Configurable physiological measurement system

Information

  • Patent Grant
  • 7729733
  • Patent Number
    7,729,733
  • Date Filed
    Wednesday, March 1, 2006
    18 years ago
  • Date Issued
    Tuesday, June 1, 2010
    14 years ago
Abstract
A physiological measurement system has a sensor, a processor, a communications link and information elements. The sensor is configured to transmit light having a plurality of wavelengths into a tissue site and to generate a sensor signal responsive to the transmitted light after tissue attenuation. The processor is configured to operate on the sensor signal so as to derive at least one physiological parameter. The communications link is adapted to provide communications between the sensor and the processor. The information elements are distributed across at least one of the sensor, the processor and the communications link and provide operational information corresponding to at least one of the sensor, the processor and the communications link.
Description
INCORPORATION BY REFERENCE OF COPENDING RELATED APPLICATIONS

The present application is related to the following copending U.S. utility applications:

















App. Sr. No.
Filing Date
Title
Atty Dock.



















1
11/367,013
Mar. 1, 2006
Multiple Wavelength
MLR.002A





Sensor Emitters


2
11/366,995
Mar. 1, 2006
Multiple Wavelength
MLR.003A





Sensor Equalization


3
11/366,209
Mar. 1, 2006
Multiple Wavelength
MLR.004A





Sensor Substrate


4
11/366,210
Mar. 1, 2006
Multiple Wavelength
MLR.005A





Sensor Interconnect


5
11/366,833
Mar. 1, 2006
Multiple Wavelength
MLR.006A





Sensor Attachment


6
11/366,997
Mar. 1, 2006
Multiple Wavelength
MLR.009A





Sensor Drivers


7
11/367,034
Mar. 1, 2006
Physiological Parameter
MLR.010A





Confidence Measure


8
11/367,036
Mar. 1, 2006
Configurable
MLR.011A





Physiological





Measurement System


9
11/367,033
Mar. 1, 2006
Noninvasive Multi-
MLR.012A





Parameter Patient





Monitor


10
11/367,014
Mar. 1, 2006
Noninvasive Multi-
MLR.013A





Parameter Patient





Monitor


11
11/366,208
Mar. 1, 2006
Noninvasive Multi-
MLR.014A





Parameter Patient





Monitor










The present application incorporates the foregoing disclosures herein by reference.


BACKGROUND OF THE INVENTION

Spectroscopy is a common technique for measuring the concentration of organic and some inorganic constituents of a solution. The theoretical basis of this technique is the Beer-Lambert law, which states that the concentration ci of an absorbent in solution can be determined by the intensity of light transmitted through the solution, knowing the pathlength dλ, the intensity of the incident light I0,λ, and the extinction coefficient εi,λ, at a particular wavelength λ. In generalized form, the Beer-Lambert law is expressed as:










I
λ

=


I

0
,
λ







-

d
λ


·

μ

a
,
λ









(
1
)







μ

a
,
λ


=




i
=
1

n




ɛ

i
,
λ


·

c
i







(
2
)








where μα,λ is the bulk absorption coefficient and represents the probability of absorption per unit length. The minimum number of discrete wavelengths that are required to solve EQS. 1-2 are the number of significant absorbers that are present in the solution.


A practical application of this technique is pulse oximetry, which utilizes a noninvasive sensor to measure oxygen saturation (SpO2) and pulse rate. In general, the sensor has light emitting diodes (LEDs) that transmit optical radiation of red and infrared wavelengths into a tissue site and a detector that responds to the intensity of the optical radiation after absorption (e.g., by transmission or transreflectance) by pulsatile arterial blood flowing within the tissue site. Based on this response, a processor determines measurements for SpO2, pulse rate, and can output representative plethysmographic waveforms. Thus, “pulse oximetry” as used herein encompasses its broad ordinary meaning known to one of skill in the art, which includes at least those noninvasive procedures for measuring parameters of circulating blood through spectroscopy. Moreover, “plethysmograph” as used herein (commonly referred to as “photoplethysmograph”), encompasses its broad ordinary meaning known to one of skill in the art, which includes at least data representative of a change in the absorption of particular wavelengths of light as a function of the changes in body tissue resulting from pulsing blood. Pulse oximeters capable of reading through motion induced noise are available from Masimo Corporation (“Masimo”) of Irvine, Calif. Moreover, portable and other oximeters capable of reading through motion induced noise are disclosed in at least U.S. Pat. Nos. 6,770,028, 6,658,276, 6,157,850, 6,002,952 5,769,785, and 5,758,644, which are owned by Masimo and are incorporated by reference herein. Such reading through motion oximeters have gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care and neonatal units, general wards, home care, physical training, and virtually all types of monitoring scenarios.


SUMMARY OF THE INVENTION

A physiological measurement system has a sensor that transmits optical radiation at a multiplicity of wavelengths other than or including the red and infrared wavelengths utilized in pulse oximeters. The system also has a processor that determines the relative concentrations of blood constituents other than or in addition to HbO2 and Hb, such as carboxyhemoglobin (HbCO), methemoglobin (MetHb), fractional oxygen saturation, total hemaglobin (Hbt) and blood glucose to name a few. Further, such a system may be combined with other physiological parameters such as noninvasive blood pressure (NIBP). There is a need to easily configure such a physiological measurement system from compatible components capable of measuring various physiological parameters.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a general block diagram of a configurable physiological measurement system;



FIG. 2 is a detailed block diagram of a configurable physiological measurement system embodiment;



FIG. 3 is a detailed block diagram of networked information elements in a configurable physiological measurement system;



FIG. 4 is a flowchart of a physiological measurement system configuration process; and



FIGS. 5A-B are block diagrams illustrating forward and backward sensor compatibility with various processors.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In this application, reference is made to many blood parameters. Some references that have common shorthand designations are referenced through such shorthand designations. For example, as used herein, HbCO designates carboxyhemoglobin, HbMet designates methemoglobin, and Hbt designates total hemoglobin. Other shorthand designations such as COHb, MetHb, and tHb are also common in the art for these same constituents. These constituents are generally reported in terms of a percentage, often referred to as saturation, relative concentration or fractional saturation. Total hemoglobin is generally reported as a concentration in g/dL. The use of the particular shorthand designators presented in this application does not restrict the term to any particular manner in which the designated constituent is reported.



FIG. 1 illustrates a configurable physiological measurement system 100 having a processor 110, a sensor 120 and a communications link 130. In one embodiment, the sensor 120 has two or more light emitters that transmit optical radiation of two or more wavelengths into a tissue site and at least one detector that generates a signal responsive to the optical radiation after attenuation by the tissue site. Multiple wavelength sensors are described in U.S. patent application Ser. No. 10/719,928, entitled Blood Parameter Measurement System, assigned to Masimo Corporation, Irvine, Calif. and incorporated by reference herein.


The processor 110 generates drive signals so as to activate the sensor emitters and inputs and processes the corresponding detector signal so as determine the relative concentrations of two or more blood constituents. The communications link 130 provides communications between the processor 110 and sensor 120 including transmitting the drive signals from the processor 110 to the sensor 120 and the detector signals from the sensor 120 to the processor 110. In one embodiment, the communications link 130 is a cable and corresponding sensor and processor connectors that provide a wired connection between the processor 110 and connector 120. In another embodiment, the communications link 130 provides a wireless connection between the processor 110 and connector 120. The wireless connection may utilize Bluetooth®, IEEE 802.11 or similar wireless technologies.


As shown in FIG. 1, the configurable physiological measurement system 100 also has information elements 112, 122, 132 distributed across the processor 110, the sensor 120 and the communications link 130, which provide system configuration information, as described below. The information elements 112, 122, 132 may be memory devices, such as described below, or other active or passive electrical components. The information provided by the information elements 112, 122, 132 may be digital data stored in memory or component values determined by DC, AC or combinations of DC and AC voltages or currents. The information element 112, 122, 132 information may be determined by the processor 110 or by a reader or other device in communication with the information elements 112, 122, 132 and the processor 110.



FIG. 2 illustrates configurable physiological measurement system embodiments having processor 210, sensor 220 and cable 230 components. In one embodiment, the processor 210 has a processor printed circuit board “board” 212 and an optional daughter board 214, which plugs into and expands the functionality of the processor board 212. For example, the daughter board 214 may be a noninvasive blood pressure (NIBP) controller that communicates with a blood pressure sensor and the processor board 212 so as to measure blood pressure parameters.


Also shown in FIG. 2, in one embodiment the sensor 220 is a “resposable” sensor comprising a reusable portion 222 and a disposable portion 224. In a particular embodiment, the reusable portion has at least one of a reusable emitter portion and a reusable detector portion, and the disposable portion 224 has at least one of a disposable emitter portion, a disposable detector portion and a disposable tape for attaching the reusable sensor 222 to a tissue site. A resposable sensor is described in U.S. Pat. No. 6,725,075 entitled Resposable Pulse Oximetry Sensor, assigned to Masimo Corporation and incorporated by reference herein.


Further shown in FIG. 2, in one embodiment the cable 230 is a patient cable 232 or a sensor cable 234 or a combination of a patient cable 232 and a sensor cable 234. A sensor cable 234 is fixedly attached at one end to a sensor and has a connector at the other end for attaching to a monitor or a patient cable. A patient cable 234 has connectors at both ends for interconnecting a sensor or sensor cable to a monitor.



FIG. 3 illustrates an information element (IE) network 300 that advantageously enables a physiological measurement system 200 (FIG. 2) to be composed of various components 214-234 (FIG. 2) having, perhaps, differing parameter measurement capabilities, as described above. The IE network 300 also allows various components to “plug and play,” i.e. interoperate without hardware or software modification, as described with respect to FIG. 4, below. Further, the IE network 300 provides for forward and backward compatibility between sensors and processors, as described with respect to FIGS. 5A-B, below.


As shown in FIG. 3, the IE network 300 has information elements 314-334, a network controller 301 and a communications path 305. In one embodiment, the network controller 301 resides on or is otherwise incorporated within a processor board 212 (FIG. 2). The information elements 314-334 correspond to the physiological measurement system components 210-230 (FIG. 2). In one embodiment, there may be zero, one, two or more information elements 314-334 on or within each physiological measurement system component 214-224 (FIG. 2). For example, the information elements 314-324 may include a DB element 314 mounted on a daughter board 214 (FIG. 2), a RS element 322 mounted within a reusable sensor portion 222 (FIG. 2), a DS element 324 mounted within a disposable sensor portion 224 (FIG. 2), a PC element 332 mounted within a patient cable 232 (FIG. 2) or connector thereof, and a SC element 334 mounted within a sensor cable 234 (FIG. 2) or connector thereof.


Also shown in FIG. 3, in one embodiment the information elements 314-334 are EPROMs or EEPROMs or a combination of EPROMs or EEPROMs within a particular component 210-230 (FIG. 2). In an advantageous embodiment, the communications path 305 is a single shared wire. This reduces the burden on the components 210-230 (FIG. 2) and associated connectors, which may have a relatively large number of conductors just for drive signals and detector signals when a multiplicity of sensor emitters are utilized for multiple parameter measurements. An information element 314-324 may be, for example, a Dallas Semiconductor DS2506 EPROM available from Maxim Integrated Products, Inc., Sunnyvale, Calif., or equivalent.



FIG. 4 illustrates a configuration process 400 for a physiological measurement system 200 (FIG. 2). This process is executed by the network controller 301 (FIG. 3) or the processor 210 (FIG. 2) or both with respect to information elements 314-334 (FIG. 3) that exist on the network 305 (FIG. 3). After system power-up, any information elements on the network are polled 410 so they identify themselves. Information is then downloaded from the responding information elements 420. In one embodiment, download information can be some or all of Identification (ID), Life, Parameters, Characterization and Features information. ID identifies a component on the network, either the type of component generally, such as a sensor or cable, or a particular part number, model and serial number, to name a few. As another example, ID for a disposable sensor portion 224 (FIG. 2) may be an attachment location on a patient and ID for a reusable sensor portion 222 (FIG. 2) may be a patient type.


Life, for example, may be a predetermined counter written into an EEPROM to indicate the number of uses or the length of use of a particular component. Then, Life is counted down, say each time power is applied, until a zero value is reached, indicating component expiration.


Parameters specifies the measurements the component is capable of supporting, which may include, for example, one or more of SpO2, HbCO, MetHb, fractional SpO2, Hbt, NIBP and blood glucose to name just a few. With respect to a sensor, Parameters depend on the number of emitters, emitter wavelength and emitter configuration, for example. For a cable, Parameters depend on the number of conductors and connector pinouts, for example. Parameters may also simply reflect a license to use a component, such as disposable tape, with respect to a particular system configuration.


Features set the mode for the processor or other system elements. As one example, Features specify the mode or modes of one or more algorithms, such as averaging.


Characterization allows the processor to “plug and play” with a particular component. For example, if the component is a sensor, Characterization may include information necessary to drive the emitters, such as the LED wavelengths and drive pattern. Characterization may also include calibration data for the parameters measured. As another example, Characterization for a sensor component 220 (FIG. 2) may indicate sensitivity to a probe-off condition depending on the sensor type. Probe-off detection is described in U.S. Pat. No. 6,654,624 entitled Pulse Oximeter Probe-Off Detector and U.S. Pat. No. 6,771,994 entitled Pulse Oximeter Probe-Off Detection System, both assigned to Masimo Corporation and incorporated by reference herein.


As shown in FIG. 4, components are identified 430 from downloaded ID information. If any of the information elements provide Life information, a check is made to determine if the corresponding component is expired 440. If so, an error message is displayed 480. The message may be a warning to replace the component or it may indicate that the system is nonfunctional. Next, the least common denominator (LCD) of the parameters is determined 450 from the Parameters information. This is described in further detail with respect to FIGS. 5A-B. Characterization is determined 460, if necessary for a particular component, such as a daughterboard or sensor. Finally, the processor is configured 470 and the system is ready to begin parameter measurements.



FIGS. 5A-B illustrate embodiments of a configurable physiological measurement system 100 demonstrating both forward sensor compatibility (FIG. 5A), and backward sensor compatibility (FIG. 5B). Further, the parameter measurement capability of each system 100 is determined by the least common denominator (LCD) of the parameter capabilities of a processor 210 and a sensor 220.


As shown in FIG. 5A, configurable physiological measurement systems 200 comprise a family of processors (P0, P1, P2) 210 including those capable of computing SpO2 510-530, HbCO 520-530 and MetHb 530. The systems 200 also comprise a family of sensors 220 (S0, S1, S2) including those capable of detecting SpO2 550-570, HbCO 560-570 and MetHb 570. Here, the lower numbered processors and sensors represent less capability, e.g. older generation processors and sensors or current generation, but less costly processors and sensors. Illustrated is forward sensor compatibility, i.e. less capable sensors are capable of running on more capable processors. For example, an SpO2 only sensor 550 is capable of working with a multiple parameter (SoO2, HbCO, MetHb) processor 530. Also illustrated is LCD functionality. A system 200 having a P2 processor 530 and a S0 sensor 550 is functional but only capable of measuring SpO2.



FIG. 5B illustrates backward sensor compatibility, i.e. more capable sensors are capable of running on less capable processors. For example, a multiple parameter (SpO2, HbCO, MetHb) sensor 570 is capable of working with an SpO2 only processor 510. Also, a system 200 having a P0 processor 510 and a S2 sensor 570 is functional, but only capable of measuring SpO2.


Forward and backward sensor compatibility is described above with respect to configurable physiological measurement systems 200 having various processor 210 capabilities and sensor 220 capabilities. The configurable physiological measurement systems 200 can have any or all of the processor 210, sensor 220 and cable 230 components described with respect to FIG. 2, above. As such forward and backward compatibility is equally applicable to combinations of processor 210 and cable 230 or combinations of sensor 220 and cable 230, including the components of such described with respect to FIG. 2, where the capability of such combinations is determined by LCD functionality, as described above.


A configurable physiological measurement system has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in the art will appreciate many variations and modifications.

Claims
  • 1. A physiological measurement system comprising: a sensor configured to transmit light having a plurality of wavelengths into a tissue site and to generate a sensor signal responsive to the transmitted light after tissue attenuation;a processor configured to operate on the sensor signal so as to derive at least one physiological parameter;a communications link adapted to provide communications between the sensor and the processor; anda plurality of information elements distributed across at least one of the sensor, the processor and the communications link,wherein the information elements provide operational information corresponding to at least one of the sensor, the processor and the communications link, the processor configured to determine a least common denominator of parameter measurement capabilities based on the operational information.
  • 2. The physiological measurement system according to claim 1 further comprising a network controller capable of reading the information elements and providing the information to the processor.
  • 3. The physiological measurement system according to claim 1 wherein the sensor comprises a reusable portion and a disposable portion, each having at least one of the information elements.
  • 4. The physiological measurement system according to claim 3 further comprising: attachment data provided by a first information element associated with the disposable portion describing where the sensor is attached; andpatient data provided by a second information element associated with the reusable portion describing patient type.
  • 5. The physiological measurement system according to claim 1 further comprising: at least one sensor information element associated with the sensor; andsensor type data readable from the sensor information element,wherein the processor utilizes the sensor type data to determine a sensitivity to a probe-off condition where the sensor is not properly positioned with respect to the tissue site.
  • 6. A physiological measurement system comprising: a sensor configured to transmit light having a plurality of wavelengths into a tissue site and to generate a sensor signal responsive to the transmitted light after tissue attenuation;a processor configured to operate on the sensor signal so as to derive at least one physiological parameter;a communications link adapted to provide communications between the sensor and the processor; anda plurality of information elements distributed across at least one of the sensor, the processor and the communications link,wherein the information elements provide operational information corresponding to at least one of the sensor, the processor and the communications link and wherein the processor comprises a processor board and a daughter board, each having at least one of the information elements.
  • 7. The physiological measurement system according to claim 6 wherein the communications link is a cable having a patient cable portion and a sensor cable portion, each portion having at least one of the information elements.
  • 8. In a physiological measurement system, a sensor configured to transmit light having a plurality of wavelengths into a tissue site and to generate a sensor signal responsive to the transmitted light after tissue attenuation, a processor configured to operate on the sensor signal so as to derive at least one physiological parameter and a communications link adapted to provide communications between the sensor and the processor, the sensor comprising: a disposable portion of the sensor having a first information element; anda reusable portion of the sensor having a second information element,wherein the disposable portion is capable of removable attachment to the reusable portion, andwherein the first information element and the second information are readable by the processor so as to determine the operational capability of the sensor and wherein the processor is configured to determine a least common denominator of parameter measurement capabilities.
  • 9. The sensor according to claim 8 further comprising parameter information associated with at least one of the first information element and the second information element indicating physiological parameter measurements supported by at least one of the disposable portion, the reusable portion and the combination of the disposable portion and the reusable portion.
  • 10. The sensor according to claim 9 wherein the parameter information comprises information relating to characteristics of light emitters incorporated on at least one of the disposable portion and the reusable portion.
  • 11. The sensor according to claim 8 further comprising: attachment information associated with the first information element describing where on a patient the sensor is attached; andpatient information associated with the second information element describing a patient type.
  • 12. The sensor according to claim 8 further comprising sensor life information associated with the first information element that is updated according to a sensor usage measure.
  • 13. The sensor according to claim 8 further comprising characterization information associated with at least one of the first information element and the second information element indicating at least one of light emitter wavelengths, light emitter drive requirements and calibration data.
  • 14. A physiological measurement method for a system having a sensor configured to transmit light having a plurality of wavelengths into a tissue site, a processor configured to operate on a sensor signal responsive to the transmitted light after tissue attenuation and a communications link configured to provide communications between the sensor and the processor comprising the steps of: reading a plurality of information elements distributed among at least one of the sensor, the processor and the communications link;identifying components of the system based upon data read from the information elements;determining a physiological parameter that the system is capable of measuring by determining a least common denominator of parameter measurement capabilities of the identified system components; andconfiguring the processor to measure the physiological parameter.
  • 15. The physiological measurement method according to claim 14 comprising the further step of characterizing at least one of the system components based upon data read from the information elements.
  • 16. The physiological measurement method according to claim 15 comprising the further step of determining if any of the system components are expired.
  • 17. The physiological measurement method according to claim 16 wherein the reading step comprises the substeps of: polling memory devices connected to a network; anddownloading information from responding memory devices.
  • 18. A physiological measurement system having sensor, communication and processor components configured to derive at least one physiological parameter based upon light having a plurality of wavelengths transmitted into a tissue site and detected after tissue attenuation, the physiological measurement system comprising an information element network means for allowing various configurations of the components to interoperate without modification, wherein the information element network means provides operational information and the processor component is configured to determine a least common denominator of parameter measurement capabilities based on the operational information.
  • 19. The physiological measurement system according to claim 18 wherein the information element network means comprises a network controller means for reading data from individual information elements of the network.
  • 20. The physiological measurement system according to claim 19 wherein the network controller means comprises a parameter means for determining the parameter measurement capability of the combined system components.
PRIORITY CLAIM TO RELATED PROVISIONAL APPLICATIONS

The present application claims priority benefit under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 60/657,596, filed Mar. 1, 2005, entitled “Multiple Wavelength Sensor,” No. 60/657,281, filed Mar. 1, 2005, entitled “Physiological Parameter Confidence Measure,” No. 60/657,268, filed Mar. 1, 2005, entitled “Configurable Physiological Measurement System,” and No. 60/657,759, filed Mar. 1, 2005, entitled “Noninvasive Multi-Parameter Patient Monitor.” The present application incorporates the foregoing disclosures herein by reference.

US Referenced Citations (489)
Number Name Date Kind
3998550 Konishi et al. Dec 1976 A
4157708 Imura Jun 1979 A
4167331 Nielsen Sep 1979 A
4266554 Hamaguri May 1981 A
4446871 Imura May 1984 A
4586513 Hamaguri May 1986 A
4621643 New et al. Nov 1986 A
4653498 New et al. Mar 1987 A
4685464 Goldberger Aug 1987 A
4694833 Hamaguri Sep 1987 A
4700708 New et al. Oct 1987 A
4714341 Hamaguri et al. Dec 1987 A
4770179 New et al. Sep 1988 A
4773422 Isaacson et al. Sep 1988 A
4781195 Martin Nov 1988 A
4800885 Johnson Jan 1989 A
4832484 Aoyagi et al. May 1989 A
4846183 Martin Jul 1989 A
4863265 Flower et al. Sep 1989 A
4867571 Frick et al. Sep 1989 A
4869254 Stone et al. Sep 1989 A
4907876 Suzuki et al. Mar 1990 A
4911167 Corenman et al. Mar 1990 A
4934372 Corenman et al. Jun 1990 A
4942877 Sakai et al. Jul 1990 A
4955379 Hall Sep 1990 A
4960126 Conlon et al. Oct 1990 A
4960128 Gordon et al. Oct 1990 A
4964010 Miyasaka et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
4967571 Sporri Nov 1990 A
4975581 Robinson et al. Dec 1990 A
4986665 Yamanishi et al. Jan 1991 A
4997769 Lundsgaard Mar 1991 A
RE33643 Isaacson et al. Jul 1991 E
5033472 Sato et al. Jul 1991 A
5041187 Hink et al. Aug 1991 A
5054495 Uemura et al. Oct 1991 A
5058588 Kaestle et al. Oct 1991 A
5069213 Polczynski Dec 1991 A
5078136 Stone et al. Jan 1992 A
5163438 Gordon et al. Nov 1992 A
5190040 Aoyagi Mar 1993 A
5209230 Swedlow et al. May 1993 A
5259381 Cheung et al. Nov 1993 A
5267562 Ukawa et al. Dec 1993 A
5267563 Swedlow et al. Dec 1993 A
5278627 Aoyagi Jan 1994 A
5297548 Pologe Mar 1994 A
5313940 Fuse et al. May 1994 A
5331549 Crawford, Jr. Jul 1994 A
5335659 Pologe et al. Aug 1994 A
5337744 Branigan Aug 1994 A
5348004 Hollub Sep 1994 A
5351685 Potratz Oct 1994 A
5355880 Thomas et al. Oct 1994 A
5355882 Ukawa et al. Oct 1994 A
5361758 Hall et al. Nov 1994 A
5368224 Richardson et al. Nov 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5385143 Aoyagi Jan 1995 A
5387122 Goldberger et al. Feb 1995 A
5392777 Swedlow et al. Feb 1995 A
5413101 Sugiura May 1995 A
5421329 Casciani et al. Jun 1995 A
5427093 Ogawa et al. Jun 1995 A
5429128 Cadell et al. Jul 1995 A
5431170 Mathews Jul 1995 A
5435309 Thomas et al. Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
RE35122 Corenman et al. Dec 1995 E
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5490523 Isaacson et al. Feb 1996 A
5494032 Robinson et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5503148 Pologe et al. Apr 1996 A
5520177 Ogawa May 1996 A
5533507 Potratz Jul 1996 A
5533511 Kaspari et al. Jul 1996 A
5551423 Sugiura Sep 1996 A
5553615 Carim et al. Sep 1996 A
5555882 Richardson et al. Sep 1996 A
5562002 Lalin Oct 1996 A
5577500 Potratz Nov 1996 A
5584299 Sakai et al. Dec 1996 A
5588427 Tien Dec 1996 A
5590649 Caro et al. Jan 1997 A
5590652 Inai Jan 1997 A
5595176 Yamaura Jan 1997 A
5596992 Haaland et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5603623 Nishikawa et al. Feb 1997 A
5630413 Thomas et al. May 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645059 Fein et al. Jul 1997 A
5645060 Yorkey Jul 1997 A
5645440 Tobler et al. Jul 1997 A
5660567 Nierlich et al. Aug 1997 A
5662106 Swedlow et al. Sep 1997 A
5676139 Goldberger et al. Oct 1997 A
5676141 Hollub Oct 1997 A
5678544 Delonzor et al. Oct 1997 A
5685299 Diab et al. Nov 1997 A
5685301 Klomhaus Nov 1997 A
5687719 Sato et al. Nov 1997 A
5687722 Tien et al. Nov 1997 A
5690104 Kanemoto et al. Nov 1997 A
5692503 Kuenstner Dec 1997 A
5697371 Aoyagi Dec 1997 A
5713355 Richardson et al. Feb 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5743263 Baker, Jr. Apr 1998 A
5746206 Mannheimer May 1998 A
5746697 Swedlow et al. May 1998 A
5752914 Delonzor et al. May 1998 A
5755226 Carim et al. May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5772587 Gratton et al. Jun 1998 A
5779630 Fein et al. Jul 1998 A
5782237 Casciani et al. Jul 1998 A
5782756 Mannheimer Jul 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5790729 Pologe et al. Aug 1998 A
5791347 Flaherty et al. Aug 1998 A
5792052 Isaacson et al. Aug 1998 A
5793485 Gourley Aug 1998 A
5800348 Kaestle et al. Sep 1998 A
5800349 Isaacson et al. Sep 1998 A
5803910 Potratz Sep 1998 A
5807246 Sakaguchi et al. Sep 1998 A
5807247 Merchant et al. Sep 1998 A
5810723 Aldrich Sep 1998 A
5810724 Gronvall Sep 1998 A
5810734 Caro et al. Sep 1998 A
5817010 Hibl Oct 1998 A
5818985 Merchant et al. Oct 1998 A
5823950 Diab et al. Oct 1998 A
5823952 Levinson et al. Oct 1998 A
5827182 Raley et al. Oct 1998 A
5830131 Caro et al. Nov 1998 A
5830137 Sharf Nov 1998 A
5833618 Caro et al. Nov 1998 A
5839439 Nierlich et al. Nov 1998 A
RE36000 Swedlow et al. Dec 1998 E
5842979 Jarman Dec 1998 A
5851178 Aronow Dec 1998 A
5851179 Ritson et al. Dec 1998 A
5853364 Baker, Jr. et al. Dec 1998 A
5857462 Thomas et al. Jan 1999 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5865736 Baker, Jr. et al. Feb 1999 A
5876348 Sugo Mar 1999 A
5885213 Richardson et al. Mar 1999 A
5890929 Mills et al. Apr 1999 A
5891024 Jarman et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5910108 Solenberger Jun 1999 A
5916154 Hobbs et al. Jun 1999 A
5919133 Taylor Jul 1999 A
5919134 Diab Jul 1999 A
5921921 Potratz et al. Jul 1999 A
5934277 Mortz Aug 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5954644 Dettling Sep 1999 A
5978691 Mills Nov 1999 A
5983122 Jarman et al. Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5995856 Mannheimer et al. Nov 1999 A
5995859 Takahashi Nov 1999 A
5997343 Mills et al. Dec 1999 A
5999841 Aoyagi et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6006119 Soller et al. Dec 1999 A
6011986 Diab et al. Jan 2000 A
6014576 Raley Jan 2000 A
6018673 Chin et al. Jan 2000 A
6018674 Aronow Jan 2000 A
6023541 Merchant et al. Feb 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6064898 Aldrich May 2000 A
6067462 Diab et al. May 2000 A
6068594 Schloemer et al. May 2000 A
6073037 Alam et al. Jun 2000 A
6081735 Diab et al. Jun 2000 A
6083172 Baker, Jr. et al. Jul 2000 A
6088607 Diab et al. Jul 2000 A
6094592 Yorkey et al. Jul 2000 A
6104938 Huiku Aug 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6112107 Hannula Aug 2000 A
6122042 Wunderman et al. Sep 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6151518 Hayashi Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6154667 Miura et al. Nov 2000 A
6157041 Thomas et al. Dec 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6226539 Potratz May 2001 B1
6229856 Diab et al. May 2001 B1
6230035 Aoyagi et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6253097 Aronow et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6272363 Casciani et al. Aug 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6285895 Ristolainen et al. Sep 2001 B1
6285896 Tobler et al. Sep 2001 B1
6298252 Kovach et al. Oct 2001 B1
6304675 Osbourn et al. Oct 2001 B1
6304767 Soller et al. Oct 2001 B1
6321100 Parker Nov 2001 B1
6330468 Scharf Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6341257 Haaland Jan 2002 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6351658 Middleman et al. Feb 2002 B1
6356774 Bernstein et al. Mar 2002 B1
6360114 Diab et al. Mar 2002 B1
6363269 Hanna et al. Mar 2002 B1
6371921 Caro et al. Apr 2002 B1
6374129 Chin et al. Apr 2002 B1
6377828 Chaiken et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6393310 Kuenstner May 2002 B1
6397091 Diab et al. May 2002 B2
6397092 Norris et al. May 2002 B1
6397093 Aldrich May 2002 B1
6408198 Hanna et al. Jun 2002 B1
6411833 Baker, Jr. et al. Jun 2002 B1
6415166 Van Hoy et al. Jul 2002 B1
6415233 Haaland Jul 2002 B1
6415236 Kobayashi et al. Jul 2002 B2
6430525 Weber et al. Aug 2002 B1
6434408 Heckel Aug 2002 B1
6441388 Thomas et al. Aug 2002 B1
6453184 Hyogo et al. Sep 2002 B1
6463310 Swedlow et al. Oct 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6480729 Stone Nov 2002 B2
6490466 Fein et al. Dec 2002 B1
6497659 Rafert Dec 2002 B1
6501974 Huiku Dec 2002 B2
6501975 Diab et al. Dec 2002 B2
6504943 Sweatt et al. Jan 2003 B1
6505060 Norris Jan 2003 B1
6505061 Larson Jan 2003 B2
6505133 Hanna Jan 2003 B1
6510329 Heckel Jan 2003 B2
6515273 Al-Ali Feb 2003 B2
6519486 Edgar, Jr. et al. Feb 2003 B1
6519487 Parker Feb 2003 B1
6522398 Cadell et al. Feb 2003 B2
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6526301 Larsen et al. Feb 2003 B2
6528809 Thomas et al. Mar 2003 B1
6537225 Mills Mar 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6546267 Sugiura Apr 2003 B1
6553241 Mannheimer et al. Apr 2003 B2
6564077 Mortara May 2003 B2
6571113 Fein et al. May 2003 B1
6580086 Schulz et al. Jun 2003 B1
6582964 Samsoondar et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6584413 Keenan et al. Jun 2003 B1
6591123 Fein et al. Jul 2003 B2
6594511 Stone et al. Jul 2003 B2
6595316 Cybulski et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6600940 Fein et al. Jul 2003 B1
6606509 Schmitt Aug 2003 B2
6606510 Swedlow et al. Aug 2003 B2
6606511 Ali et al. Aug 2003 B1
6611698 Yamashita et al. Aug 2003 B1
6614521 Samsoondar et al. Sep 2003 B2
6615064 Aldrich Sep 2003 B1
6615151 Scecina et al. Sep 2003 B1
6618602 Levin Sep 2003 B2
6622095 Kobayashi et al. Sep 2003 B2
6628975 Fein et al. Sep 2003 B1
6631281 Kastle Oct 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6640116 Diab Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654623 Kastle Nov 2003 B1
6654624 Diab et al. Nov 2003 B2
6657717 Cadell et al. Dec 2003 B2
6658276 Kianl et al. Dec 2003 B2
6658277 Wasserman Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6662033 Casciani et al. Dec 2003 B2
6665551 Suzuki Dec 2003 B1
6668183 Hicks et al. Dec 2003 B2
6671526 Aoyagi et al. Dec 2003 B1
6671531 Al-Ali et al. Dec 2003 B2
6675031 Porges et al. Jan 2004 B1
6675106 Keenan et al. Jan 2004 B1
6678543 Diab et al. Jan 2004 B2
6681126 Solenberger Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6687620 Haaland et al. Feb 2004 B1
6694157 Stone et al. Feb 2004 B1
6697655 Sueppel et al. Feb 2004 B2
6697656 Al-Ali Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6701170 Stetson Mar 2004 B2
6708049 Berson et al. Mar 2004 B1
6711503 Haaland Mar 2004 B2
6714803 Mortz Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
6714805 Jeon et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6719705 Mills Apr 2004 B2
6720734 Norris Apr 2004 B2
6721584 Baker, Jr. et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725074 Kastle Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6726634 Freeman Apr 2004 B2
6735459 Parker May 2004 B2
6741875 Pawluczyk et al. May 2004 B1
6741876 Scecina et al. May 2004 B1
6743172 Blike Jun 2004 B1
6745060 Diab et al. Jun 2004 B2
6745061 Hicks et al. Jun 2004 B1
6748253 Norris et al. Jun 2004 B2
6748254 O'Neil et al. Jun 2004 B2
6754515 Pologe Jun 2004 B1
6754516 Mannheimer Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6760609 Jacques Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6773397 Kelly Aug 2004 B2
6778923 Norris et al. Aug 2004 B2
6780158 Yarita Aug 2004 B2
6788849 Pawluczyk Sep 2004 B1
6792300 Diab et al. Sep 2004 B1
6801797 Mannheimer et al. Oct 2004 B2
6801799 Mendelson Oct 2004 B2
6810277 Edgar, Jr. et al. Oct 2004 B2
6813511 Diab et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6819950 Mills Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6825619 Norris Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6829496 Nagai et al. Dec 2004 B2
6830711 Mills et al. Dec 2004 B2
6836679 Baker, Jr. et al. Dec 2004 B2
6839579 Chin Jan 2005 B1
6839580 Zonios et al. Jan 2005 B2
6839582 Heckel Jan 2005 B2
6842702 Haaland et al. Jan 2005 B2
6845256 Chin et al. Jan 2005 B2
6847835 Yamanishi Jan 2005 B1
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6869402 Arnold Mar 2005 B2
6882874 Huiku Apr 2005 B2
6898452 Al-Ali et al. May 2005 B2
6912049 Pawluczyk et al. Jun 2005 B2
6917422 Samsoondar et al. Jul 2005 B2
6919566 Cadell Jul 2005 B1
6920345 Al-Ali et al. Jul 2005 B2
6921367 Mills Jul 2005 B2
6922645 Haaland et al. Jul 2005 B2
6928311 Pawluczyk et al. Aug 2005 B1
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6931269 Terry Aug 2005 B2
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6944487 Maynard et al. Sep 2005 B2
6950687 Al-Ali Sep 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6975891 Pawluczyk Dec 2005 B2
6979812 Al-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6987994 Mortz Jan 2006 B1
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7001337 Dekker Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7006856 Baker, Jr. et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Al et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
20010044700 Koboyashi et al. Nov 2001 A1
20010045532 Schulz et al. Nov 2001 A1
20020021269 Rast Feb 2002 A1
20020038078 Ito Mar 2002 A1
20020038081 Fein et al. Mar 2002 A1
20020059047 Haaland May 2002 A1
20020082488 Al-Ali et al. Jun 2002 A1
20020095078 Mannheimer et al. Jul 2002 A1
20020111748 Kobayashi et al. Aug 2002 A1
20020156353 Larson Oct 2002 A1
20020161291 Kiani et al. Oct 2002 A1
20020183819 Struble Dec 2002 A1
20030109775 O'Neil et al. Jun 2003 A1
20030120160 Yarita Jun 2003 A1
20030139657 Solenberger Jul 2003 A1
20030195402 Fein et al. Oct 2003 A1
20040006261 Swedlow et al. Jan 2004 A1
20040033618 Haass et al. Feb 2004 A1
20040059209 Al-Ali et al. Mar 2004 A1
20040064259 Haaland et al. Apr 2004 A1
20040081621 Arndt et al. Apr 2004 A1
20040092805 Yarita May 2004 A1
20040133087 Ali et al. Jul 2004 A1
20040138538 Stetson Jul 2004 A1
20040138540 Baker, Jr. et al. Jul 2004 A1
20040147823 Kiani et al. Jul 2004 A1
20040158134 Diab et al. Aug 2004 A1
20040158135 Baker, Jr. et al. Aug 2004 A1
20040162472 Berson et al. Aug 2004 A1
20040167382 Gardner et al. Aug 2004 A1
20040176670 Takamura et al. Sep 2004 A1
20040181134 Baker, Jr. et al. Sep 2004 A1
20040199063 O'Neil et al. Oct 2004 A1
20040204639 Casciani et al. Oct 2004 A1
20040204868 Maynard et al. Oct 2004 A1
20040262046 Simon et al. Dec 2004 A1
20040267103 Li et al. Dec 2004 A1
20040267140 Ito et al. Dec 2004 A1
20050033128 Ali et al. Feb 2005 A1
20050043902 Haaland et al. Feb 2005 A1
20050049469 Aoyagi et al. Mar 2005 A1
20050070773 Chin et al. Mar 2005 A1
20050070775 Chin et al. Mar 2005 A1
20050075546 Samsoondar et al. Apr 2005 A1
20050085735 Baker, Jr. et al. Apr 2005 A1
20050124871 Baker, Jr. et al. Jun 2005 A1
20050143634 Baker et al. Jun 2005 A1
20050143943 Brown Jun 2005 A1
20050148834 Hull et al. Jul 2005 A1
20050184895 Petersen et al. Aug 2005 A1
20050187447 Chew et al. Aug 2005 A1
20050187448 Petersen et al. Aug 2005 A1
20050187449 Chew et al. Aug 2005 A1
20050187450 Chew et al. Aug 2005 A1
20050187452 Petersen et al. Aug 2005 A1
20050187453 Petersen et al. Aug 2005 A1
20050197549 Baker, Jr. Sep 2005 A1
20050197579 Baker, Jr. Sep 2005 A1
20050197793 Baker, Jr. Sep 2005 A1
20050203357 Debreczeny et al. Sep 2005 A1
20050228253 Debreczeny Oct 2005 A1
20050250997 Takeda et al. Nov 2005 A1
20060030764 Porges et al. Feb 2006 A1
Foreign Referenced Citations (3)
Number Date Country
WO 9843071 Oct 1998 WO
WO 0059374 Oct 2000 WO
WO 03068060 Aug 2003 WO
Related Publications (1)
Number Date Country
20060211932 A1 Sep 2006 US
Provisional Applications (4)
Number Date Country
60657596 Mar 2005 US
60657281 Mar 2005 US
60657268 Mar 2005 US
60657759 Mar 2005 US