locations may include designated network locations that are designated to provide dynamic policy related information or servers (either in the subscriber server network 104 or in the CDN 105) that are classified as managed servers. For instance, a server may dynamically specify its load share via a designated file stored on the server. To retrieve such dynamically defined load share information from a managed server, the ATC policy management mechanism 152 may poll the designated file stored on the managed server to obtain relevant load share information. Dynamic policies may also be polled from other policy making entities.


Broadcasting ATC policies may take place periodically according to some pre-defined interval or may be triggered whenever the stored ATC policies are updated. The ATC policy management mechanism 152 may monitor changes made to the existing ATC policies. The ATC policy management mechanism 152 may poll the ATC policies stored in the ATC policy database and see whether there are changes. On the other hand, whenever the ATC policy management mechanism 152 polls dynamic policies from specified locations (such locations may be specified in existing ATC policies), it may determine whether the dynamically polled policies differ from existing ATC policies. In the event that updated policies are different from the existing ATC policies, the ATC policy management mechanism 152 may re-broadcast the updated ATC policies to the ATC name server network 140.


The ATC network monitoring mechanism 150 may collect DNS log summaries from different name servers in the ATC name server network 140. Such summary log data may be received in the form of events that provide information such as, for example, the number of requests directed to particular servers in a given time period. The ATC network monitoring mechanism 150 may collectively processes such DNS log summaries (or events) from the entire ATC system. The report generation mechanism 168 may generates monitoring status reports from these summaries and makes such reports available to the subscriber 102 via the secure web-based GUI 160.


The administrative master backup mechanism 170 may periodically update the AMA backups 146-1, . . . , 146-m to ensure that all the backup agents are current. This may include replicating the ATC policies, the operational status of various control mechanisms (including the ATC policy management mechanism 152), the policy editing mechanism 162, and the administrative policy update mechanism 164, and providing the up-to-date information to the AMA backups.


A major function of an administrative master agent is to manage the ATC policies, to make sure that updated ATC policies are supplied to the name server agents in the ATC name server network 140, to monitor the various name servers' performance, to generate dynamic monitoring status report of system performance, and to maintain a connection through which policies may be updated dynamically and monitoring report can be examined.


Information flagging system errors and other anomalous conditions is collected by the ATC network monitoring mechanism or agent 150. FIG. 7 depicts an internal functional block diagram of an ATC network monitoring mechanism 150, according to embodiments of the present invention. The ATC network monitoring mechanism 150 includes a trap handler 176, a processing mechanism 182, and an alert generation mechanism 184. The trap handler 176 traps events from the name servers in the name server network 140. The processing mechanism 182 analyzes both the collected trapped events, and, based on analyzed information, the alert generation mechanism 184 generates alerts when necessary, and reports such alerts to, for example, the ATC's network operation center (NOC) 148 and the subscriber 102 (FIG. 1).


The trap handler 176 further comprises an event receiver 178 that intercepts trap events from the name servers and an event consolidation mechanism 180 which may classify the trapped events and organize them in a reasonable and appropriate fashion. The processing mechanism 182 may process the consolidated events to identify useful or informative patterns which may be further used, by the alert generation mechanism 184 to identify problematic patterns which may significantly affect the system performance.


The Adaptive Traffic Control (ATC) framework according to the present invention may be deployed as a stand-alone service directing traffic solely to the subscriber's servers, in conjunction with another content delivery network (CDN) provider, or in conjunction with any other service.


Each domain name server in the ATC name server network 140 may include (FIG. 1) a location determiner 128, an adaptive traffic control (ATC) mechanism 126, a monitoring agent or mechanism 130, a database manager 132, and a report generator 134. When a name server (e.g., 118-1) receives a request from the resolver 116 of the client 112, the location determiner 128 determines the location of the resolver and sends such location information to the ATC mechanism 126. Based on the location information, the ATC mechanism 126 retrieves relevant ATC policies from the policy database 124 (e.g., the subscriber policies 120 or the other policies 122) and selects one or more servers in the subscriber server network 104 according to the retrieved relevant policies. The corresponding IP address(es) or the CNAME of the selected servers are then returned to the resolver 116.


The database manager 132 maintains the policy database 124. It received policies broadcast from the ATC policy management mechanism 152 in the ATC administrative framework 142 and populates the policies in the policy database 124. The ATC policies received from the ATC administrative framework 142 may also include information that defines or classifies servers in the subscriber server network 104 (or in the CDN 105). For example, some servers may be defined as monitored servers and some may correspond to managed servers.


When the database manager receive such information, it may inform the monitoring mechanism 130 of the classification of the underlying servers so that the monitoring mechanism 130 can monitor each server according to its status. When the ATC policy management mechanism 152 broadcasts updated policies, the database manager 132 accordingly updates the relevant policies stored in the policy database 124.


The monitoring mechanism 130 monitors the operational status of the name server 118-1 and one or more servers in the subscriber server network. It may collect events occurred in the name server 118-1 during operations and send such events to the ATC network monitoring mechanism 150 in the ATC administrative framework 142. On the other hand, it may also monitor the operations of various servers in the subscriber server group 104 (or in the CDN 105) according to how each server is defined (monitored or managed server).


If a server is defined as a monitored server, the monitoring mechanism 130 may dynamically probe the server (as discussed earlier) to determine its availability. If a server is defined as a managed server, the monitoring mechanism 130 may monitor its availability during operation. The monitoring mechanism 130 may also poll dynamic load share information from the server. When the monitoring mechanism 130 detects that a server is no longer available, it may inform the database manager 132 to create a local policy that indicate that the server is no longer available so that the ATC mechanism 126 can take into account when resolving a hostname.


When the monitoring mechanism 130 polls the dynamic load share information from the server, it may inform the database manager 132 to update the load share policies in the policy database 124 that are affected by the dynamics of the polled load share. For example, if three primary servers in a server group originally have load share (0.3, 0.3, 0.4) and the third primary server now changes its load share to 0.2, the database manager 132 may accordingly update the load share among these three primary servers into (0.4, 0.4, 0.2).


The report generator 134 generates reports related to the operations of the underlying name server based on log information 136 recorded. Such generated reports may be sent to a report consolidator 154 in the ATC administrative framework 142 so that reports from different name servers may be consolidated.


A subscriber may activate (turn up) the ATC system (DNS servers) in one of two ways: using a DNS CNAME or using NS delegation. Instead of using ATC to direct traffic for a single DNS hostname, the subscriber may have many different subdomains that it would like to direct to ATC. For example, the subscriber might want all downloads from dl.customer.com handled by ATC, together with all of its subdomains, but have all other domains that it controls, such as www.customer.com, resolved by its own name server:

    • dl.customer.com.custom characterATC
    • any.thing.dl.customer.com.custom characterATC
    • www.customer.com.custom characternot ATC
    • customer.com.custom characternot ATC


In this case, instead of adding the CNAME record in the subscriber's DNS zone file, it simply delegates the dl.customer.com. name to ATC via NS records in its zone file.


The delegation (using NS-records) method is presently preferred as it is more flexible and offers all of the reliability, scalability and flexibility of ATC. After the initial contact for delegation, a properly operating resolver making occasional queries will not contact the subscriber's own name server or name servers again. The result provides much better name resolution performance since the unnecessary overhead of routing each fresh DNS request through the subscriber's name server is eliminated. The CNAME method keeps the subscriber's own name server in the loop. That is, whenever the CNAME TTL expires, client resolvers will return to the subscriber's name servers to refresh the record.


For both CNAME and NS delegation methods, the procedure to turn off the ATC switch is the same—the subscriber edits its DNS zone files to remove the delegation authority to ATC. DNS requests will continue to be served in accordance with the subscriber's defined ATC policies until the TTL's have expired on the appropriate delegations.


The System in Operation



FIG. 8(
a) is an exemplary flowchart of a process, in which a name server resolves a DNS request based on ATC policies, according to an embodiment of the present invention. First, a user enters a URL into the user's browser 114 (or into any application that accepts URLs as input and obtains the corresponding resource for the client) (at 802). The client's resolver 116 attempts to resolve the hostname of the URL in order to obtain an IP address of a server from which the resource identified by the URL can be obtained (at 804). The resolver 116 will be directed by the client's DNS (not shown) to a DNS Name Server 118 in the ATC name server network 134 (at 806). The resolver 116 provides the name server 118 with the hostname it is attempting to resolve.


The name server 118 receives the request to resolve the hostname (at 808) and determines one or more servers in the subscriber server network 104 or in the CDN 105 that can process the client's request according to the location of the resolver 116 as well as relevant ATC policies retrieved from the policy database 124 (at 810). Details of this operation are described with reference to FIG. 8(b). The IP address(es) of the selected server(s) are returned to the requesting resolver 116 (at 812). The browser 114 then connects to one of the servers (at 814) in order to obtain the requested resource.



FIG. 8(
b) is a flowchart of an exemplary process, in which a domain name server selects one or more servers according to location of the client and relevant ATC policies. The location of the resolver 116 (or client) is first determined (at 816). Relevant ATC policies are then retrieved (at 818) from the policy database 124. One or more servers in either the subscriber server network 104 or the CDN 105 are selected according to the determined location of the client and the relevant ATC policies (at 820).



FIG. 8(
c) is a flowchart of an exemplary process, in which the monitoring mechanism 130 in a domain name server monitors the operations of the name server as well as one or more servers in the subscriber server network 104 or the CDN 105. Events occurring during domain name service are monitored (at 822). Such events are sent to the ATC network monitoring mechanism 152 (at 824). In addition, the availability of the one or more servers are also monitored (at 826). Furthermore, if any of the one or more servers is defined as a managed server (determined at 828), dynamic load share information is polled (at 830). Both the availability information and the dynamic load share information (if any) are used to update some ATC policies that are local to the name server (at 832).



FIG. 8(
d) is a flowchart of an exemplary process, in which the ATC policy management mechanism 152 dynamically maintains and broadcasts the ATC policies. Initially, policies from different sources are received (at 834) and broadcast to the name servers 118 (at 836). If backup is necessary (determined at 838), the ATC policy management mechanism 152 sends current policies to the master backup agents 146 (at 840).


The ATC policy management mechanism 152 also performs dynamic policy maintenance. It polls dynamic policy information (at 842) at certain defined intervals and uses such polled dynamic policy information to update existing policy (at 844). The updated policies are then broadcast to the name servers (at 846). If the updated policies need to be propagated to the backup agents (determined at 848), they are sent to the master backup agents (at 850).



FIG. 8(
e) is a flowchart of an exemplary process, in which the ATC network monitoring mechanism 150 monitors operations of the name servers and sends alert to the NOC 148 and the subscriber 102. Events sent from monitoring mechanisms of different name servers are trapped (at 852). Such trapped events from different sources are then consolidated (at 854) and processed (at 856). If there is any alarming situation (determined at 858), the ATC network monitoring mechanism 150 generates an alert (at 860). The generated alert is then sent to both the NOC 148 and the subscriber 102 (at 862).


Policy Administration


The ATC policies may be initially set up and later adaptively updated according to servers' dynamic operational status. The ATC policies may be formed via various means. The described approaches may also be applied to form other policies. A GUI approach or a file-based approach (or both) may be employed to set up subscriber policies. Through the GUI approach, different means to form subscriber policies may be adopted. For example, a browser may be used so that a subscriber can enter policies directly. An XML file containing descriptions of the subscriber policies may also be loaded using GUI approach so that the policies may be parsed and stored. As another alternative, a file containing descriptions of the subscriber policies may also be loaded in a similar fashion and parsed accordingly. When a file based method is used, a file containing descriptions of the subscriber policies, either constructed based on XML or some other structure, may be accessed via other means such as FTP.


In some preferred embodiments, a subscriber accesses a secure web-based GUI 160 (FIG. 6) using subscriber's secure browser interface 156.



FIGS. 9(
a)-9(c) show exemplary secure web based graphical interfaces, through which a subscriber may define load share policies and overflow policies with respect to specified network resources, according to embodiments of the present invention. There may be different types of load sharing servers: (1) static servers, (2) dynamic servers, and (3) overflow servers. A dynamic server is one that is specified as either a monitored or a managed server whose dynamic availability may be monitored and whose load may be re-directed when it becomes unavailable. In the case of a monitored server, both of its load share and load shed fraction may also be made dynamic.


Correspondingly, the policies governing routing requests to different types of servers may also be defined accordingly. First, the policies that govern static servers are applied when servers are relatively static and do not change often over time. This may mean that the availability of the servers is fairly stable and load sharing among different servers is also relatively stable. The policies that control dynamic servers are applied when servers are expected to change frequently. Such policies include failover policies, shedding policies, and tiered failover policies (described earlier). The overflow policies control the change of flow of the requests when, for some reason, primary servers, either static or dynamic, become unavailable or overloaded. In this case, relevant overflow policies determine to which overflow server a request for name service should be directed.


The load share with respect to a given server represents the amount of traffic that will be sent to that server within a static server setting. An exemplary method to compute the load share of the traffic sent to the server is to sum the load share amount of all servers in a current static server setting and divide the load share for that server by the summed total to derive the load share.


The shed fraction for a given server represents the percentage of traffic that should be redirected away from the server. The redirection may be carried out after load share is made based upon load share policies. FIG. 9(a) gives an example interface, in which each of the servers listed is assigned various selection related parameters. For example, for each server, a TTL is specified. In addition, a load share and a shed fraction may also be specified. For example, both server New York and London have load share of 1.0. The shed fraction assigned to server New York is 0.2, meaning that 20% of its load is re-directed to some other server, and the shed fraction assigned to server London is 0.3, meaning that 30% of its load is re-directed to some other server.


Shedding fractions may also be computed automatically on the fly. For example, when a server is detected to have slow response, indicating that it may be overloaded, a shedding fraction may be computed according to the discrepancy between its expected response time and the actual response time. Such an automatically computed shedding fraction can then be applied to re-direct the newly computed fraction of the traffic to a different server to unload some of the traffic originally intended to be directed to the overloaded server.


For each resource server, an on-line flag may also be set to indicate whether the server is currently available. This flag is shown in FIG. 9(a) in the rightmost column. With this flag, a server may be temporarily removed from the service, if, for instance, a server needs to be taken down for maintenance.


Due to the fact that dynamic servers are expected to change relatively frequently, policies that govern their selection may be defined in two stages. The policies for dynamic servers may be initially specified in a similar fashion as for static servers. For instance, load share and shed fraction can be defined for dynamic servers New York and London, as shown in FIG. 9(a). During operation, however, the policies that govern the selection of dynamic servers may be established dynamically. For example, initially defined policies (e.g., load share, shed fraction, and on-line flag) may be adaptively revised based on, for instance, an on-line status report retrieved from one or more specified locations on the network. Dynamic policies provide considerable flexibility in how the selection may be conducted in a manner that is adaptive to the network health or any other network performance related factors (e.g., maintenance).


The on-line status report may be provided at one or more network locations specified by the subscriber. The locations may be specified as a Uniform Resource Locator (URL) and may be accessed through an HTTP request. A location of the status report may be specified in the initial policy, providing a constant link to the location. FIG. 9(b) shows an exemplary GUI for specifying an URL link to a status report. An URL link for the location of the status report is specified as “http://server” which corresponds to a server named London with an IP address of 10.0.0.3. The access may be authenticated and such authentication requirements may also be specified in the initial policies. The on-line accessed status report may be constructed based on information gathered during monitoring the servers' performance. For instance, each server in the subscriber server network may provide a status report containing information related to its performance. Name servers in the ATC name server network may poll such information from such servers and such information may be used to update policies.


The frequency with which the status report is accessed may also be specified explicitly. For example, it may require the relevant mechanisms (specifically, the ATC policy management mechanism or the monitoring mechanism of each name server) to poll the status report at a regular time, e.g., every thirty seconds.


A status report may be constructed using some standard language such as extendible Markup Language (XML). Such a status report may contain revised policies, which may be determined by the subscriber manually based on network performance, devised by an automated process based on network performance, or may be generated by an individual managed server. In such cases, the status report includes updated policies and when it is polled, the updated policies are used in future traffic control. For example, a managed server may re-define its load share of according to its dynamic capacity. When such dynamically defined load share information is accessed and used in enforcement, the traffic is controlled in a manner that is adaptive to the network dynamics.


When a status report is accessed, the relevant mechanisms (e.g., the ATC policy management mechanism in the ATC administrative framework or the ATC mechanism in corresponding name server) updates the associated policies based on the information contained in the status report. For example, a status report may indicate that the current load share for server New York should be 0.4 (down from 1.0 previously) with the same shed fraction (0.2) and the current load share for server London should be 0.5 (down from previous 1.0) with 0.4 shed fraction (40% shed fraction). An alternative scenario may be that the status report provides network performance data about each dynamic server and the ATC mechanism, after accessing the status report, determines how the current policies may be revised accordingly.


When the status report provides dynamic policies, it may, in general include, for each dynamic server, the following information: <ServerStatus loadShare=“LS” shedFraction=“SF” online=“Boolean”/>, where LS and SF represent numerical numbers and “Boolean” represents a logical value of either “true” or “false”.


With the mechanism of dynamic policies described above, a subscriber or a server can easily specify changes to existing policies (e.g., changes to load share, shed fraction policies and the On-line flag) without having to update an entire ATC policy hierarchy. In addition, a parameter (called “Down on line” in some embodiments) can be set in an ATC policy to control the behavior of the ATC mechanism under the circumstance that the ATC policy management mechanism is unable to properly access the status report due to reasons such as a failed polling or retrieval or failing to parse the status report's content. According to some embodiments of the present invention, three different exemplary approaches may be applied to handle the situation.


With the first approach, a subscriber may instruct an ATC mechanism in a name server not to select a particular server if the status report for that server can not be properly obtained. The subscriber may specify this policy by setting parameter “Down on line” to false. In this case, the ATC mechanism will not consider the underlying server as a candidate for selection process until the polling mechanism retrieves a valid status report.


The second approach to deal with a polling failure is to allow the ATC mechanism to select the underlying dynamic server according to its default policies (or original policies). To specify this solution, the subscriber may set the “Down on line” parameter true.


The third approach to handle the situation where the status report can not be properly retrieved is to allow the ATC mechanism to select the underlying server if its “on line” flag is on (it is available). To achieve this, a subscriber may specify only the “on line” ServerStatus in the status report, with parameter “Down on line” set to either true or false. In this case, the ATC mechanism will use a load share and a shed fraction specified in the policy when the “On line” flag is set to true. The load share and the load shed fraction may both be dynamically determined (either broadcasted from the ATC policy management mechanism or polled by the ATC mechanism 130 from the underlying server.


Both static and dynamic servers are primary servers, although their selection may be controlled by operationally different policies. The third type of servers are called overflow servers. They provide alternatives when primary servers, for some reason, can not be selected. Typically, an overflow server corresponds to a Canonical name or CName, pointing to a service providing a CDN (such as, e.g., Cable & Wireless PLC's Footprint service). The choice of overflow servers may be determined based on the belief that they are in general always available. An overflow server may be defined through a window illustrated in FIG. 9(c). In FIG. 9(c), overflow servers are defined by a CName, which points to the CDN server address “customerfootprint.net” (e.g., the CDN 105, shown in FIG. 1).



FIGS. 10(
a)-10(b) show example subscriber policies, defined based on a set of resource servers, that govern the selection of the servers according to different criteria such as geographical location of an incoming request and the time zone of each of the locations. In FIG. 10(a), three different resource servers are defined, including an “eastserver” with IP address 10.0.0.2, a “westserver” with IP address 10.0.0.1, and a service network with CName “customer.footprint.net”. Here, the service network may include more than one servers.



FIG. 10(
b) shows an exemplary decision tree embedded in a set of geographical policies that guide how the traffic should be directed to a set of servers. In the decision tree depicted in FIG. 10(b), the selection is first directed to different resources at the top level according to a split between the United States and rest of the world. A resource may correspond to either a single server (or CDN) or a group of servers (or CDNS). A request initiated from non-U.S. geographical regions is directed to a resource named “London”. Within the United States, time zone based policies are further applied. A request initiated from a region within the central time zone is directed to a resource named “New Work”. A request initiated from a region within Alaska time zone is directed to the resource “London”. Finally, a request initiated from a region within the United States that does not fall in any of these time zones (i.e., Alaska or Central) can be directed to either “London” or “New York”.



FIGS. 10(
c)-10(d) show another example decision tree constructed based on a set of resources (servers or CDNs) and subscriber policies that are defined based on geographical locations of an incoming request with overflow policies that allow the ATC mechanism to direct traffic to pre-defined overflow servers when primary servers are not available. In the Resource window shown in FIG. 10(c), three resources are defined: static resources “London” and “New York”, each defined based on its IP address, a service network named “Sydney” with CName “customer.sandpiper.net”. Each resource may correspond to a set of servers such as a server group with certain hierarchy. Resource “London” is further defined as a dynamic resource and resource “Sydney” is further defined as an overflow server network nicknamed “cdn_service”. FIG. 10(d) illustrates an example decision tree built based on these resources.


The decision tree in FIG. 10(d) first splits two ways at the top level based on whether a request is from the United States. When a request is initiated from the United States, it is directed, according to the policies illustrated in FIG. 10(d), to the dynamic servers at the first tier of resource “London”. A request from the United States may also directed to one of the overflow servers in resource “cdn_service”. This may happen when either all the primary servers at the first tier of resource “London” fail to function or when such primary servers are overloaded.


In addition to the various web-based interfaces described herein, there are also other means through which subscriber policies may be defined. As discussed earlier, for example, subscriber policies may also be constructed or specified in an XML file which can be downloaded by an ATC mechanism and used to control the traffic.


Policies defined via different means (e.g., through web based GUI or XML file) may be converted into some pre-defined format within the ATC mechanism. Such pre-defined format may be designed for efficiency in manage and handling the ATC policies. For example, the internal format for ATC policies may be designed so that, internally, the AMAs can conveniently store, access, and broadcast the ATC policies to the name server agents and the name server agents can efficiently apply the policies.


As mentioned earlier, in addition to management of the ATC policies, the AMA may also monitor the performance of name servers and generates viewable DNS log reports. The monitoring mechanism may gather performance information from either the DNS logs of the name servers or the events trapped from the name servers. Such gathered information may be used by the report generation mechanism to construct informative reports. The report generation mechanism may also make such reports available to the subscribers via the secure web-based GUI. FIGS. 11(a)-11(c) show exemplary types of report information that is accessible via the secure web-based GUI. FIG. 11(a) depicts a web interface that allows a subscriber to view DNS log data of a specified resource server. A subscriber can specify the name of the server under review (e.g., “download.subscriber.com ”), the form in which the log data is to be organized (e.g., specify output style of “Separate”, meaning to display IP and CName queries and replies with answers as separate items in the output), the time period under review (e.g., from Sep. 1, 2002 to Sep. 24, 2002), and the time resolution used in displaying the log data (e.g., automatically select time resolution).



FIG. 11(
b) shows a plot of log data related to a specified server. The log data is presented in a plot, generated based on the log entries of a particular server against a specified period of time (X-axis) with certain resolution. The exemplary plot reflects the volume of the traffic directed to the underlying server during a period time between 2:30 pm and 3:30 pm on Sep. 24, 2002. The traffic volume is described in terms of number of replies generated by the underlying server per minute (Y-axis). It can be seen in this example plot that there is a surge in traffic volume between 2:36 pm and 2:38 pm. FIG. 11(c) shows a graphical display for the same log data in FIG. 11(b) in a table form, in which the log data is listed in an chronicle order from top to the bottom of the table. For instance, each row in the left column lists a period of time. In the exemplary table, the log data within the one hour period (2:30 pm to 3:30 pm) is divided into a plurality of sub-periods, each of which is 15 minutes. For each sub-period, the third column provides the number of replies from the corresponding sub-period. For instance, during the sub-period of 3:15 pm to 3:30 pm, there are 13 replies and there is no reply in other sub-periods (consistent with the plot illustrated in FIG. 11(b)).


The various mechanisms described herein, including, without limitation, the adaptive traffic control (ATC) mechanism, the location determination mechanism, policy editing mechanism, administrative policy update mechanism, ATC policy management mechanism, report generation mechanism, a monitoring mechanism, and an administrative master backup mechanism may be implemented in hardware, software or a combination thereof. When implemented in software, they may be implemented in any type of appropriate interpreted or compiled programming language. When implemented fully or partially in software, aspects of the invention can reside on any memory or storage medium, including but not limited to a ROM, a disk, an ASIC, a PROM and the like. While the invention has been described with reference to particular mechanisms (algorithms, processes and functions) and architectures, one skilled in the art would realize that other mechanisms and/or architectures could be used while still achieving the invention.


When the various mechanisms of the present invention are running on a particular machine (e.g., the at a client or on a server), they may reside in the memory of the machine or on a storage device or in a combination. Further, while many of the operations have been shown as being performed in a particular order, one skilled in the art would realize that other orders, including some parallelization of operations, are possible and are considered to be within the scope of the invention.


The present invention has been described above in connection with a preferred embodiment thereof; however, this has been done for purposes of illustration only, and the invention is not so limited. Indeed, variations of the invention will be readily apparent to those skilled in the art. Such variations also fall within the scope of the invention. Thus, while the invention has been described with reference to the certain illustrated embodiments, the words that have been used herein are words of description, rather than words of limitation. Changes may be made, within the purview of the appended claims, without departing from the scope and spirit of the invention in its aspects. Although the invention has been described herein with reference to particular structures, acts, and materials, the invention is not to be limited to the particulars disclosed, but rather extends to all equivalent structures, acts, and, materials, such as are within the scope of the appended claims.


The processing described may be performed by a properly programmed general-purpose computer alone or in connection with a special purpose computer. Such processing may be performed by a single platform or by a distributed processing platform. In addition, such processing and functionality can be implemented in the form of special purpose hardware or in the form of software being run by a general-purpose computer. Any data handled in such processing or created as a result of such processing can be stored in any memory as is conventional in the art. By way of example, such data may be stored in a temporary memory, such as in the RAM of a given computer system or subsystem. In addition, or in the alternative, such data may be stored in longer-term storage devices, for example, magnetic disks, rewritable optical disks, and so on. For purposes of the disclosure herein, a computer-readable media may comprise any form of data storage mechanism, including such existing memory technologies as well as hardware or circuit representations of such structures and of such data.

Claims
  • 1. A framework for adaptive traffic control comprising: a server network; andan adaptive traffic control (ATC) name server network having at least one domain name server comprising hardware in combination with software and constructed and adapted to provide adaptive policy-based domain name service, wherein, in response to a request to resolve a hostname, at least one domain name server in the ATC domain name server network provides an answer based on a policy and on a location of the requester, wherein each server in the server network is at least one of:a monitored server, wherein an availability of the monitored server is dynamically monitored; anda managed server, wherein either an availability of the managed server is dynamically monitored, or a load share or a shed fraction of the managed server is defined dynamically, wherein the framework further comprises:an ATC administrative framework, wherein the ATC administrative framework comprises: an administrative master agent (AMA);at least one administrative master backup agent; anda network operation center.
  • 2. A framework as in claim 1 wherein the answer comprises: an Internet protocol (IP) address or a CNAME corresponding to a server in the server network.
  • 3. The framework according to claim 1, wherein the server network includes at least one of:a subscriber server network; anda content delivery network.
  • 4. The framework according to claim 1, wherein the server network includes a subscriber server network, and wherein the subscriber server network comprises at least one server group, wherein each of the at least one server groups corresponds to a server hierarchy.
  • 5. The framework according to claim 4, wherein the server hierarchy includes at least one of: a first tier comprising at least one primary server;a second tier comprising at least one first level overflow server that functions when the at least one primary server in the first tier fails to function; and a third tier comprising at least one second level overflow server that functions when both the at least one primary server and the one or more first level overflow server fail to function.
  • 6. The framework according to claim 1, wherein each domain name server in the ATC domain name server network comprises: a location determiner constructed and adapted to determine a geographic location of a requesting client;an adaptive traffic control (ATC) mechanism capable of facilitating the policy-based domain name service.
  • 7. The framework according to claim 1, wherein the at least one policy includes at least one of: a geo-political policy governing the selection of a server group in the server network according to a geographical location of the client;a load share policy governing the selection of a server from a server group according to dynamic load share information associated with the servers in the server group;a shedding policy governing how the load of a server in a server group is to be shed to other servers;a failover policy governing the selection of a server at a tier of a server hierarchy when at least one of the servers at the same tier fail to function;a tiered failover policy governing the selection of a server at a next tier in a server hierarchy when servers in a previous tier fail to function; anda server designation policy defining a server in the server network as at least one of a monitored server and a managed server.
  • 8. The framework according to claim 7, wherein the geo-political policy includes at least one of: a continent-based policy;a country-based policy;a region-based policy; anda time-zone based policy.
  • 9. The framework according to claim 1, further comprising a regulatory policy.
  • 10. The framework according to claim 1, wherein the domain name server further comprises a monitoring agent capable of observing events that occur during the operation of the domain name server.
  • 11. The framework according to claim 10, wherein the monitoring agent is further constructed and adapted to monitor availability of one or more servers in the server network that are designated as either a monitored server or a managed server whereby the domain name server can determine the server according to the availability of the one or more servers.
  • 12. The framework according to claim 10, wherein the monitoring agent is constructed and adapted to poll dynamic load share and load shed information from one or more managed servers so that the domain name server can determine the answer according to the dynamic load share and load shed information associated with the managed servers.
  • 13. The framework according to claim 1, further comprising: an adaptive traffic control (ATC) administrative framework constructed and adapted to administer operations of the ATC name server network and the status of the server network.
  • 14. The framework according to claim 1, wherein the AMA comprises: an ATC network monitoring mechanism capable of monitoring the operations of the ATC domain name server network through event information received from at least one monitoring agent of the at least one domain name server;an ATC policy management mechanism capable of receiving and dynamically polling at least one policy from at least one source and broadcasting the at least one policy to the at least one domain name server in the ATC domain name server network; andan administrative master backup mechanism capable of enabling the at least one administrative master agent backup to function in place of the AMA when the AMA fails to function.
  • 15. The framework according to claim 14, wherein the at least one source includes at least one of: the subscriber capable of interacting with the administrative master agent to define subscriber's policies and providing dynamic policies that can be polled by the ATC policy management mechanism;one or more policy entities defining policies that can be received or dynamically polled by the ATC policy management mechanism; andone or more managed servers in the server network that provide dynamic load share and load shed policies that can be polled.
  • 16. The framework according to claim 14, wherein the ATC network monitoring mechanism comprises: a trap handler capable of receiving event information from monitoring agents associated with different ATC domain name servers and consolidating the trapped event information;a processing mechanism capable of analyzing the consolidated trapped event information; andan alert generation mechanism capable of generating an alert according to the processing result from said processing and sending the alert to the network operation center.
  • 17. The framework according to claim 16, wherein the alert generation mechanism is further capable of sending the alert to the subscriber.
  • 18. An adaptive traffic control (ATC) administrative framework, comprising: an administrative master agent (AMA) comprising hardware in combination with software;at least one administrative master agent (AMA) backup; anda network operation center, wherein the AMA comprises:an ATC network monitoring mechanism capable of monitoring the operations of an adaptive traffic control (ATC) domain name server network comprising at least one domain name server through event information received from at least one monitoring agent located in the at least one domain name server; andan ATC policy management mechanism capable of receiving and dynamically polling at least one policy from at least one source and broadcasting the at least one policy to the at least one domain name server; and an administrative master backup mechanism capable of enabling the at least one administrative master agent backup to function in place of the AMA when the AMA fails to function.
  • 19. The framework according to claim 18, wherein the at least one source includes at least one of: a subscriber capable of interacting with the administrative master agent to define subscriber's policies and providing dynamic policies that can be polled by the ATC policy management mechanism;one or more policy entities capable of defining policies that can be dynamically polled by the ATC policy management mechanism; and one or more servers in a server network that are designated as managed servers.
  • 20. The framework according to claim 19, wherein the ATC network monitoring mechanism comprises: a trap handler capable of receiving event information from monitoring agents located in different ATC domain name servers and consolidating the trapped event information;a processing mechanism capable of analyzing the trapped event information; and an alert generation mechanism capable of generating an alert according to the processing result from said processing and sending the alert to the network operation center and the subscriber.
  • 21. A method for adaptive traffic control based domain name service, comprising: receiving, by a domain name server in an adaptive traffic control (ATC) name server network, a request to resolve a hostname, said domain name server comprising hardware in combination with software;determining, by the domain name server, an answer corresponding to a server in a server network based at least on the geographic location of the client and at least one policy; andcausing the answer to be provided to the requestor, wherein the answer is at least one of the IP address and the CNAME of a server in a server network,wherein the server network includes a subscriber server network providing content delivery service, and wherein the subscriber server network includes at least one server group,wherein each server group corresponds to a server hierarchy that includes at least one of:a first tier comprising at least one primary server;a second tier comprising one or more first level overflow servers that function when the at least one primary server fails to function; and a third tier comprising one or more second level overflow servers that function when both the at least one primary server and the one or more first level overflow servers fail to function,the method further comprising establishing the at least one policy, wherein said establishing the at least one policy comprises at least one of:receiving, by an adaptive traffic control (ATC) policy management mechanism of an administrative master agent (AMA) in an adaptive traffic control (ATC) administrative framework, the at least one policy from at least one source;dynamically polling the at least one policy from one or more managed servers in the server network.
  • 22. The method according to claim 21, wherein the server network includes at least one of: a subscriber server network providing content delivery service; anda content delivery network providing the content delivery service.
  • 23. The method according to claim 21, wherein each server in the server network can be designated as at least one of: a monitored server, wherein the availability of the monitored server is dynamically monitored; anda managed server, wherein either the availability of the managed server is dynamically monitored or the load share or the load shed of the managed server is dynamically defined.
  • 24. The method according to claim 21, wherein the at least one policy includes one or more of: a geo-political policy governing the selection of a server group in the server network according to the geographical location of the client;a load share policy governing the selection of a server from a server group according to dynamic load share information associated with the servers in the server group;a shedding policy governing how the load of a server in a server group is to be shed to other servers;a failover policy governing the selection of a server at a tier of a server hierarchy when at least one of the servers at the same tier fail to function;a tiered failover policy governing the selection of a server at a next tier in a server hierarchy when servers in a previous tier fail to function; anda server designation policy defining a server in the server network as at least one of a monitored server and a managed server.
  • 25. The method according to claim 24, wherein, when the policy is a geo-political policy, the geo-political policy includes at least one of: a continent-based policy;a country-based policy;a region-based policy; anda time-zone based policy.
  • 26. The method according to claim 21, further comprising a regulatory policy.
  • 27. The method according to claim 21, wherein said determining the answer comprises: determining the geographic location of the client;retrieving one or more policies relevant to the geographic location of the client;identifying the server according to the retrieved one or more policies; andidentifying the at least one of the IP address and the CNAME of the server.
  • 28. The method according to claim 21, wherein the at least one source includes at least one of: the subscriber; anda regulatory entity.
  • 29. The method according to claim 21, further comprising monitoring, by a monitoring mechanism in a domain name server, an operational status of the domain name server.
  • 30. The method according to claim 29, wherein said monitoring comprises: monitoring events that occur during operation of the domain name server; andsending the events to an ATC network monitoring mechanism in the ATC administrative framework.
  • 31. The method according to claim 21, further comprising monitoring, by a monitoring mechanism, the availability of one or more servers that are designated as either a monitored server or a managed server whereby the domain name server can determine the answer according to the availability of the one or more servers.
  • 32. The method according to claim 21, further comprising polling, by a monitoring mechanism, dynamic load share or load shed information from one or more managed servers in the server network whereby the domain name server can determine the answer according to the dynamic load share and load shed information.
  • 33. The method according to claim 21, further comprising administering, by an ATC administrative framework, an operational status of the ATC name server network.
  • 34. The method according to claim 33, wherein said administering comprises: receiving events from monitoring mechanisms of the domain name servers in the ATC name server network;consolidating, by the ATC network monitoring mechanism, the events received from the domain name servers to generate consolidated events; andprocessing the consolidated events.
  • 35. The method according to claim 34, further comprising: generating an alert based on results from said processing; andsending the alert to an network operation center of the ATC administrative network and the subscriber.
  • 36. A method for resolving a hostname, comprising, by a domain name server in an adaptive traffic control (ATC) name server network, the method comprising: receiving a request to resolve a hostname;ascertaining at least one policy; and thendetermining a server in a server network based at least on the geographic location of the client and said at least one policy; anddetermining at least one of an IP address and a CNAME of the server based on the determined location at least one location-based policy, wherein said domain server comprises hardware in combination with software, andwherein the server network includes a subscriber server network, and wherein the subscriber server network includes at least one server group, wherein each server group corresponds to a server hierarchy that includes at least one of: a first tier comprising at least one primary server;a second tier comprising one or more first level overflow servers that function when the at least one primary server fails to function; and a third tier comprising one or more second level overflow servers that function when both the at least one primary server and the one or more first level overflow servers fail to function,the method further comprising dynamically establishing the at least one policy, wherein said establishing the at least one policy comprises at least one of:receiving the at least one policy broadcasted from an adaptive traffic control (ATC) policy management mechanism of an administrative master agent (AMA) in an adaptive traffic control (ATC) administrative framework; anddynamically polling one or more load share or load shed policies from one or more managed servers in the server network; andupdating a policy based on a corresponding dynamic policy that is either received from the ATC policy management mechanism or polled from a managed server to generate an updated policy.
  • 37. The method according to claim 36, wherein the server network includes at least one of: a subscriber server network; anda content delivery network.
  • 38. The method according to claim 36, wherein each server in the server network is at least one of: a monitored server, wherein the availability of the monitored server is dynamically monitored; anda managed server, wherein either the availability of the managed server is dynamically monitored or the load share or the load shed of the managed server is dynamically defined.
  • 39. The method according to claim 38, wherein the at least one policy includes one or more of: a geo-political policy governing the selection of a server group in the server network according to the geographical location of the client;a load share policy governing the selection of a server from a server group according to dynamic load share information associated with the servers in the server group;a shedding policy governing how the load of a server in a server group is to be shed to other servers;a failover policy governing the selection of a server at a tier of a server hierarchy when at least one of the servers at the same tier fail to function;a tiered failover policy governing the selection of a server at a next tier in a server hierarchy when servers in a previous tier fail to function;a server designation policy defining a server in the server network as at least one of a monitored server and a managed server; and a regulatory policy.
  • 40. The method according to claim 36, wherein said determining the server comprises: determining the geographic location of the client;retrieving one or more policies relevant to the geographic location of the client; anddetermining the server according to the retrieved one or more policies.
  • 41. The method according to claim 36, further comprising monitoring, by a monitoring mechanism of the domain name server, the operational status of the domain name server.
  • 42. The method according to claim 41, wherein said monitoring comprises: monitoring events that occur during operation of the domain name server;sending the events to an ATC network monitoring mechanism in the ATC administrative framework.
  • 43. The method according to claim 42, further comprising monitoring the availability of one or more servers that are designated as either a monitored server or a managed server so that the domain name server can determine the server according to the availability of the one or more servers.
  • 44. A method of an adaptive traffic control (ATC) administrative framework, comprising: maintaining by hardware in combination with software, at least one policy used by at least one domain name server in an adaptive traffic control (ATC) name server network to determine the IP address of a server in a server network in response to a request from a client to resolve a hostname;monitoring the operational status of the ATC name server network, wherein said monitoring comprises: receiving, by an ATC network monitoring mechanism in the ATC administrative framework, events sent from at least one monitoring mechanism of the at least one domain name server;consolidating the events to form consolidated events; and processing the consolidated events,wherein said maintaining the at least one policy comprises:receiving, by an adaptive traffic control (ATC) policy management mechanism of an administrative master agent (AMA) in the ATC administrative framework, the at least one policy from at least one source; and broadcasting the received at least one policy to the at least one domain name server in the ATC name server network.
  • 45. The method according to claim 44, wherein the at least one source includes at least one of: a subscriber; anda regulatory entity.
  • 46. The method according to claim 44, further comprising: polling one or more load share or load shed policies from one or more servers that are designated as managed servers in the server network;updating a policy using a corresponding dynamic policy that is either received from the at least one source or polled from a managed server to generate an updated policy; andbroadcasting the updated policy to one or more domain name servers in the ATC name server network.
  • 47. The method according to claim 44, further comprising: generating an alert based on results from said processing; and sending the alert to an network operation center of the ATC administrative framework and the subscriber.
  • 48. A framework for adaptive traffic control comprising: a server network comprising hardware in combination with software; andan adaptive traffic control (ATC) name server network having at least one domain name server constructed and adapted to provide adaptive policy-based domain name service, wherein, in response to a request to resolve a hostname, at least one domain name server in the ATC domain name server network provides an answer based on a policy and on a location of the requester, wherein the server network includes a subscriber server network, and wherein the subscriber server network comprises at least one server group, wherein each of the at least one server groups corresponds to a server hierarchy, wherein the server hierarchy includes at least one of:a first tier comprising at least one primary server;a second tier comprising at least one first level overflow server that functions when the at least one primary server in the first tier fails to function; and a third tier comprising at least one second level overflow server that functions when both the at least one primary server and the one or more first level overflow server fail to function, wherein the framework further comprises:an ATC administrative framework, wherein the ATC administrative framework comprises: an administrative master agent (AMA);at least one administrative master backup agent; anda network operation center.
  • 49. The framework according to claim 48, wherein each server in the server network is at least one of: a monitored server, wherein the availability of the monitored server is dynamically monitored; anda managed server, wherein either the availability of the managed server is dynamically monitored, or the load share or the shed fraction of the managed server is defined dynamically.
  • 50. A framework for adaptive traffic control comprising: a server network comprising hardware in combination with software; andan adaptive traffic control (ATC) name server network having at least one domain name server constructed and adapted to provide adaptive policy-based domain name service, wherein, in response to a request to resolve a hostname, at least one domain name server in the ATC domain name server network provides an answer based on a policy and on a location of the requester,wherein the domain name server further comprises a monitoring agent capable of observing events that occur during the operation of the domain name server, wherein the framework further comprises:an ATC administrative framework, wherein the ATC administrative framework comprises: an administrative master agent (AMA);at least one administrative master backup agent; anda network operation center.
  • 51. A framework for adaptive traffic control comprising: a server network comprising hardware in combination with software;an adaptive traffic control (ATC) name server network having at least one domain name server constructed and adapted to provide adaptive policy-based domain name service, wherein, in response to a request to resolve a hostname, at least one domain name server in the ATC domain name server network provides an answer based on a policy and on a location of the requester; andan adaptive traffic control (ATC) administrative framework, wherein the ATC administrative framework comprises: an administrative master agent (AMA);at least one administrative master backup agent; anda network operation center.
  • 52. A method for adaptive traffic control based domain name service, comprising: receiving, by a domain name server in an adaptive traffic control (ATC) name server network, a request to resolve a hostname, wherein the domain name server comprises hardware in combination with software,determining, by the domain name server, an answer corresponding to a server in a server network based at least on the geographic location of the client and at least one policy; andcausing the answer to be provided to the requestor, wherein the answer is at least one of the IP address and the CNAME of a server in a server network, wherein said establishing the at least one policy comprises at least one of:receiving, by an adaptive traffic control (ATC) policy management mechanism of an administrative master agent (AMA) in an adaptive traffic control (ATC) administrative framework, the at least one policy from at least one source, wherein the at least one source includes at least one of: the subscriber; and a regulatory entity;dynamically polling the at least one policy from one or more managed servers in the server network; andmonitoring, by a monitoring mechanism, the availability of one or more servers that are designated as either a monitored server or a managed server whereby the domain name server can determine the answer according to the availability of the one or more servers.
  • 53. The method according to claim 52, wherein the server network includes a subscriber server network providing content delivery service, and wherein the subscriber server network includes at least one server group.
  • 54. The method according to claim 53, wherein each server group corresponds to a server hierarchy that includes at least one of: a first tier comprising at least one primary server;a second tier comprising one or more first level overflow servers that function when the at least one primary server fails to function; and a third tier comprising one or more second level overflow servers that function when both the at least one primary server and the one or more first level overflow servers fail to function.
  • 55. A method for adaptive traffic control based domain name service, comprising: (A) receiving, by a domain name server in an adaptive traffic control (ATC) name server network, a request to resolve a hostname, wherein the domain name server comprises hardware in combination with software,(B) determining, by the domain name server, an answer corresponding to a server in a server network based at least on the geographic location of the client and at least one policy; and(C) causing the answer to be provided to the requestor, wherein the answer is at least one of the IP address and the CNAME of a server in a server network,wherein the server network includes a subscriber server network providing content delivery service, and wherein the subscriber server network includes at least one server group,wherein each server group corresponds to a server hierarchy that includes at least one of:a first tier comprising at least one primary server;a second tier comprising one or more first level overflow servers that function when the at least one primary server fails to function; and a third tier comprising one or more second level overflow servers that function when both the at least one primary server and the one or more first level overflow servers fail to function; and(D) administering, by an ATC administrative framework, an operational status of the ATC name server network, wherein said administering comprises:(d1) receiving events from monitoring mechanisms of the domain name servers in the ATC name server network;(d2) consolidating, by the ATC network monitoring mechanism, the events received from the domain name servers to generate consolidated events; and(d3) processing the consolidated events.
  • 56. The method according to claim 55, further comprising establishing the at least one policy.
  • 57. The method according to claim 56, wherein said establishing the at least one policy comprises at least one of: receiving, by an adaptive traffic control (ATC) policy management mechanism of an administrative master agent (AMA) in an adaptive traffic control (ATC) administrative framework, the at least one policy from at least one source;dynamically polling the at least one policy from one or more managed servers in the server network.
  • 58. The method according to claim 56, further comprising broadcasting the at least one policy to the at least one domain name server in the ATC name server network.
  • 59. The method according to claim 56, further comprising: dynamically updating a policy based on a dynamic policy to generate an updated policy; andbroadcasting the updated policy to the at least one domain name server in the ATC name server network.
  • 60. A method for resolving a hostname, comprising, by a domain name server in an adaptive traffic control (ATC) name server network, the method comprising: receiving a request to resolve a hostname;ascertaining, by hardware in combination with software, at least one policy; and thendetermining a server in a server network based at least on the geographic location of the client and said at least one policy; anddetermining at least one of an IP address and a CNAME of the server based on the determined location at least one location-based policy, and the method further comprisingdynamically establishing the at least one policy, wherein said establishing the at least one policy comprises: receiving the at least one policy broadcasted from an adaptive traffic control (ATC) policy management mechanism of an administrative master agent (AMA) in an adaptive traffic control (ATC) administrative framework; anddynamically polling one or more load share or load shed policies from one or more managed servers in the server network; andupdating a policy based on a corresponding dynamic policy that is either received from the ATC policy management mechanism or polled from a managed server to generate an updated policy.
  • 61. The method according to claim 60, wherein the server network includes a subscriber server network, and wherein the subscriber server network includes at least one server group.
  • 62. The method according to claim 61, wherein each server group corresponds to a server hierarchy that includes at least one of: a first tier comprising at least one primary server;a second tier comprising one or more first level overflow servers that function when the at least one primary server fails to function; and a third tier comprising one or more second level overflow servers that function when both the at least one primary server and the one or more first level overflow servers fail to function.
Parent Case Info

This application is related to and claims priority from provisional U.S. Patent Application No. 60/325,177, titled “Configurable Adaptive Global Traffic Control and Management,” filed Sep. 28, 2001, the contents of which are incorporated herein by reference.

US Referenced Citations (368)
Number Name Date Kind
4495570 Kitajima et al. Jan 1985 A
4591983 Bennett et al. May 1986 A
4594704 Ollivier Jun 1986 A
4726017 Krum et al. Feb 1988 A
4803641 Hardy et al. Feb 1989 A
4839798 Eguchi et al. Jun 1989 A
4847784 Clancey Jul 1989 A
4920432 Eggers Apr 1990 A
4922417 Churm et al. May 1990 A
4943932 Lark et al. Jul 1990 A
4949187 Cohen Aug 1990 A
4949248 Caro Aug 1990 A
5029232 Nall Jul 1991 A
5130792 Tindell et al. Jul 1992 A
5132992 Yurt et al. Jul 1992 A
5136716 Harvey Aug 1992 A
5172413 Bradley Dec 1992 A
5191573 Hair Mar 1993 A
5253275 Yurt et al. Oct 1993 A
5253341 Rozmanith Oct 1993 A
5287499 Nemes Feb 1994 A
5287537 Newmark et al. Feb 1994 A
5291554 Morales Mar 1994 A
5341477 Pitkin et al. Aug 1994 A
5371532 Gelman Dec 1994 A
5410343 Coddington Apr 1995 A
5414455 Hooper May 1995 A
5442389 Blahut Aug 1995 A
5442390 Hooper Aug 1995 A
5442749 Northcutt Aug 1995 A
5471622 Eadline Nov 1995 A
5475615 Lin Dec 1995 A
5508732 Bottomley Apr 1996 A
5515511 Nguyen May 1996 A
5519435 Anderson May 1996 A
5522070 Sumimoto May 1996 A
5528281 Grady Jun 1996 A
5539621 Kikinis Jul 1996 A
5542087 Neimat et al. Jul 1996 A
5544313 Shachnai et al. Aug 1996 A
5544327 Dan Aug 1996 A
5550577 Verbiest Aug 1996 A
5550863 Yurt Aug 1996 A
5550982 Long Aug 1996 A
5557317 Nishio Sep 1996 A
5572643 Judson Nov 1996 A
5590288 Castor Dec 1996 A
5592611 Midgely Jan 1997 A
5594910 Filepp et al. Jan 1997 A
5603026 Demers et al. Feb 1997 A
5619648 Canale Apr 1997 A
5623656 Lyons Apr 1997 A
5625781 Cline Apr 1997 A
5627829 Gleeson et al. May 1997 A
5630067 Kindell May 1997 A
5633999 Clowes May 1997 A
5634006 Baugher et al. May 1997 A
5638443 Stefik et al. Jun 1997 A
5644714 Kikinis Jul 1997 A
5646676 Dewkett et al. Jul 1997 A
5649186 Ferguson Jul 1997 A
5659729 Nielsen Aug 1997 A
5666362 Chen Sep 1997 A
5671279 Elgamai Sep 1997 A
5675734 Hair Oct 1997 A
5682512 Tetrick Oct 1997 A
5699513 Feigen et al. Dec 1997 A
5708780 Levergood et al. Jan 1998 A
5712979 Graber et al. Jan 1998 A
5715453 Stewart Feb 1998 A
5721914 DeVries Feb 1998 A
5734831 Sanders Mar 1998 A
5740423 Logan et al. Apr 1998 A
5742762 Scholl Apr 1998 A
5751961 Smyk May 1998 A
5761507 Govett Jun 1998 A
5761663 Lagarde et al. Jun 1998 A
5764906 Edelstein et al. Jun 1998 A
5774660 Brendel et al. Jun 1998 A
5774668 Choquier et al. Jun 1998 A
5777988 Cisneros Jul 1998 A
5777989 McGarvey Jul 1998 A
5784058 LaStrange et al. Jul 1998 A
5796952 Davis Aug 1998 A
5799141 Galipeau et al. Aug 1998 A
5802106 Packer Sep 1998 A
5802291 Balick et al. Sep 1998 A
5812769 Graber et al. Sep 1998 A
5815664 Asano Sep 1998 A
5826031 Nielsen Oct 1998 A
5828847 Gehr Oct 1998 A
5832506 Kuzma Nov 1998 A
5832514 Norin et al. Nov 1998 A
5835718 Blewett Nov 1998 A
5838906 Doyle et al. Nov 1998 A
5845303 Templeman Dec 1998 A
5856974 Gervais et al. Jan 1999 A
5862339 Bonnaure Jan 1999 A
5867706 Martin et al. Feb 1999 A
5867799 Lang et al. Feb 1999 A
5870546 Kirsch Feb 1999 A
5870559 Leshem et al. Feb 1999 A
5878212 Civanlar et al. Mar 1999 A
5884038 Kapoor Mar 1999 A
5890171 Blumer et al. Mar 1999 A
5893116 Simmonds et al. Apr 1999 A
5894554 Lowery et al. Apr 1999 A
5896533 Ramos et al. Apr 1999 A
5903723 Beck et al. May 1999 A
5907704 Gudmundson et al. May 1999 A
5913028 Wang et al. Jun 1999 A
5913033 Grout Jun 1999 A
5918010 Appleman et al. Jun 1999 A
5919247 Van Hoff et al. Jul 1999 A
5920701 Miller et al. Jul 1999 A
5931904 Banga Aug 1999 A
5933832 Suzuoka et al. Aug 1999 A
5935207 Logue et al. Aug 1999 A
5944780 Chase Aug 1999 A
5945989 Freishtat et al. Aug 1999 A
5956489 San Andres et al. Sep 1999 A
5956716 Kenner Sep 1999 A
5958008 Pogrebisky et al. Sep 1999 A
5961596 Takubo et al. Oct 1999 A
5966440 Hair Oct 1999 A
5968121 Logan et al. Oct 1999 A
5973696 Agranat et al. Oct 1999 A
5978791 Farber et al. Nov 1999 A
5983214 Lang et al. Nov 1999 A
5983227 Nazem et al. Nov 1999 A
5987606 Cirasole et al. Nov 1999 A
5991809 Kriegsman Nov 1999 A
5996025 Day Nov 1999 A
6002720 Yurt et al. Dec 1999 A
6003030 Kenner et al. Dec 1999 A
6006264 Colby et al. Dec 1999 A
6012090 Chung et al. Jan 2000 A
6014686 Elnozahy et al. Jan 2000 A
6014698 Griffiths Jan 2000 A
6018516 Packer Jan 2000 A
6021426 Douglis Feb 2000 A
6026440 Sharder et al. Feb 2000 A
6029175 Chow et al. Feb 2000 A
6029176 Cannon Feb 2000 A
6035332 Ingrassia, Jr. et al. Mar 2000 A
6038216 Packer Mar 2000 A
6038310 Hollywood et al. Mar 2000 A
6038610 Belfiore et al. Mar 2000 A
6041307 Ahuja et al. Mar 2000 A
6041324 Earl et al. Mar 2000 A
6044405 Driscoll, III et al. Mar 2000 A
6046980 Packer Apr 2000 A
6049831 Gardell et al. Apr 2000 A
6052718 Gifford Apr 2000 A
6052730 Feliciano et al. Apr 2000 A
6065051 Steele et al. May 2000 A
6065062 Periasamy et al. May 2000 A
6070191 Narendran et al. May 2000 A
6081829 Sidana Jun 2000 A
6092112 Fukushige Jul 2000 A
6092204 Baker Jul 2000 A
6098078 Gehani Aug 2000 A
6105028 Sullivan et al. Aug 2000 A
6108673 Brandt et al. Aug 2000 A
6108703 Leighton et al. Aug 2000 A
6112231 DeSimone et al. Aug 2000 A
6112239 Kenner et al. Aug 2000 A
6112240 Pogue et al. Aug 2000 A
6115357 Packer et al. Sep 2000 A
6115752 Chauhan Sep 2000 A
6119143 Dias et al. Sep 2000 A
6125388 Reisman Sep 2000 A
6125394 Rabinovich Sep 2000 A
6128601 Van Horne et al. Oct 2000 A
6128660 Grimm et al. Oct 2000 A
6130890 Leinwand et al. Oct 2000 A
6134583 Herriot Oct 2000 A
6144375 Jain et al. Nov 2000 A
6144702 Yurt et al. Nov 2000 A
6144996 Starnes et al. Nov 2000 A
6151624 Teare et al. Nov 2000 A
6154738 Call Nov 2000 A
6154744 Kenner et al. Nov 2000 A
6154753 McFarland Nov 2000 A
6154777 Ebrahim Nov 2000 A
6163779 Mantha et al. Dec 2000 A
6167427 Rabinovich et al. Dec 2000 A
6173311 Hassett et al. Jan 2001 B1
6173322 Hu Jan 2001 B1
6178160 Bolton et al. Jan 2001 B1
6181867 Kenner et al. Jan 2001 B1
6185598 Farber Feb 2001 B1
6185619 Joffe et al. Feb 2001 B1
6189030 Kirsch et al. Feb 2001 B1
6189039 Harvey Feb 2001 B1
6195680 Goldszmidt Feb 2001 B1
6205120 Packer et al. Mar 2001 B1
6226618 Downs May 2001 B1
6226642 Beranek et al. May 2001 B1
6230196 Guenthner et al. May 2001 B1
6243760 Armbruster et al. Jun 2001 B1
6249810 Kiraly Jun 2001 B1
6256675 Rabinovich Jul 2001 B1
6263313 Milsted Jul 2001 B1
6266699 Sevcik Jul 2001 B1
6269394 Kenner et al. Jul 2001 B1
6272566 Craft Aug 2001 B1
6275470 Ricciulli Aug 2001 B1
6282569 Wallis et al. Aug 2001 B1
6282574 Voit Aug 2001 B1
6286045 Griffiths et al. Sep 2001 B1
6298041 Packer Oct 2001 B1
6311214 Rhoads Oct 2001 B1
6314565 Kenner et al. Nov 2001 B1
6327622 Jindal et al. Dec 2001 B1
6330602 Law et al. Dec 2001 B1
6332195 Green et al. Dec 2001 B1
6338044 Cook et al. Jan 2002 B1
6347085 Kelly Feb 2002 B2
6360256 Lim Mar 2002 B1
6370571 Medin, Jr. Apr 2002 B1
6370580 Kriegsman Apr 2002 B2
6398245 Gruse Jun 2002 B1
6405252 Gupta et al. Jun 2002 B1
6405257 Gersht et al. Jun 2002 B1
6412000 Riddle et al. Jun 2002 B1
6415280 Farber et al. Jul 2002 B1
6418421 Hurtado Jul 2002 B1
6421726 Kenner et al. Jul 2002 B1
6430618 Karger et al. Aug 2002 B1
6442549 Schneider Aug 2002 B1
6456630 Packer et al. Sep 2002 B1
6460082 Lumelsky Oct 2002 B1
6460085 Toporek et al. Oct 2002 B1
6463454 Lumelsky Oct 2002 B1
6463508 Wolf Oct 2002 B1
6470389 Chung et al. Oct 2002 B1
6473405 Ricciulli Oct 2002 B2
6480893 Kriegsman Nov 2002 B2
6484143 Swildens et al. Nov 2002 B1
6484204 Rabinovich Nov 2002 B1
6490580 Dey et al. Dec 2002 B1
6493707 Dey et al. Dec 2002 B1
6496856 Kenner et al. Dec 2002 B1
6502125 Kenner et al. Dec 2002 B1
6502215 Raad et al. Dec 2002 B2
6505248 Casper et al. Jan 2003 B1
6529477 Toporek et al. Mar 2003 B1
6553413 Leighton et al. Apr 2003 B1
6553420 Karger et al. Apr 2003 B1
6557054 Reisman Apr 2003 B2
6564251 Katariya et al. May 2003 B2
6577595 Counterman Jun 2003 B1
6581090 Lindbo et al. Jun 2003 B1
6584083 Toporek et al. Jun 2003 B1
6587837 Spagna Jul 2003 B1
6591299 Riddle et al. Jul 2003 B2
6611862 Reisman Aug 2003 B2
6625643 Colby et al. Sep 2003 B1
6654344 Toporek et al. Nov 2003 B1
6654807 Farber et al. Nov 2003 B2
6658464 Reisman Dec 2003 B2
6665706 Kenner et al. Dec 2003 B2
6665726 Leighton et al. Dec 2003 B1
6691148 Zinky et al. Feb 2004 B1
6694358 Swildens et al. Feb 2004 B1
6699418 Okada et al. Mar 2004 B2
6708137 Carley Mar 2004 B2
6718328 Norris Apr 2004 B1
6741563 Packer May 2004 B2
6751673 Shaw Jun 2004 B2
6754699 Swildens et al. Jun 2004 B2
6754706 Swildens et al. Jun 2004 B1
6763377 Belknap Jul 2004 B1
6763388 Tsimelzon Jul 2004 B1
6778502 Ricciulli Aug 2004 B2
6785704 McCanne Aug 2004 B1
6799221 Kenner et al. Sep 2004 B1
6801576 Haldeman et al. Oct 2004 B1
6834306 Tsimelzon Dec 2004 B1
6842604 Cook et al. Jan 2005 B1
6859791 Spagna Feb 2005 B1
6870851 Leinwand et al. Mar 2005 B1
6874032 Gersht et al. Mar 2005 B2
6901604 Kiraly May 2005 B1
6915329 Kriegsman Jul 2005 B2
6928442 Farber et al. Aug 2005 B2
6934255 Toporek et al. Aug 2005 B1
6950623 Brown et al. Sep 2005 B2
6963910 Belknap Nov 2005 B1
6963980 Mattsson Nov 2005 B1
6963981 Bailey et al. Nov 2005 B1
6965890 Dey et al. Nov 2005 B1
6970432 Hankins et al. Nov 2005 B1
6973485 Ebata et al. Dec 2005 B2
6973490 Robertson et al. Dec 2005 B1
6976090 Ben-Shaul et al. Dec 2005 B2
6981050 Tobias et al. Dec 2005 B1
6981180 Bailey et al. Dec 2005 B1
6996616 Leighton et al. Feb 2006 B1
7003572 Lownsbrough et al. Feb 2006 B1
7007089 Freedman Feb 2006 B2
7010578 Lewin et al. Mar 2006 B1
7012900 Riddle Mar 2006 B1
7039633 Dey et al. May 2006 B1
7047300 Oehrke et al. May 2006 B1
7054935 Farber et al. May 2006 B2
7058706 Iyer et al. Jun 2006 B1
7069177 Carley Jun 2006 B2
7096266 Lewin et al. Aug 2006 B2
7103564 Ehnebuske Sep 2006 B1
7103645 Leighton et al. Sep 2006 B2
7110984 Spagna Sep 2006 B1
7117259 Rohwer Oct 2006 B1
7185052 Day Feb 2007 B2
7188085 Pelletier Mar 2007 B2
7206748 Gruse Apr 2007 B1
7254645 Nishi Aug 2007 B2
7373644 Aborn May 2008 B2
7577754 Garcia-Luna-Aceves et al. Aug 2009 B2
20010029525 Lahr Oct 2001 A1
20010056500 Farber et al. Dec 2001 A1
20020016831 Peled et al. Feb 2002 A1
20020018449 Ricciulli Feb 2002 A1
20020023164 Lahr Feb 2002 A1
20020023165 Lahr Feb 2002 A1
20020040404 Lahr Apr 2002 A1
20020042817 Lahr Apr 2002 A1
20020046273 Lahr et al. Apr 2002 A1
20020046405 Lahr Apr 2002 A1
20020049857 Farber et al. Apr 2002 A1
20020059592 Kiraly May 2002 A1
20020066038 Mattsson May 2002 A1
20020073199 Levine et al. Jun 2002 A1
20020078233 Biliris Jun 2002 A1
20020082999 Lee et al. Jun 2002 A1
20020083124 Knox et al. Jun 2002 A1
20020099850 Farber et al. Jul 2002 A1
20020124080 Leighton et al. Sep 2002 A1
20020129134 Leighton et al. Sep 2002 A1
20020131645 Hamilton Sep 2002 A1
20020143798 Lisiecki et al. Oct 2002 A1
20020143888 Lisiecki et al. Oct 2002 A1
20020147774 Lisiecki et al. Oct 2002 A1
20020163882 Bornstein et al. Nov 2002 A1
20020199016 Freedman Dec 2002 A1
20030009444 Eidler et al. Jan 2003 A1
20030018966 Cook et al. Jan 2003 A1
20030028623 Hennessey et al. Feb 2003 A1
20030028626 Hennessey et al. Feb 2003 A1
20030028777 Hennessey et al. Feb 2003 A1
20030055972 Fuller et al. Mar 2003 A1
20030061263 Riddle Mar 2003 A1
20030061280 Bulson et al. Mar 2003 A1
20030078888 Lee et al. Apr 2003 A1
20030078889 Lee et al. Apr 2003 A1
20030105604 Ash et al. Jun 2003 A1
20030149581 Chaudhri Aug 2003 A1
20040022194 Ricciulli Feb 2004 A1
20040039798 Hotz et al. Feb 2004 A1
20040139097 Farber et al. Jul 2004 A1
20040177148 Tsimelzon Sep 2004 A1
20050033858 Swildens et al. Feb 2005 A1
20050038851 Kriegsman Feb 2005 A1
20050100027 Leinwand et al. May 2005 A1
20050114296 Farber et al. May 2005 A1
20050262104 Robertson et al. Nov 2005 A1
20060143293 Freedman Jun 2006 A1
Foreign Referenced Citations (33)
Number Date Country
2202572 Oct 1998 CA
0 800 143 Oct 1997 EP
0801487 Oct 1997 EP
0 817 020 Jan 1998 EP
0 817 444 Jan 1998 EP
0817444 Jan 1998 EP
0824236 Feb 1998 EP
0865180 Sep 1998 EP
2 281 793 Mar 1995 GB
5-130144 May 1993 JP
05162529 Jun 1993 JP
7066829 Mar 1995 JP
08328583 Sep 1996 JP
10-027148 Jan 1998 JP
10-70571 Mar 1998 JP
10-093552 Apr 1998 JP
10-126445 May 1998 JP
2000259539 Sep 2000 JP
2001-053793 Feb 2001 JP
1999-72167 Sep 1999 KR
WO 9642041 Dec 1996 WO
WO 9711429 Mar 1997 WO
WO 9729423 Aug 1997 WO
WO 9804985 Feb 1998 WO
WO 9806033 Feb 1998 WO
WO 99 09726 Feb 1999 WO
WO 99 29083 Jun 1999 WO
WO 0014633 Mar 2000 WO
WO 00 52594 Sep 2000 WO
WO 0052594 Sep 2000 WO
WO 0062502 Oct 2000 WO
WO 0135601 May 2001 WO
WO 0152497 Jul 2001 WO
Related Publications (1)
Number Date Country
20030065762 A1 Apr 2003 US
Provisional Applications (1)
Number Date Country
60325177 Sep 2001 US