The invention relates to a method for the equipotential-bonding connection of a current-return electrical cabling network in an architecture, in particular an airplane fuselage, a railway car, a building or a motor vehicle. The invention applies in particular to the electrical networks of new-generation airplanes having a skin made of a composite material. The invention also relates to an equipotential shunt connector and to a current-return network having such equipotential shunt connectors for carrying out said method in a non-conductive architecture.
The composite material of this new generation of skin has a heterogeneous carbon-fibre-based material. Traditionally, the functions of networking electrical cabling were performed by the aluminium skin of the previous generation, in particular: current return from consumer devices, setting all metalwork to the same potential, electromagnetic compatibility (EMC) protection of the electrical installation, discharging lightning currents—whether indirect or induced—and electrostatic charges.
The invention thus aims to be applicable to any structure in which the passage of electricity calls for the maintenance of at least some of these interconnection functions where the shell of the structure or architecture is non-conductive.
Carbon composite materials are average electrical conductors and withstand poorly the heating prompted by the Joule effect. This type of coating thus cannot be used to perform the above functions.
To allow the functions of connecting electrical cabling to be carried out in a composite-skin airplane, an architecture made of metalwork is conventionally used to form an electrical network. On the whole, as shown by the cross section of an airplane fuselage 100 in
These longitudinal networks are interconnected transversely by metal cross-pieces 141 connected by structural rods 142 and by wired connections, as explained below. Current-return networks are thus networked in order to increase functional safety.
Any conductor intended to produce an equipotential connection should have the following basic properties: be an excellent electrical conductor (or, in other words, ensure performance at extremely low resistivity), have a low density so as to minimise weight, imperatively remain cost-effective and meet other technical performance requirements (service life, environmental resistance, etc.). Aluminium is the material that best satisfies all of these criteria. Equipotential connections are thus generally produced from lengths of aluminium cable of large cross section; that is of a cross section greater than that of the “AWG 10” gauge, or having a cross section greater than approximately 5 mm2, selected from among the series for aeronautics.
As shown by the front-view diagram in
In order to reduce the ultimate duration of the cycle for assembling parts on the assembly line, the terminals can be replaced by unipolar connectors having a movable portion and a fixed portion. In some cases, two lengths of cable are directly connected to one another by stacking two terminals by means of a stud or a terminal strip.
When devices are located far away from the metal parts forming the brackets for the return networks, the connection of these devices to the current-return networks is done as closely as possible to these devices owing to, in particular, the need to control drops in line voltage. Such connections are generally produced by either rigid or flexible intermediate metal brackets, depending on the intensity of the loads to be transmitted simultaneously. These connections thus induce additional parasitic resistances. Fixed to these brackets are the terminals to be bonded to each portion of cable joined to an upper return network 110 and intermediate return network 120, and to the device concerned. This intermediate bracket introduces additional equivalent electrical resistances into the network as a whole, namely between the return networks, and between each return network and said equipment.
A triple junction by means of studs or terminal strips is a possible alternative to the intermediate bracket. Each stud or strip generates two equivalent electrical interface resistances between the terminals.
These solutions have the major drawback of interrupting the equipotential bond, which causes a decrease in reliability, and weight and cost gains.
Aside from the terminals and the unipolar connectors, the electrical interconnection of the cables of large cross section also uses extension leads.
However, this connection configuration, which is currently used to produce equipotential connections, was originally designed to only create end-connections for aluminium-alloy cables of large cross section. This approach leads to lengths of cable of large cross section being interconnected end to end to produce equipotential connections between the various portions of the current-return network described above.
Now, the present need, which arises in particular on the fuselages of composite-material airplanes, is for a structure of current-return networks, which is produced in a plurality of portions (namely an upper, a middle and a lower portion), to be shunt-connected via wired equipotential connections. As shown by the connection means described above in relation to intermediate portions which are disadvantageous in terms of equivalent resistance, known solutions do not allow equipotential connections to be produced that are also effective, both electrically and as far as weight, cost and reliability are concerned. Thus, the increase in the gauge of the cables of connections results in:
An object of the invention is thus to overcome the drawbacks of known connector means by simplifying interconnection while maintaining performance. In particular, for safety reasons, an object of the invention is to produce equipotential connections between the portions of the return network which are electrically effective in terms of low resistivity, having, for example, a total equivalent resistance in the region of a few milliohms. In addition, the invention maintains the defined interconnection functions throughout the service life of the airplane, despite the fact that the large number of cable lengths impairs the anticipated reliability of the current-return network as a whole.
The approach adopted by the invention is to impart an equipotential-bonding function on the aluminium cable of large cross section, this bond being electrically connected by direct contact to as many devices as is physically possible to connect thereby.
More precisely, the present invention relates to a method for the equipotential-bonding connection of a current-return network in a non-conductive architecture. This network comprises primary current-return networks that are remote from one another in terms of location such that equipotential connections join the primary networks so that altogether they form one current-return network. The connections are formed by aluminium cabling of large cross section that integrally forms an equipotential connection between the primary networks. The devices are electrically connected as closely as possible to their location by direct intermediate connections that succeed one another along the equipotential connection without interrupting the cabling and are produced by tight electrical and mechanical installation. Each interconnection has two sealed regions that surround a central contact region by means of window-stripping. Advantageously, the overall electrical performance of such a current-return network is optimised and maintained in terms of resistivity regardless of the number of intermediate interconnections.
According to preferred embodiments:
The invention also relates to an in-line equipotential shunt connector between an aluminium-alloy-based cable of large cross section, equipotentially bonding primary current-return networks in a non-conductive architecture, and an electrical device in this architecture. This shunt connector comprises a substantially cylindrical metal sleeve for installation on the cable by a rigid connection means and an attachment means that extends the sleeve so as to be attached to a bracket for the device. The installation sleeve is composed of two end portions that each accommodate a seal and surround a central region for electrical contact with the cable having been pre-stripped in a window formed within the central region.
According to particular embodiments:
The inventions also relates to a current-return network comprising such equipotential shunt connectors between devices and at least one aluminium-alloy-based cable of large cross section, acting as a connection between primary networks of the current-return network so as to be able to carry out the connection method in a non-conductive architecture. The cable is connected to the brackets for the primary networks by any known means: terminals, unipolar connectors, terminal strips, etc.
Other aspects and distinctive features for carrying out the invention will emerge upon reading the following detailed description, which is accompanied by appended drawings, in which:
a and 1b are cross sections of an airplane fuselage, of a current-return network and a diagram of the equipotential connections between the primary networks according to the prior art (discussed above);
a to 4d are front (4a) and plan (4b) views, a cross section (4c) and a longitudinal section (4d) of an example of a shunt connector on a connection according to the invention;
a and 6b are a longitudinal section and a plan view of an example of a shunt connector comprising an orifice for the injection of conductive grease; and
Reference signs that are either the same or have a common root but are used in difference figures relate to the same or to technically equivalent elements. The terms “upper”, “middle” and “lower” refer to the relative positioning in the standard mode of use or installation. The terms “longitudinal” and “transverse” qualify elements that extend in one direction and in a plane that is perpendicular to this direction.
With reference to the diagram in
A device that is close to the connection 1 and joined to the overhead baggage compartment bracket 111 is electrically interconnected to this connection by an intermediate in-line equipotential shunt connector 2 (hereinafter referred to as the “shunt connector”) between the two ends of the cable. In the example, the shunt connector 2 comprises a central cylindrical sleeve 2m and a pin 2p that is attached to the bracket 111 by a screw 20. Since the cable has not been interrupted, only three resistances are at work in this coupling: the interface resistance between the cable 1 and the shunt connector 2, the resistance of the body of the shunt connector 2 and the resistance of the interface between the shunt connector 2 and the bracket 111.
The number and value of the resistances at work in the coupling, which are typically well below milliohm, are extremely low. This bonding principle makes it possible to achieve an optimised performance in terms of total electrical resistance, which does not change, regardless of the number of intermediate interconnections. Thus,
Since the connections between the brackets for the devices 111a to 111c are installed one after the other in parallel along the cable 1, there is no variation in the total electrical resistance of the connection between the ends of the cable 1 that are joined to the brackets 113 and 141. Moreover, the total electrical resistance between any of the devices and the current-return network formed by the two primary networks 110 and 120 (
With reference to the views in
The cross section in
The cross section in
Electrical crimping is then performed in the electrical crimping region 21s located in the central region 21. This crimping is of the “deep crimping” type performed in a similar manner to crimping for aluminium terminals, adapting punches and dies to the geometry of the shunt connector.
Advantageously, an anti-corrosion protective metal coating 27 is arranged on the inner wall of the shunt connector 2 in the central crimping region 21. This protection ensures excellent electrical contact between the stripped core 11 and the inner wall of the coupler.
Mechanical crimping is then carried out to seal the electrical crimping. The sealed regions 22 surrounding the seals 25 are crimped to the insulating sheath 12 of the cable 1 using a tool of the same type as that used for aluminium terminals. Thus, in the case of similar sizes, the sealing efficiency is equivalent to that required for terminals.
It might also be advantageous to use a conductive grease instead of surface treatments, for example for cables having an aluminium core without the protection of a metal surface. Such a step might also be advantageous if the cores are made of aluminium wires which are, for example, copper-coated and nickel-plated.
To achieve this, the stripped core 11 is pre-coated with a thin layer of a grease that conducts electricity. With reference to the longitudinal section in
As an alternative to the recess, another embodiment consists in providing a grease injection channel. With reference to the sectional and plan views in
So as to able to reuse some tools (punches and dies) to shape the terminals, it is advantageous to provide an axial offset between the attachment pin and the electrical crimping region of the shunt connector. With reference to the longitudinal section in
The invention is not limited to the embodiments that have been described and shown. In particular, the dimensions of the shunt connector can be adapted depending on the gauge and on the insulating sheath of the cables. The surface treatment of the inner wall of the shunt connectors can also be adapted by nickel-plating, tin-plating, etc. Moreover, all the installation techniques between the shunt connector and the structure, which allow for the production of both an electrical connection and a mechanical connection, by means of suitable installation means (multiple, vertical fasteners, or via a partition) may be used: screwing, riveting, soldering, welding, shrink-fitting, etc.).
Furthermore, conductive or non-conductive components may also replace the metal surface treatments or replace the lateral seals. Furthermore, in an embodiment involving conductive grease, the injection channel or the collection recess may be replaced with any other storage or injection means.
Number | Date | Country | Kind |
---|---|---|---|
1250597 | Jan 2012 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2013/050104 | 1/17/2013 | WO | 00 | 7/17/2014 |