Claims
- 1. An electrical socket connector comprising:
- a socket housing,
- a plurality of connector modules configured for insertion into the socket housing, each connector module including an insulated material encasing a plurality of conductive paths, each conductive path being coupled to a receptacle contact, each connector module being further formed to include a plurality of passageways which are interleaved with the plurality of conductive paths, and which extend laterally between opposite sides of the connector modules,
- a plurality of first shields configured for insertion into the socket housing, each first shield extending along a first side of an associated connector module, the first shields being formed to include a plurality of passageways extending laterally between opposite sides thereof in substantial alignment with the passageways in the connector modules to form a plurality of laterally-extending channels, and
- a plurality of second shields configured for insertion into the plurality of laterally-extending channels in the plurality of connector modules and first shields, the second shields being electrically coupled to the first shields to form a coaxial shield around each conductive path.
- 2. The socket connector of claim 1, further including a plurality of third shields configured for insertion into the socket housing, wherein the plurality of third shields are electrically coupled to the plurality of first shields to form a coaxial shield around each receptacle contact.
- 3. The socket connector of claim 2, wherein each third shield is formed to include at least two contact fingers near the front and back thereof which are configured to electrically contact the first shields inserted in the socket housing to form a coaxial shield around each receptacle contact.
- 4. The socket connector of claim 2, wherein the first shields are removable to form differential pairs of conductive paths in adjacent rows and the second shields are removable to form differential pairs of conductive paths in adjacent columns.
- 5. The socket connector of claim 2, wherein the third shields are removable along with the second shields to form differential pairs of conductive paths in adjacent columns.
- 6. The socket connector of claim 1, wherein the first side of each connector module is formed to include a plurality of support bumps extending between the laterally-extending passageways therein to define spacing between a connector module and a first shield extending along a first side thereof, wherein the support bumps are configured to form air gaps around the conductive paths in the connector modules, wherein the geometry and dimensions of the air gaps surrounding the conductive paths and the geometry and dimensions of the insulating and shielding materials surrounding the air gaps are configured to tune the socket connector to match a specified impedance.
- 7. The socket connector of claim 6, wherein the plurality of second shields inserted into the plurality of laterally-extending channels in the plurality of connector modules cooperate with the plurality of bumps formed on the first sides of the connector modules to lend rigidity to the socket connector.
- 8. The socket connector of claim 1, wherein the first side of each connector module is formed to include a plurality of tabs along a bottom edge thereof, wherein a second side of each connector module is formed to include a cutout extending along a bottom edge thereof into which the plurality of tabs formed on the first side of the adjacent connector module are received, and wherein a downwardly-facing surface of the cutout overhangs over the plurality of tabs, and exerts a downward force on the upwardly-facing surfaces of the tabs during press fitting of the socket connector onto a printed circuit board.
- 9. The socket connector of claim 8, wherein the plurality of tabs are each formed to have a raised area around the outer periphery thereof to hold a first shield against the first side of an associated connector module during press fitting of the socket connector onto a printed circuit board.
- 10. The socket connector of claim 1, wherein each first shield is formed to include at least two pairs of opposed tabs near the front and back of the first shield which project into the laterally-extending angled passageways therein, and are configured to electrically contact the second shields inserted in the laterally-extending angled passageways in the first shields to form a coaxial shield around each conductive path.
- 11. The socket connector of claim 1, wherein each conductive path is electrically coupled to a receptacle contact, wherein each conductive path includes a first leg portion substantially parallel to an associated receptacle contact and a second leg portion at an angle to the first leg portion, wherein the passageways in the connector modules include first and second leg portions substantially parallel to the first and second leg portions of the associated conductive paths, and wherein the passageways in the first shields include first and second leg portions substantially aligned with the first and second leg portions of the associated passageways in the connector modules.
- 12. The socket connector of claim 1, wherein each conductive path in the connector module includes a first end coupled to a receptacle contact and a second end coupled to a pin tail, wherein each conductive path includes a first leg portion substantially parallel to an associated receptacle contact, a second leg portion at an angle to the first leg portion and a third leg portion substantially parallel to an associated pin tail, wherein the passageways in the connector modules include first and second leg portions substantially parallel to the first and second leg portions of the associated conductive paths, wherein the passageways in the first shields include first and second leg portions substantially aligned with the first and second leg portions of the associated passageways in connector modules.
- 13. The socket connector of claim 1, wherein the plurality of channels extend side-to-side through at least two connector modules and two first shields received in the socket housing.
- 14. The socket connector of claim 1, wherein each conductive path electrically couples a receptacle contact to a pin tail, and wherein the socket housing has a front wall formed to include an array of pin-insertion windows in alignment with an array of receptacle contacts formed by the connector modules upon insertion thereof in the socket housing.
- 15. The socket connector of claim 14, wherein each of the plurality of first shields includes a plurality shield tails configured to be disposed adjacent to a plurality of pin tails of the associated connector module when a first shield is coupled to a connector module along a first side thereof to form a paired connector unit.
- 16. The socket connector of claim 14, wherein each first shield includes a plurality of shield fingers configured to be disposed adjacent to a plurality of receptacle contacts of the associated connector module when the first shield is coupled to the connector module along a first side thereof to form a paired connector unit.
- 17. The socket connector of claim 16, wherein an internal surface of the front wall of the socket housing is formed to include a plurality of longitudinal dividers extending substantially perpendicularly therefrom for laterally separating the receptacle contacts of the connector modules from each other and from the shield fingers of the associated first shields upon insertion of the paired connector units in the socket housing.
- 18. The socket connector of claim 17, further including a plurality of laterally-extending third shields encased in insulating material and configured for insertion into slots between the dividers and in channels between the shield fingers of the first shields, wherein the laterally-extending third shields longitudinally separate the receptacle contacts of the connector modules from each other, wherein the plurality of laterally-extending third shields are electrically coupled to the shield fingers of the plurality of longitudinally-extending first shields to form a coaxial shield around each receptacle contact.
- 19. The socket connector of claim 14, wherein an internal surface of the front wall of the socket housing is formed to include top and bottom laterally-extending, oppositely-disposed walls extending substantially perpendicularly from the front wall, wherein internal surfaces of each of the top and bottom laterally-extending, oppositely-disposed walls of the socket housing are formed to include a plurality of guide slots extending substantially perpendicularly therefrom for guiding insertion of a plurality of connector modules and first shields.
- 20. The socket connector of claim 19, wherein the plurality of guide slots are arranged in pairs--a narrower guide slot for guiding insertion of a first shield and a broader guide slot for guiding insertion of an associated connector module.
- 21. The socket connector of claim 14, wherein each receptacle contact of the connector module includes opposed cantilevered fingers, wherein an internal surface of the front wall of the socket housing is formed to include an array of preopening fingers extending substantially perpendicularly therefrom for maintaining separation between the opposed cantilevered fingers of the receptacle contacts.
- 22. The socket connector of claim 21, wherein the preopening fingers keep the opposed cantilevered fingers of the receptacle contacts of the socket connector separated to facilitate insertion of pin contacts of a header connector.
- 23. The socket connector of claim 14, further including guide means for guiding insertion of the socket connector into a header connector when the socket connector and the header connector are mated to align the array of pin-insertion windows of the socket connector with an array of pin contacts of the header connector prior to engagement of the array of pin contacts of the header connector with the array of receptacle contacts of the socket connector.
- 24. An electrical header connector comprising:
- a header body formed to include a plurality of first openings and a plurality of second openings,
- a plurality of signal pins configured for insertion into the plurality of first openings to form an array of pin contacts extending therefrom, and
- a plurality of shield blades configured for insertion into the plurality of second openings, each of the plurality of shield blades having a generally right angle shielding portion configured to be disposed adjacent to at least one of the plurality of signal pins, wherein the first and second openings are arranged in the header body such that the generally right angle shielding portions of shield blades substantially surround the signal pins to form a coaxial shield around each of the plurality of signal pins,
- wherein the generally right angle shielding portion of each of the plurality of shield blades includes first and second leg portions, wherein each of the plurality of second openings in the header body has a generally right angle cross-section for receiving the generally right angle shielding portion of a shield blade, wherein each of the plurality of generally right angle second openings includes first and second narrowed throat portions dimensioned to engage the first and second leg portions of the generally right angle shielding portion of a shield blade to hold the shield blade in place, and wherein each of the plurality of generally right angle second openings in the header body includes a central portion coupled to first and second end portions by the first and second narrowed throat portions, wherein the central portion and the first and second end portions of each of the plurality of generally right angle second openings are formed to provide an air gap surrounding the generally right angle shielding portion of a shield blade.
- 25. The header connector of claim 24, wherein the geometry and dimensions of the air gaps, the geometry, dimensions and material of the right angle shielding portions, and the geometry, dimensions and material of the header body surrounding the air gaps are configured to tune the header connector to match a specified impedance.
- 26. An electrical socket connector comprising:
- a plurality of connector modules, each connector module including an insulated material encasing a plurality of conductive paths, each connector module being further formed to include a plurality of laterally-extending openings which are interleaved with the plurality of conductive paths,
- a plurality of shields including first shield portions extending along first sides of the plurality of connector modules and second shield portions extending into the laterally-extending openings in the plurality of connector modules to form a coaxial shield around each conductive path, and
- a socket housing configured to receive a plurality of connector modules and shields.
- 27. The socket connector of claim 26, wherein each conductive path is coupled to a receptacle contact, and wherein the socket housing has a front wall formed to include an array of pin-insertion windows arranged in substantial alignment with an array of receptacle contacts of the connector modules upon insertion of the plurality of connector modules in the socket housing.
- 28. The socket connector of claim 27, further including guide means for guiding insertion of the socket connector into a header connector when the socket connector and the header connector are mated to align the array of pin-insertion windows of the socket connector with an array of pin contacts of the header connector prior to engagement of the array of pin contacts of the header connector with the array of receptacle contacts of the socket connector.
- 29. The socket connector of claim 26, wherein the openings in the connector modules extend laterally between opposite sides of the connector modules, wherein each first shield portion is formed to include a plurality of passageways extending laterally between opposite sides thereof in alignment with the laterally-extending openings in the connector modules to form a plurality of channels, and wherein the plurality of second shield portions are configured to be inserted in the plurality of laterally-extending channels, the second shield portions being electrically coupled to the first shield portions to form a coaxial shield around each conductive path.
- 30. The socket connector of claim 29, wherein each conductive path is coupled to a receptacle contact, wherein each conductive path includes a first leg portion substantially parallel to an associated receptacle contact and a second leg portion at an angle to the first leg portion, wherein each opening in the connector module includes first and second leg portions substantially parallel to the first and second leg portions of an associated conductive path, wherein each passageway in the first shield portion includes first and second leg portions substantially aligned with the first and second leg portions of an associated opening in the connector module.
- 31. The socket connector of claim 29, wherein each conductive path in the connector module includes a first end coupled to a receptacle contact and a second end coupled to a pin tail, wherein each conductive path includes a first leg portion substantially parallel to an associated receptacle contact, a second leg portion at an angle to the first leg portion, and a third leg portion substantially parallel to an associated pin tail, wherein each opening in the connector module includes first, second and third leg portions substantially parallel to the first, second and third leg portions of an associated conductive path, wherein each passageway in the first shield portion includes first, second and third leg portions substantially aligned with the first, second and third leg portions of an associated opening in connector module.
- 32. The socket connector of claim 30, wherein the plurality of channels extend side-to-side between the opposite walls of the socket housing.
- 33. An electrical connector comprising:
- a plurality of connector modules, each connector module including an insulated material encasing a plurality of conductive paths, each connector module being further formed to include a plurality of laterally-extending openings which are interleaved with the plurality of conductive paths,
- a plurality of shields including first shield portions extending along first sides of the plurality of connector modules and second shield portions extending into the laterally-extending openings in the plurality of connector modules to form a coaxial shield around each conductive path, and
- a housing configured to receive a plurality of connector modules and shields.
- 34. An electrical connector comprising:
- a front cap formed to include an array of pin-insertion windows arranged as a plurality of rows and columns,
- a plurality of horizontal shields configured for insertion into the front cap to form a plurality of horizontal compartments in substantial alignment with the plurality of rows of pin-insertion windows,
- a plurality of connector modules configured for insertion into the front cap to form an array of receptacle contacts arranged as a plurality of rows and columns in substantial alignment with the plurality of rows and columns of pin-insertion windows in the front cap, and
- a plurality of vertical shields configured for insertion into the front cap to form a plurality of vertical compartments in substantial alignment with the plurality of columns of pin-insertion windows, the plurality of vertical shields being electrically coupled to the plurality of horizontal shields to form a coaxial shield around each receptacle contact.
- 35. A protective cap for use with a header connector including a header body having a front wall formed to include a plurality of first openings therethrough configured for receiving a plurality of signal pins therein, each signal pin having a first end extending above the front wall of the header connector and a second end spaced apart from the first end configured for insertion into an opening in a printed circuit board, the protective cap including a front wall formed to include a plurality of holes configured to receive the first ends of the signal pins when the protective cap is inserted into the header body to protect the signal pins during shipping and handling of the header connector, the protective cap including a surface configured to engage at least one of a portion of the header body surrounding the signal pins and a portion of the signal pins to permit the protective cap to be used to install the header connector on the printed circuit board, and wherein the front wall of the header body is further formed to include a plurality of second openings therethrough configured for receiving a plurality of shield blades therein, each shield blade having a first end extending above the front wall of the header connector adjacent to the first end of a signal pin and a second end spaced apart from the first end configured for insertion into an opening in a printed circuit board adjacent to the second end of the signal pin, wherein the front wall of the protective cap is formed to include a plurality of ribs defining a plurality of slots in the protective cap configured to receive the first ends of the shield blades when the protective cap is inserted into the header body, and wherein the plurality of holes configured to receive the first ends of the signal pins when the protective cap is inserted into the header body are arranged in the said plurality of ribs.
- 36. The protective cap of claim 35, wherein the protective cap is formed from a thermoplastic material.
- 37. A modular header connector comprising:
- a first header body having a front wall formed to include a plurality of first openings and a plurality of second openings therethrough,
- a second header body having a front wall formed to include a plurality of first openings and a plurality of second openings therethrough,
- a plurality of signal pins configured for insertion in the plurality of first openings in the first and second header bodies,
- a plurality of shield blades configured for insertion in the plurality of second openings in the first and second header bodies, the plurality of shield blades being formed in a continuous strip of material extending between the first and second header bodies to couple the first and second header bodies together.
- 38. An electrical connector comprising:
- a housing,
- a plurality of connector modules including an insulated material encasing a plurality of conductive paths having a contact portion, the plurality of connector modules being coupled to the housing to form an array of conductive paths arranged in a plurality of rows and columns, each connector module being formed to include a plurality of passageways which are interleaved with the plurality of conductive paths,
- a plurality of first shields extending along a first side of an associated connector module, and
- a plurality of second shields, each second shield being configured for insertion into one of the passageways formed by the plurality of connector modules so that the first and second shields cooperate to form a substantially continuous shield around each conductive path, the first shields being removable to form differential pairs of conductive paths in adjacent rows and the second shields being removable to form differential pairs of conductive paths in adjacent columns.
- 39. The socket connector of claim 38, further including a plurality of third shields configured for insertion into the housing, wherein the plurality of third shields are electrically coupled to the plurality of first shields to form a substantially continuous shield around each contact portion, the third shields being removable along with the second shields to form differential pairs of conductive paths in adjacent columns.
BACKGROUND AND SUMMARY OF THE INVENTION
This application claims the benefit of U.S. provisional application Serial No. 60/096,219 filed on Aug. 12, 1998 and U.S. provisional application Serial No. 60/105,835 filed on Oct. 16, 1998.
US Referenced Citations (54)
Foreign Referenced Citations (19)
Number |
Date |
Country |
0746060 A2 |
Dec 1996 |
EPX |
0 746 060 |
Dec 1996 |
EPX |
0769828 A2 |
Jan 1997 |
EPX |
0854549 A2 |
Jul 1998 |
EPX |
0865113 A2 |
Sep 1998 |
EPX |
0907225 A2 |
Apr 1999 |
EPX |
3605316 A1 |
Aug 1987 |
DEX |
3904461 C1 |
Sep 1990 |
DEX |
296 10 780 U1 |
Aug 1996 |
DEX |
296 10 789 U |
Aug 1996 |
DEX |
2315614 |
Feb 1998 |
GBX |
WO 94 16477 |
Jul 1994 |
WOX |
WO 9800889 |
Jan 1998 |
WOX |
WO 9810492 |
Mar 1998 |
WOX |
WO 9819370 |
May 1998 |
WOX |
WO 9824154 |
Jun 1998 |
WOX |
WO 9835409 |
Aug 1998 |
WOX |
WO 9835408 |
Aug 1998 |
WOX |
WO 9848485 |
Oct 1998 |
WOX |