This invention relates to a connecter for use in fluid and vapor transmissions that can be quickly connected and disconnected from a tubular conduit but which can provide an effective seal between the connector and the tubular conduit. More particularly, this invention relates to a connector formed of a single material surrounding a seal ring which limits leakage through the seal between the connector and the conduit. Most particularly, this invention relates to a connecter and its method of manufacture which allows the connector to be molded around the seal ring without requiring further assembly to retain or load the seal ring.
In many industries connectors are used to provide connections between fluid carrying conduits. For ease of use, these connectors are designed to allow quick connection and disconnection. The quick disconnection and connection feature allows such connectors to be used in confined spaces where more cumbersome connectors would be prohibited.
In general, these connectors have either a one-piece or two-piece configuration. Those having a one-piece configuration are generally molded of one type of plastic or organic polymer material, and conduits are attached in a bayonet fashion to barbed ends of the connector. In this configuration, sealing is effected at the interface between this plastic or inorganic polymer material and the material of the conduit. The one piece connector is attractive because it may be manufactured in a single molding step making the production of such connectors relatively inexpensive. Unfortunately, the interfacing or the conduit and connector does not provide a reliable seal.
As a result, two-piece configurations using a seal ring between the conduit and connector have been developed. In the two piece configuration, a seal ring contained between either of the two-pieces have been used to provide better sealing. Instead of relying on interface between the connector and the conduit, the seal ring provides effective protection against leakage. However, when compared to the manufacturing process of a one-piece configuration, the manufacturing process of the two-piece configuration is quite difficult.
In one known manufacturing process, three parts, namely, a connector body, a seal ring retainer, and a seal ring are manufactured separately. In this process the connector body and retainer are separately formed. Then, the seal ring is inserted into the connector body and the seal ring retainer is next inserted to load and hold the seal ring in the proper location within the connector body. A second process utilizes a seal and an inner ring placed on a mandrel which is inserted into an injection mold. In this process, the connector body part is molded around the seal ring and the inner ring. In each case, a separate assembly process is necessary to locate and load the seal ring. Consequently, the manufacturing of the two-piece configuration is more difficult, time consuming, and expensive to manufacture than the one-piece configurations. Overall, each configuration, one and two pieces, has inherent trade-offs. The one-piece design sacrifices sealing ability for ease of manufacture, and the two-piece design sacrifices ease of manufacture for improved sealing ability.
Consequently, there is a need for a cost-effective connector that provides a more reliable seal, relative to existing one piece connectors.
In general, the present invention provides a connector including, a hollow member having an open first end and an open second end joined by a bore extending through the body having a first bore section and a second bore section that is stepwise reduced from the first bore section creating an annular shoulder therebetween, the first bore section tapering inwardly from the shoulder toward a third bore section, a sealing member receiver integrally formed into the connector and located within the second bore section near the third bore section, and a sealing member seated within the sealing member receiver and at least partially protruding inwardly into the second bore section.
The present invention further provides a connector including, a hollow member having a first open end and a second open end joined by a bore, the member defining a sealing member receiver housing an integrally assembled sealing member, wherein the sealing member receiver is adapted to compress the sealing member, such that, a portion of the sealing member protrudes into the bore, and at least one conduit retaining assembly located at one of the ends.
The present invention further provides a method of manufacturing a connector including, providing a mold, the mold defining a cavity and an insert assembly located within the cavity, providing a sealing member within the mold contacting the insert assembly and partially exposed to the cavity, compressing the sealing member, such that, contacts between the insert assembly and sealing member is maintained as the connector is molded, and providing molten plastic material into the mold cavity to form the connector.
The present invention further provides in combination, a connector for receiving a male end form and a retaining clip received in and moveable relative to the connector, the connector includes a hollow member having an open first end, an open second end, and a front housing adjacent the open first end, the open first end and the open second end being joined by a bore extending through the hollow member, wherein a slot is formed through the front housing that communicates with the bore, the slot configured to receive the retaining clip, and the retaining clip includes a leading end member, a trailing end member, spaced sides extending between the leading end member and the trailing end member, and a pair of arms extending outwardly from at least one of the end members, the arms adapted to flex outwardly as the retaining clip moves inwardly relative to the slot, and the leading end member, the trailing end member, and the spaced sides defining an inner opening.
The present invention further provides a clip slidably received through apertures formed in a connector, and used in connection with the connector to selectively secure a male end form therein, the clip including a leading end member insertable through the apertures, a trailing end member, a pair of sides connecting the leading end member and the trailing end member, the leading and trailing end members and the sides defining an elongated opening having a center aperture portion adapted to receive the male end form therethrough when the clip is in a disengaged position, and a pair of flexible arms extending outward from one of the end members and engageable with the connector to bias the clip toward an engaged position, wherein, when the clip is in the engaged position, a portion of the leading end member engages the male end form to prevent its release from the connector.
A first embodiment of the connector according to the concepts of the present invention, as indicated, generally will be the numeral 10, and is shown particularly in
The body 14 defines a series of four sections of differing diameter. Near the end 11, the first tubular section 15 defines a first bore section 21. A second bore section 22 is defined adjacent he first bore section 21 and is formed by an initial step inwardly of the first tubular section 15 defining an annular shoulder 24. From shoulder 24, the second bore section 22 has an inwardly sloping surface S that transcends a gradual decrease in diameter toward the third bore section 23. Ti will be appreciated that a step-wise reduction of a diameter may be performed as an alternative to a sloping or curved gradual decrease. At the third bore section 23 the interior surface of first tubular section 15 undergoes another step decrease in diameter to the third bore section 23 defining a second annular shoulder or flange 25. Flange 25 has an inner diameter corresponding to the diameter of bore section 23 and an outer diameter corresponding approximately to the diameter or bore section 23. These diameters are closely toleranced, such that, a sealing relationship between a male end form F and the bore section 23 is maintained, as will be described hereinbelow.
As previously mentioned, the second tubular section 16 is of a lesser diameter than first tubular section 15 and accordingly, the bore fourth section 26 formed in the second tubular section 16 is of a lesser diameter than the third bore section 23, resulting in an annular shoulder 27 near the boundary of the two sections 15, 16. Overall, in the embodiment shown, the bore 13 undergoes a stepped reduction in diameter from the first opening 11 to the exit opening or second opening 12.
The first tubular section 15 is further provided with a sealing member receiver, generally indicated by the numeral 30, which may be an annular recess 31, generally having opposing shoulder 33, between which a sealing member, generally indicated by the numeral 35, is seated. The sealing member 35 may be nay of a number of commercially available devices including an elastomeric O-ring, as shown. The sealing member receiver 30 is located adjacent the flange 25. The close tolerancing of the bore section diameters and flange 25 effectively control the seal offered by the sealing member 35 to ensure a good seal between the male end form F and sealing member 35. Since only the diameters ahead of the sealing member need to be closely toleranced, the bore section 22 behind sealing member 35, may be enlarged to accommodate the retraction of a pin assembly 215 used in the molding of connector 10 (
To secure tubular members, such as conduits C or male end form F, to the connector 10, each of the first and second ends 11, 12 may be provided with a retainer assembly, generally indicated by the numeral 40. Retainer assembly 40 may be of a latch or clip-type retaining assembly, generally indicated by the numeral 45, and employed at the first end 11 of the connector 10. One such retainer 45 is described in U.S. Pat. No. 5, 799,986, and which is incorporated herein by reference for whatever details are necessary to understand the present invention. To accommodate the latch retaining assembly 45, connector 10 is formed with a latching end, indicated generally by the numeral 46, formed adjacent open end 11. Latching end 46 includes a cylindrical shaped front housing 47 formed with a stepped bore 48. Housing 47 may have various other surface shapes, including an enlarged diameter front cylindrical portion 18 and a reduced diameter cylindrical rearward portion adjacent thereto. A pair of similar opposed apertures 49 are formed in the reduced diameter portion and have an arcuate shape for receiving a retaining clip, generally indicated by the numeral 50, therein. Each aperture has an arcuate length of approximately 115° and are separated from each other by diametrically opposed arcuate sections of housing 47, which have parallel spaced inner surfaces. The arcuate sections each have an arcuate length held for approximately 65° . The sections secure clip 50 within housing 47, when the clip 50 is in an inserted position therein, as shown in
As shown in
A pair of curved flexible fingers 59 extend outwardly from end member 51 and include a partially circular nub 60 on an inner surface adjacent the extended fingers 59. A pair of partially circular shaped recesses 61 are formed at the junction of each finger 59 and end member 51 to provide increased flexibility between the fingers 59 and the end members 51. A chamfered surface 65 is formed in the front inner edge 64 of clip 50 to allow male end form F to slidably pass thereby, as discussed further below. As shown in
Referring to
The male end form F is installed easily within the open end of connector 10 by first inserting clip 50 into the slot formed by the apertures 49 of the front housing 47 of latch end 46. The thickness of the end members 51, 52 and sides 53 is just slightly less than the width of apertures 49, and the distance between the outer flat edges 66 of side 53 is slightly less than the diametric distance between the parallel inner surfaces of apertures 49, to permit clip 50 to be slidably inserted through the slot formed by the apertures 49 into the position shown in
To lock the male end form F within the connector, clip 50 is forced inward so that the enlarged, generally circular center portion 68 of elongated opening is coaxial with open end 11 of connector 10. This enables annular latching flange 75, which has a diameter approximately equal to that of central portion, to pass therethrough with a generally tight sliding fit, until end portion E is seated within the bores of inner and outer members and in a fluid sealing engagement with sealing member 35, as shown in
Flexible tabs 56 snap behind end of housing 47 when clip 50 is in the locked position with tubular male end form F, to securely retain the clip 50 in the locked position. End member 51 is merely pushed inwardly, to release engagement with edge 70 permitting clip 50 to be moved to the unlocked position where enlarged central portion 68 aligns with the connector bore.
As an alternative to using a latch form retaining assembly, as described above, 60 retain a conduit C, a barbed retaining assembly, generally indicated by the numeral 80, and shown formed on the second tubular section 16 of connector 10, may be used to secure a flexible tubular member or generally a conduit C to connector 10. In the barbed assembly 80, a plurality of outwardly extending annular flanges 82 are provided. These flanges 82 have a positively sloped annular leading face 83, which causes expansion of the conduit as it is forced over retainer assembly 80 in a bayonet-type fashion. Preferably, the leading face 83 is molded, such that, it does not have a parting line reducing the likelihood of damage to the conduit C. The rear faces 88 of the flanges 82 are disposed to resist movement of the conduit in an axially outward direction. As will be described more completely below, a pin assembly 215 is used to position sealing member 35 within a mold cavity 204 used to form the connector 10. In this manner, the sealing member 35 may be introduced prior to the molding of the connector, and, thus, be formed integrally with the connector 10. In this way the steps of subsequent assembly and insertion or formation sealing member retaining inserts are obviated. This further allows the body 14 to be formed of a single material. To improve the seal at the barged retaining assembly 80, a second seal member receiver, generally indicated by the numeral 90 may be formed on the second tubular section 16 to hold a second sealing member 91. In the embodiment shown, a recess 92 and an annular retaining flange 93 are formed proximate one of the barbed flanges 82 and spaced therefrom to provide a clearance for the second sealing member 91, which in this case is an elastomeric O-ring. Receiver recess 92 may be radiused, such that, it closely fits a circular cross-section sealing member 91. Retaining flange 93 may be provided with a positively sloped top surface similar to that of barbs 82 that facilitates passage of the conduit C over seal receiver 90. A portion of the sealing member 91 extends radially outwardly of the periphery of each of the flanges 82, to effect sealing contact with the conduit attached at the second end 16 of the connector 10.
An alternative embodiment of the present invention is depicted in
If desired, multiple sealing members 35, 90 may be utilized to further improve the sealing connection between the connector 10, 110 and tubular members without affecting the concepts of the present invention.
The pair of opposed apertures 49 are also configured to receive a retaining clip 250. That is, as seen in
As seen in
Furthermore, as seen in
The farther the flexible fingers 259 are flexed outward, the larger recesses 261 become. As seen in
As discussed above, the clip 250 is moveable between the engaged position (
In addition to the center aperture portion 256, the elongated inner opening 254 includes a front edge 264 having a chamfered surface 265, and a slotted portion 267. The front edge 264 includes a semi-circular inner edge section 264A, and end sections 264B that extend outwardly from the semi-circular inner edge section 264A to the sides 253. The chamfered surface 265 traces the semi-circular inner edge section 264A and end sections 264B, and forms inclined surfaces 266 along the end sections 264B. As discussed below, the chamfered surface 265, and especially the inclined surfaces 266 aid the male end form F in passing through the center aperture portion 256, and the reduced dimensions of the front edge 264 (relative to the remainder of the elongated inner opening 254) serves, when the clip is the engaged position (
To fit within the confines of the slot formed by the apertures 49, the thicknesses of the end members 251, 252 and sides 253 is just slightly less than the width of the slot. As shown in
When inserting the clip 250 into the slot formed by the apertures 49, the guide tab 255 formed with the leading end member 252 will move through a pair of diametrically opposed and aligned guide channels 270 formed in the housing 47. The guide tab 255 and guide channels 270 insure that the clip 250 can only be installed with the chamfered surface 265 facing outwardly for receiving the tapered end E and latching flange 75 of the male end form F. However, it is readily understood that the clip 250 can be inserted from either direction into either of the apertures 49 by the formation of the pair of opposed guide channels 270.
To lock the male end form F within the connector 10, the male end form F is inserted through the open end 11 of the connector. In doing so, the tapered end E, and, thereafter, the latching flange 75 contacts the chamfered surface 265 and inclined surfaces 266 of the front edge 264. During such contact, the tapered end E will be directed into the elongated inner opening 254, and the latching flange 75 will slide along the chamfered surface 265, the inclined surfaces 266, and/or the transition formed therebetween. Such engagement moves the clip 250 inwardly from the engaged position (
During inward movement of the clip 250, the nubs 260 are forced along the outer surfaces of the arcuate sections A, and the flexible fingers 259 are flexed outward with respect to the legs 258. As such, a camming action between the flexible fingers 259 and arcuate sections A develops, and the camming action ultimately serves to return the clip 250 to the engaged position (
In the disengaged position (
In the engaged position (
To remove the male end form F from within the connector 10, the reverse operation is performed. That is, force is manually exerted against the trailing end member 251 to move the clip 250 from the engaged position (
In accordance with another feature of the invention, a connector 10 is manufactured by an improved method, as shown particularly in
To manufacture a connector 10, a mold assembly, generally indicated by the numeral 200 in
Returning to the insert assembly 205, the bore sections within connector 10 are formed by corresponding stepped surfaces 211, 212, and 213 on the insert assembly 205. Corresponding to the bore section 21, a generally cylindrical insert section 211 is provided adjacent a base section 210 to form the cylindrical bore section 21. Insert section 212 is stepped radially inward from section 211 to form flange 24 of connector 10. Section 212 may taper inwardly from section 211 defining a generally frustoconical section to create the sloped surface S. The tapered section 212 facilitates ejection of the connector from the mold. Sections 211 and 212 are made hollow and define a bore that receives a movable pin assembly 215. The pin assembly 215 may be attached to insert assembly 205 by a screw or other fastener 216, as shown. A first portion 217 of the pin assembly 215 is sized smaller than the bore defined by the first and second insert sections 211, 212 to provide clearance for a biasing member, such as, coil spring 218 shown. A second portion 219 of pin assembly 215 is received on the first portion 217 and has a diameter corresponding substantially to that of the bore defined by first and second sections 211, 212 of insert assembly 205 but sufficiently reduced to allow sliding movement within the bore. When the spring 218 is compressed, die wall 214 acts as a step for pin assembly 215, as describe more completely below. A radially extending annular flange 220 divides the second portion 219 into a sealing member receiving portion 221 and mandrel receiving portion 222. Sealing member 35 is located on sealing member receiving portion 221 and abuts flange 220. The mandrel receiving portion 222 is provided with a recess or bore 223 adapted to receive at least a portion of mandrel 206 with the die 200 is closed.
As shown in
When the die is closed (
Once injection is complete, the mandrel 206 opens first followed by opening of the first and second mold sections 201, 202 (
Thus, is should be evident that the connector 10, 110 and method of manufacturing the same disclosed herein carries out one or more of the objects of the present invention set forth above and otherwise constitutes an advantageous contribution to the art. As will be apparent to persons skilled in the art, modifications can be made to the embodiments disclosed herein without departing from the spirit of the invention, the scope of the invention herein being limited solely by the scope of the attached claims.
This application is a continuation in part of U.S. application Ser. No. 10/988,121 filed Nov. 12, 2004, which is a divisional of U.S. application Ser. No. 09/975,917 filed Oct. 10, 2001, which is now abandoned.
Number | Date | Country | |
---|---|---|---|
Parent | 09975917 | Oct 2001 | US |
Child | 10988121 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10988121 | Nov 2004 | US |
Child | 11051529 | Feb 2005 | US |