This application claims priority to Italian Patent Application Serial No. 102015000022700, which was filed Jun. 11, 2015, and is incorporated herein by reference in its entirety.
Various embodiments relate generally to lighting devices.
One or more embodiments may find application in lighting devices employing electrically powered light radiation sources, e.g. solid-state light radiation sources, such as Light Emitting Diode (LED) sources.
In the sector of lighting applications, certain solutions envisage LED modules including an elongate planar support member (e.g. a flexible ribbon-shaped support) having a front face carrying one or more light radiation sources (e.g. LED sources) as well as the electrically conductive lines associated thereto.
In order to obtain the electrical contact with said electrically conductive lines (e.g. in order to supply power to light radiation sources, and optionally to perform “smart” control function), various connectors may be used.
Such connectors may be mounted at the end edges of the module.
Mounting the connector at an end position may be disadvantageous e.g. when the module must be mounted with one or both extremities at corner positions, e.g. between two converging walls: in such conditions the extremity of the lighting module is located at an edge position within the dihedral angle formed by the walls.
Moreover, the connector may be rather bulky, and therefore it may originate, with respect to the lower (i.e. rear) surface of the module, a sort of “step”, which may impose limitations as regards mounting the lighting device onto a substrate, e.g. a heatsink.
Especially in the case of power modules (e.g. high-flux LEDs), the connector thickness may be an obstacle to the thermal coupling between the lighting device and the heatsink on which it is mounted, especially as regards the previously mentioned step or gap which may be located underneath the module. This may impose the creation of a cavity (e.g. a groove) adapted to receive the portion of the connector which protrudes from the surface of the lighting module, in order to achieve an effective thermal contact with the heatsink.
In various embodiments, a connector for lighting devices including an elongate planar support member having a front surface with electrically conductive lines and at least one electrically-powered light radiation source thereon, is provided. The connector includes a C-shaped body having a web portion and two side portions, said C-shaped body locatable astride said planar support member with said web portion facing said front surface, and electrical contact means extending from said web portion between said side portions configured to contact electrically conductive lines on said front surface of said planar support member.
In the drawings, like reference characters generally refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the invention are described with reference to the following drawings, in which:
In the following description, numerous specific details are given to provide a thorough understanding of embodiments. One or more embodiments may be practiced without one or several specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials or operations are not shown or described in detail to avoid obscuring various aspects of the embodiments. The need is therefore felt to provide solutions adapted to overcome the previously outlined drawbacks.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the possible appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
The headings provided herein are for convenience only, and therefore do not interpret the extent of protection or scope of the embodiments.
One or more embodiments aim at satisfying such a need.
One or more embodiments provide a connector having the features specifically set forth in the claims that follow.
One or more embodiments may also refer to a corresponding method.
The claims are an integral part of the technical teaching provided herein with reference to the embodiments.
One or more embodiments allow for the application of a connector practically at any position along the length of the lighting device, e.g. at the locations carrying contact formations such as connecting pads of the electrically conductive lines of the device. In this way no step or gap is formed between the lighting device and the surface of a substrate (e.g. a heatsink) on which the device is mounted.
One or more embodiments are compatible with a wide range of lighting devices, e.g. both rigid and flexible light emitting diode (LED) modules, which may be optionally provided with ingress protection (IP grade).
One or more embodiments may offer one or more of the following effects:
Heatsink H shown herein generally represents the possibility of mounting lighting device D on any substrate H, e.g. a planar substrate.
Lighting device D may include, e.g., a lighting device employing electrically powered light radiation sources. The latter may be for example solid-state light radiation sources, such as light emitting diode (LED) sources, which are distributed, e.g. in a linear array, on a elongate planar support member 10.
On the front surface of support member 10 there may be provided electrically conductive lines, in order to supply power to sources L (and optionally in order to perform “smart” control functions such as dimming, thermal management, tuning of the colour or colour temperature of the emitted radiation, etc.).
Said electrically conductive lines are not visible in
The embodiments however are not restricted to any mandatory presence of such pads. As a matter of fact, connector 100 according to one or more embodiments is adapted to be coupled to lighting device D at any location along the length thereof, wherever it may be possible to establish an electrical contact with the conductive lines associated to sources L.
As visible in the Figures, in one or more embodiments connector 100 may include a body 102 having in general a C-shape (or a U-shape, i.e. the shape of a portal or inverted channel) consisting of a web portion or branch 102a and two side portions or branches 102b (e.g. of equal length) which finish off the C-shape.
Such a C-shaped configuration allows for the arrangement, as exemplified in
The web portion 102a of body 102 supports one or more (e.g. two) electrical contacts which extend inwardly of the C-shape or channel shape, and which may consist of resilient sliding contacts 104 (
As shown in
In the case of resilient sliding contacts, such as contacts 104 in
In the case of pins 104′, the surface electrical contact is supplemented by a piercing of support member 10, which strengthens the mechanical connection of connector 100 to device D.
It will be seen, moreover, that electrical contacts such as resilient sliding contacts 104 in
Reference 106 denotes a cantilever formation projecting from body 102 and adapted to act as a fixing formation, in order to fix connector 100 onto a substrate (e.g. the front face of heatsink H), lighting device D (or specifically laminar support member 10) being sandwiched between connector 100 and substrate H.
In this way, in one or more embodiments, connector 100 is adapted to perform, in addition to the electrical contact of device D, also a mechanical fixation action of lighting device D on a substrate H.
For example, in one or more embodiments, the fixing formation 106 may be provided with an aperture 106a for the passage of a screw or pin (or of a similar fixation member) S which can be fitted, e.g. by a screw connection, into a corresponding hole (not visible in the Figures) of substrate H.
In one or more embodiments, as exemplified in the Figures, fixing formation 106 may be a formation protruding from C-shaped body 102 of connector 100; it will be appreciated, however, that in one or more embodiments there may be provided a plurality of fixing formations of this kind.
In one or more embodiments, as exemplified in the Figures, fixing formation 106 may be located at one of side portions 102b of body 102 of connector 100.
In one or more embodiments, as exemplified in the Figures, fixing formation 106 may be located in a position/in a region of body 102 of connector 100 opposed to the position/the region of said body adapted for the passage of cables K entering 108 connector 100, e.g. provided with one or more apertures not visible in the Figures.
This arrangement on opposed sides simplifies the mounting of connector 100 onto substrate H, e.g. while preventing the insertion (and, if necessary, the tightening) of fixing member S from originating interferences with cables K or vice versa.
One or more embodiments therefore may bring about both an electrical and a mechanical contact.
As exemplified in
Embodiments as exemplified in
Whatever the implementation of electrical contact means 104, 104′ may be, in one or more embodiments there may be provided a surface finishing (e.g. gold) of the contacts. Contacts 104, 104′ may also be subjected to other finishing treatments (e.g. ImAg, immersion tin plating, OSP, etc.).
As for the materials used to form body or case 102, which may be shaped as a hollow shell, in one or more embodiments plastic materials may be used, such as polycarbonate (e.g. Bayer Makrolon® 2447).
One or more embodiments may therefore offer features such as high mechanical strength (e.g. adapted to withstand impact tests >IK 10), resistance to high temperatures (even higher than 150° C.), reliability (as already shown in automotive applications), resistance to environmental agents such as UV radiation (which is important for outdoor applications).
Connector 100 may be implemented with a small size, so as not to interfere appreciably with the radiations emitted by sources L, thus avoiding shadow areas or areas with reduced brightness.
It will be appreciated, moreover, that one or more embodiments enable the mechanical connection of lighting device D to a substrate H while avoiding the appearance of steps or gaps, so as to keep the whole extension of lighting device D in contact (e.g. thermal exchange contact) with substrate H, especially when the latter includes a heatsink.
A comparison of
One or more embodiments as exemplified in
As regards the exemplified fixation solutions, e.g. in
While the invention has been particularly shown and described with reference to specific embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. The scope of the invention is thus indicated by the appended claims and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced.
Number | Date | Country | Kind |
---|---|---|---|
102015000022700 | Jun 2015 | IT | national |
Number | Name | Date | Kind |
---|---|---|---|
4900264 | Bennett | Feb 1990 | A |
4975080 | Daly | Dec 1990 | A |
6196863 | Schwant | Mar 2001 | B1 |
6544068 | Hatton | Apr 2003 | B1 |
7704094 | Sato | Apr 2010 | B2 |
9239136 | Petersen | Jan 2016 | B1 |
20060197474 | Olsen | Sep 2006 | A1 |
20080153344 | Horst et al. | Jun 2008 | A1 |
20130012068 | Naito et al. | Jan 2013 | A1 |
20150241035 | Dankelmann | Aug 2015 | A1 |
20150369459 | Huang | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
2584248 | Apr 2013 | EP |
2007157408 | Jun 2007 | JP |
Entry |
---|
Italian Search Report based on Application No. 102015000022700 (7 pages) dated Dec. 16, 2015 (Reference Purpose Only). |
Number | Date | Country | |
---|---|---|---|
20160365688 A1 | Dec 2016 | US |