The present disclosure relates generally to a bayonet style (or bayonet-style) connector and methods for using the connector, and more particularly to a bayonet style connector that operates using single-handed manipulation by a user.
Push-in connectors such as Bayonet connectors, RJ-xx electrical connectors, LC and E2000 optical fiber connectors, or connectors for transmitting other types of signals or media, such as gases or liquids, are incorporated in a multitude of industries for use with a wide array of machinery and components.
By way of example, bayonet style connectors are well known and widely used in a range of different applications, and are designed for simple single-handed connection and disconnection. In general, bayonet connectors use an axial spring element to lock the connector in place at the end of a rotational cam motion (See
However, when single-handed connecting/disconnecting is attempted on a light and/or unattached receiver (and/or other device(s)), the instability of the receiver (or other device) in combination with the force exerted by the connecting/disconnecting motion leads to movement of the receiver (or other device), thus forcing one to embrace the receiver with a second hand in order to counter the force exerted on the connector.
Accordingly, there is a need for an improved bayonet style connector, which can be truly manipulated single handedly (e.g., without a separate or additional tool), regardless of a weight, size, and/or stability of the receiver (or other device).
Accordingly, the present disclosure provides a connecting apparatus and method for using the apparatus, capable of single-handed engagement and disengagement of the connector from a receiver (or other device).
In one or more embodiments, a connecting and/or disconnecting device or system may include: a receiver or receptacle having an inner volume that operates to receive a connector, and having a pawl or locking mechanism that operates to move towards and at least be partially positioned in a portion of the inner volume of the receiver or receptacle; and a pushbutton or actuator that operates to move or unlock the pawl or locking mechanism such that the pawl or locking mechanism operates to move away from and/or out of the inner volume of the receiver or receptacle, and/or operates to move or lock the pawl or locking mechanism such that the pawl or locking mechanism operates to move towards and/or into the inner volume of the receiver or receptacle.
In one or more embodiments, a device or system may further include: the connector positioned in the inner volume of the receiver or receptacle, wherein the pawl or locking mechanism further operates to engage with, and/or disengage from, a window or opening in a portion or side of the connector, and wherein the pushbutton or actuator operates to: (i) move or unlock the pawl or locking mechanism such that the pawl or locking mechanism disengages from the connector; and/or (ii) move or lock the pawl or locking mechanism such that the pawl or locking mechanism engages with the connector. The receiver or receptacle and/or the pawl or locking mechanism may operate to allow a user of the device or system to insert and lock, and/or unlock and remove, the connector using only a single hand of the user. In one or more embodiments, one or more of the following may occur or exist: (i) the connector includes at least one boss protruding beyond the outer surface of the connector; (ii) the receiver or receptacle includes a channel that operates to slidingly accept the boss, the channel having a substantially axial lead-in portion and a substantially circumferential cam portion; (iii) in a case where the boss reaches the end of the channel, and/or the end of the substantially circumferential cam portion of the channel, the window or opening of the connector is aligned with the pawl or locking mechanism such that the pawl or locking mechanism engages with, and locks in place, the connector; and (iv) the connector is turned by a predetermined angle as the boss proceeds from the substantially axial lead-in portion and into and along the substantially circumferential cam portion. The connector may operate to move the pawl or locking mechanism out of the inner volume of the receiver or receptacle as the connector slides into or out of the inner volume in a case where the pawl or locking mechanism is misaligned with the opening or window of the connector, and the pawl or locking mechanism may engage with, and may lock in place, the connector in a case where the pawl or locking mechanism is aligned with the opening or window of the connector.
In one or more embodiments, one or more of the following may occur or exist: (i) the pawl or locking mechanism is pivotably mounted to the receiver or receptacle; (ii) the pawl or locking mechanism is biased with a spring such that the spring biases the pawl or locking mechanism in one direction towards the inner volume or another direction away from the inner volume, and the pushbutton operates to counteract or override the bias of the spring; (iii) the pawl or locking mechanism is mounted in a side portion of the receiver or receptacle via a pin on one end of the pawl or locking mechanism, and the other end of the pawl or locking mechanism operates to interact with the pushbutton; and/or (iv) the spring is located on or in a portion of the pawl or locking mechanism.
In one or more embodiments, one or more of the following may occur or exist: (i) the pushbutton or actuator operates to move linearly towards and away from the pawl or locking mechanism; (ii) the pushbutton or actuator is a linear actuator; and/or (iii) the pushbutton or actuator further comprises an intermediate sliding member not rigidly connected to the linear actuator.
One or more embodiments may further include a linear stage, a motor, and an actuator pin disposed on a shaft of the motor, wherein the linear stage operates to translate the motor and actuator pin and the motor operates to rotate the actuator pin on the shaft of the motor such that the actuator pin is positioned and presses against a first end of the pushbutton or actuator and a second end of the pushbutton or actuator engages with or interacts with the pawl or locking mechanism. The linear stage and the motor may operate to move or position the actuator pin automatically or manually to unlock or disengage the pawl or locking mechanism so that the pawl or locking mechanism is removed from the inner volume of the receptacle or receiver. In a case where a connector is positioned inside the receiver or receptacle and the pawl or locking mechanism is engaged with and locked the connector in place, the linear stage and the motor may operate to move or position the actuator pin automatically or manually to unlock or disengage the pawl or locking mechanism from the connector so that a user of the device or system can remove the connector from the receiver or receptacle using only one hand of the user. The linear stage may be flat or substantially flat, and may be positioned on a flat or substantially flat surface so that the device or system is stationary, immobilized, or operates without an axial force to disengage the pawl or locking mechanism or to remove the pawl or locking mechanism from the inner volume of the receiver or receptacle. In a case where a connector is positioned inside the receiver or receptacle and the pawl or locking mechanism is engaged with and locked the connector in place, the device or system may unlock the pawl or locking mechanism from the connector so that a user of the device or system can remove the connector from the receiver or receptacle with only a single hand of the user.
In one or more embodiments, a bayonet-style connector may not require application of an axial force to disengage, and may include: a connector portion having a substantially cylindrical outside surface, having an axis defined by the substantially cylindrical outside surface, having a boss rigidly attached to the connector portion and protruding outwards from the substantially cylindrical outside surface, and having a window or opening; a receptacle portion having a substantially cylindrical inside surface that operates to slidingly accept the connector portion, the receptacle portion having a channel that operates to slidingly accept the boss, the channel having a substantially axial lead-in portion and a substantially circumferential cam portion, and the receptacle portion having a pawl moveably mounted on the receptacle portion and biased to at least partially protrude springingly and returnably inward and internal to the inside surface; and an actuator that operates to impart force on the pawl, wherein the window or opening of the connector portion operates to receive at least a portion of the pawl, and the actuator operates to retract the pawl from the window or opening such that a user of the bayonet-style connector can remove the connector portion using only one hand of the user. The pawl may be pivotably mounted, and/or may be biased with a spring. The actuator may comprise a linear actuator, and/or may further comprise an intermediate sliding member not rigidly connected to the linear actuator.
In one or more embodiments, a method for controlling a device or system comprising a receiver or receptacle having an inner volume that operates to receive a connector having a window, and having a pawl or locking mechanism that operates to move towards and at least be partially positioned in a portion of the inner volume of the receiver or receptacle; and comprising a pushbutton or actuator that operates to move or unlock the pawl or locking mechanism such that the pawl or locking mechanism operates to move away from and/or out of the inner volume of the receiver or receptacle, and/or operates to move or lock the pawl or locking mechanism such that the pawl or locking mechanism operates to move towards and/or into the inner volume of the receiver or receptacle, may include: positioning the connector in the receiver or receptacle so that the pawl or locking mechanism engages with and is at least partially positioned in the window of the connector; and actuating the pushbutton or actuator to move or unlock the pawl or locking mechanism such that the pawl or locking mechanism is removed and disengages from the window of the connector so that a user of the device or system can remove the connector from the receptacle or receiver by using only one hand of the user. The actuating step may be performed automatically or manually. The method may further include controlling a linear stage, a motor, and an actuator pin disposed on a shaft of the motor of the device or system, wherein the linear stage operates to translate the motor and actuator pin and the motor operates to rotate the actuator pin on the shaft of the motor such that the actuator pin is positioned and presses against a first end of the pushbutton or actuator and a second end of the pushbutton or actuator engages with or interacts with the pawl or locking mechanism. The linear stage and the motor operate to move or position the actuator pin automatically or manually to unlock or disengage the pawl or locking mechanism so that the pawl or locking mechanism is removed from the inner volume of the receptacle or receiver. The method may further include positioning the linear stage and/or the device or system on a flat or substantially flat surface so that the device or system is stationary, immobilized, or operates without an axial force to disengage the pawl or locking mechanism or to remove the pawl or locking mechanism from the inner volume of the receiver or receptacle. One or more methods for controlling a device or system having a controller and/or for controlling a bayonet-style controller may include any other feature(s), including combinations thereof, discussed herein.
In one or more embodiments, a connector or bayonet-style connector may not use application of an axial force to disengage from a device or system and/or a receiver or receptacle of the device or system.
By way of at least one example, at least one embodiment of a connecting apparatus may comprise a cylindrical housing having at least one boss configured on the outer surface of the cylindrical housing, as well as having at least one locking boss configured on the outer surface of the cylindrical housing, other feature as shown or discussed in U.S. Pat. Pub. No. 2017/0294741, filed on Apr. 12, 2017 and published on Oct. 12, 2017, which is incorporated by reference herein in its entirety, and/or as shown or discussed in U.S. Pat. No. 9,869,828, issued on Jan. 16, 2018, the disclosure of which is incorporated by reference herein in its entirety.
In one embodiment of the present disclosure, the locking boss is mounted on a resilient member, configured to resiliently allow the locking boss to depress beneath the outer cylindrical surface of the cylindrical housing.
In another exemplary embodiment, a receiver is provided to receive the connecting apparatus, wherein the receiver includes a cylindrical cavity configured to receive the cylindrical housing, at least one helical cam channel configured to receive the at least one boss, and a chamfer configured to contact the at least one locking boss. In another exemplary embodiment, the receiver also includes a shelf, protruding from the cylindrical cavity, configured to guide the connecting apparatus into the receiver.
In yet another embodiment, the at least one boss protrudes beyond the outer cylindrical surface of the cylindrical housing. According to another embodiment, the at least one locking boss may be used, and may protrude beyond the outer cylindrical surface of the cylindrical housing.
According to yet another exemplary embodiment of the present disclosure, a handle may be used to control or affect the locking boss, and may be in indirect communication with the locking boss through a resilient hinge.
These and other objects, features, and advantages of the present disclosure will become apparent upon reading the following detailed description of exemplary embodiments of the present disclosure, when taken in conjunction with the appended drawings, and provided paragraphs.
For the purposes of illustrating various aspects of the disclosure, wherein like numerals indicate like elements, there are shown in the drawings simplified forms that may be employed, it being understood, however, that the disclosure is not limited by or to the precise arrangements and instrumentalities shown. It is intended that changes and modifications can be made to the described embodiments without departing from the true scope and spirit of the subject disclosure as defined by the appended paragraphs. To assist those of ordinary skill in the relevant art in making and using the subject matter hereof, reference is made to the appended drawings and figures, wherein:
Embodiments will be described below with reference to the attached drawings. Like numbers refer to like elements throughout. It shall be noted that the following description is merely illustrative and exemplary in nature, and is in no way intended to limit the disclosure and its applications or uses. The relative arrangement of components and steps, numerical expressions and numerical values set forth in the embodiments do not limit the scope of the disclosure unless it is otherwise specifically stated. Techniques, methods, and devices which are well known by individuals skilled in the art may not have been discussed in detail since an individual skilled in the art would not need to know these details to enable the embodiments discussed below.
One or more devices or systems, and/or methods for use with same, are provided herein. In one or more embodiments, one or more technique(s) and/or structure(s) may be used to achieve a connector (e.g., a bayonet style connector) which can be operated with a single hand. In one or more embodiments, a device or system using a connector with one or more features of the present disclosure may be stationary, immobilized, on a surface (e.g., a flat surface), on a surface (e.g., a flat surface) but moveable, weighted down on a surface (e.g., a flat surface), etc.
Turning now to the details of the figures,
The receptacle or receiver 3 has an inside or inner diameter such that the receptacle or receiver 3 is sized and shaped to accept the connector 2 therein. Preferably, the inside or inner diameter of the receptacle or receiver 3 is sized and/or shaped to closely accept the connector 2. In one or more embodiments, the receptacle or receiver 3 includes a pawl or locking mechanism (e.g., the pawl or locking mechanism 7 as discussed below) that operates to engage with and/or disengage from a portion (e.g., a window or an opening, such as the window or the opening 12 discussed below) of the connector 2 such that the connector 2 may be inserted into and/or removed from the receptacle or receiver 3 with only one hand. In one or more embodiments, the pawl or locking mechanism 7 may be unlocked or disengaged automatically or manually by the device or system 1 to allow a user of the device or system 1 to remove the connector 2 with one hand of the user.
In one or more embodiments, the receptacle or receiver 3 may have a channel, which may have an axially aligned lead-in portion 5 and a generally circumferential or helical cam portion 6 (as best seen in
In one or more embodiments, the connector 2 may include a boss (e.g., a cylindrical boss) 4 (see
In one or more embodiments, the connector 2 may be rotated or turned after insertion into the receptacle or receiver 3. For example, after insertion of the connector 2 into the receptacle or receiver 3, the connector 2 may be turned a preset angle α until the boss 4 reaches the end of the channel 6 and stops. By way of another example, after insertion of the connector 2 into the receptacle or receiver 3, the connector 2 may be turned a preset angle α until a predetermined portion (e.g., the opening or window 12 as shown in
As best shown in
In one or more embodiments, the pawl or locking mechanism 7 and pushbutton 14 arrangement may operate in a reverse or different arrangement. For example, in one or more embodiments, the bias spring 9 or other bias element may bias the pawl or locking mechanism 7 away from the axis of the receptacle or receiver 3 (e.g., the bias spring 9 may operate in the opposite direction or in a different direction), and the pushbutton 14 may be arranged such that, when or in a case where actuated (e.g., pressed or pushed), the pushbutton 14 operates to bias the pawl or locking mechanism 7 towards the axis of the cylindrical receptacle or receiver 3 to lock the pawl or locking mechanism 7 into, or have the pawl or locking mechanism 7 engage with, the predetermined portion (e.g., the window or the opening) of the connector 2.
In one or more embodiments, the device or system 1 may include a motor (e.g., a rotary motor) 17 to actuate a push button 14 of the device or system 1 (as shown in
Now focusing on the details of
To disconnect the connector 2 from the device or system 1 (see
It should be appreciated that, in one or more embodiments, at no point of a connection and/or disconnection cycle any axial or lateral force is applied to the device or system 1 to displace or move the device or system 1. Preferably, the device or system 1 is supported externally by a surface (e.g., a flat stationary surface, a stationary surface, etc.) on which to dispose or place the device or system 1. In one or more embodiments, the only external support of the device or system 1 may be the presence of a flat stationary surface to put the device or system 1 on with a flat bottom.
Preferably, the connector 2 is a bayonet style connector. However, in one or more embodiments, the connector 2 may have a different structure, size, and/or shape.
One or more embodiments of the device or system 1 may use any other connector features discussed herein, shown in the accompanying features, as discussed or shown in U.S. Pat. Pub. No. 2017/0294741, filed on Apr. 12, 2017 and published on Oct. 12, 2017, the disclosure of which is incorporated by reference herein in its entirety, and/or as shown or discussed in U.S. Pat. No. 9,869,828, issued on Jan. 16, 2018, the disclosure of which is incorporated by reference herein in its entirety.
In one or more embodiments, a locking boss may be used on the connector 2 such that the locking mechanism 7 (or another locking mechanism) engages with the locking boss to lock/unlock the connector 2 from the receiver or receptacle 3. A locking boss may be used with a hinge on the connector 2 such that the locking mechanism 7 (or another locking mechanism) engages with the locking boss to lock/unlock the connector 2 from the receiver or receptacle 3 (and the locking boss may move resiliently between an engaged and a retracted position). A release handle or a button may be added to the device or system 1 to actuate the motor 17 to lock or unlock the pawl or locking mechanism 7 (such that the connector 2 may be locked or unlocked, inserted or removed, etc. from the device or system 1 by using one hand of the user once the motor 17 is finished actuating the pawl or locking mechanism 7). The receptacle or receiver 3 may include one or more features of a receiver (e.g., a bayonet-type receiver) such as an internal cavity for accepting the connector 2, and the internal cavity may include an inner or inside diameter that is configured to be slightly larger than the outside diameter of the connector 2.
Although the disclosure herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present disclosure (and are not limited thereto), and the invention is not limited to the disclosed embodiments. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present disclosure. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application relates, and claims priority, to U.S. Patent Application Ser. No. 62/980,717, filed Feb. 24, 2020, the entire disclosure of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6108865 | Veser et al. | Aug 2000 | A |
8177575 | Katagiyama | May 2012 | B2 |
9360630 | Jenner et al. | Jun 2016 | B2 |
9869828 | Altshuler | Jan 2018 | B2 |
10337987 | Wu et al. | Jul 2019 | B2 |
20140170888 | Chien | Jun 2014 | A1 |
20140184158 | Osawa | Jul 2014 | A1 |
20150346436 | Pepe | Dec 2015 | A1 |
20170294741 | Altshuler | Oct 2017 | A1 |
20190221970 | Wu | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
102015117509 | Apr 2017 | DE |
102015117509 | Apr 2017 | DE |
102018210050 | Dec 2019 | DE |
2879243 | Jun 2015 | EP |
2678440 | Dec 1992 | FR |
2411527 | Aug 2005 | GB |
H3-112888 | Nov 1991 | JP |
2000-113934 | Apr 2000 | JP |
2002-329551 | Nov 2002 | JP |
Entry |
---|
Bayonet mount, From Wikipedia, the free encyclopedia, https://en.wikipedia.org/wiki/Bayonet_mount, last modified on Mar. 19, 2021. |
Number | Date | Country | |
---|---|---|---|
20210265775 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
62980717 | Feb 2020 | US |