The present invention is directed to a connector and method for mounting a connector to curved or arcuate surfaces. In particular, the invention is directed to a connector with resilient latches which cooperate with a curved or arcuate cylinder or pipe to properly mount the connector to the curved or arcuate cylinder.
As more electronics are being used in devices or equipment, such as automobiles, more connectors are required to secure the electrical connections. However, as space is often at a premium, finding space to mount connectors in traditional spaces and using traditional techniques has become difficult.
In order to accommodate the need for additional electronics and additional connectors, connectors must be provided in areas not traditionally used to mount the electrical connectors. In one example, due to the electronics needed for seat belts in automobiles, connectors are required to be placed in the door columns of the automobile chassis. In such location, traditional mounting techniques of connectors are not sufficient, as there are no flat or straight surfaces on which the connector can be mounted.
It is, therefore, an object of the present invention to provide a mounting member for a connector which can be mounted and secured to curved or arcuate surfaces.
A mounting member which secures a connector in place on a mating member, thereby preventing unwanted rotation and movement of the connector relative to the member. The mounting member allows the connector to be mounted in areas in which space is at a premium or where nontraditional mounting surfaces are provided. By providing a mounting member which can be mounted to a curved or arcuate cylindrical member or the like, the connector may be mounted in areas which have hereto before been unavailable for connector mounting.
An embodiment is directed to an electrical connector for mounting to mating member with an arcuate cylindrical member. The electrical connector includes a housing and a mounting member extending from the housing. The mounting member has latching members and a mating member receiving section. The mating member receiving section has an arcuate configuration which cooperates with the arcuate cylindrical member to maintain the electrical connector on the arcuate cylindrical member. The latching members have latching arms, with each latching arm having an arcuate configuration which cooperates with the a surface of the mating member to prevent unwanted rotation of the electrical connector relative to the mating member.
The configuration of the latching arms allows the resilient latching arms to resiliently deform during the assembly of the connector to the mating member. The latching arm provides a snap fit when the mounting member of the connector is fully mated with the mating member.
An embodiment is directed to a mounting member for use with a connector. The mounting member includes a latching member, a stabilization member and a mating member receiving section. The mating member receiving section has an arcuate configuration which cooperates with a mating arcuate cylindrical member of a mating connector to maintain the connector on the arcuate cylindrical member. The latching member has a latching arm, the latching arm has an arcuate configuration which cooperates with the a surface of the mating member to prevent unwanted rotation of the connector relative to the mating member. The stabilization member has an arcuate configuration which cooperates with the mating arcuate cylindrical member of the mating connector to prevent lateral movement of the connector relative to the arcuate cylindrical member.
An embodiment is directed to a method of inserting a connector on an arcuate cylindrical mating member, the method comprising: moving the connector into position proximate the mating member; resiliently deflecting a free end of a receiving section, allowing a projection of the receiving section to maintained the receiving section on the mating member; rotating the connector on the mating member, causing a shoulder of a resilient latching arm to cooperate with a wall of the mating member; continuing rotation of the connector until a stop surfaces of the latching arm is positioned proximate to or in engagement with the wall of the mating member, thereby allowing the latching arm to be returned toward its unstressed position, whereby the cooperation of the shoulder and the stop surface with the wall of the mating member prevent further unwanted rotation of the connector relative to the mating member.
The method may include providing a stabilization member, the stabilization member engaging the mating member to prevent lateral movement of the connector relative to the mating member.
The stabilization member ensures that the connector is maintained in proper position, thereby facilitating the positioning of the connector in spaces with tight tolerances. Additionally, as the connector is maintained in position, the movement of the connector is minimized, thereby reducing or eliminating noise associated with the movement of the connector.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The present invention will be described more fully hereinafter with reference to the accompanying drawings, in which illustrative embodiments of the invention are shown. In the drawings, the relative sizes of regions or features may be exaggerated for clarity. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be complete, and will fully convey the scope of the invention to those skilled in the art.
It will be understood that spatially relative terms, such as “top”, “upper”, “lower” and the like, may be used herein for ease of description to describe one element's or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “over” other elements or features would then be oriented “under” the other elements or features. Thus, the exemplary term “over” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The present invention is directed to an electrical connector 10 having a terminal receiving housing 20 and a mounting member 30 which extends from the housing 20. The mounting member 30 secures the connector 10 in place on a mating member 12, thereby preventing unwanted rotation and movement of the connector 10 relative to the member 12. In the embodiment shown in
The terminal receiving housing 20 has terminal receiving passages 22 which extend therethrough. Terminals (not shown) are provided in the terminal receiving passages 22. The terminals are mounted in the terminal receiving passages 22 in a manner know in the art. In the embodiment shown, the terminal receiving housing is an AMPLIMITE® connector made by TE Connectivity which houses AMPLIMITE® terminals made by TE Connectivity. However, the invention is not limited to the type of connector and terminals shown. The mounting member 30 may be used on many types of connectors utilizing many different types of terminals. As the terminal receiving housing 20 and the terminals are known in the prior art, a further explanation of the terminal receiving housing 20 and the terminals will not be provided.
The mounting member 30 extends from the housing 20. In the embodiment illustrated, the mounting member 30 and the housing 20 are separate pieces which are joined together by walls, latches or the like. However, other methods of attaching the mounting member 30 to the housing can be used. The use of a two piece construction illustrated allows the molding member 30 and the housing 20 to be molded in mold dies which do not require slide tooling.
As best shown in
As best shown in
As best shown in
Referring to
Referring to
As best shown in
Referring to
With the connector 10 properly inserted onto the mating member 12, the connector 10 is rotated, as indicated by arrow B of
Stated differently, resilient latching arms 54 are dimensioned so that when the connector 10 is rotated, the shoulder 60 of each resilient latching arm 54 moves past the surface 74 of the wall 65 of the mating member or device 12, allowing the resilient latching arm 54 to move toward an unstressed position, causing the shoulder 60 of the resilient latching arm 54 to engage or be positioned proximate to the surface 74 of the wall 65 to lock the connector 10 in position and prevent further unwanted rotation.
In this position, the stabilization members 64 cooperate with the curved or arcuate cylindrical member of the mating member 12 to prevent lateral or translation movement of the connector 10 in the direction indicated by arrow C of
The mounting member 30 allows the connector 10 to be mounted in areas in which space is at a premium or where nontraditional mounting surfaces are available. By providing a mounting member which can be mounted to a curved or arcuate cylindrical member or the like, the connector may be mounted in areas which have hereto before been unavailable for connector mounting. This is beneficial in many areas, such as, but not limited to in the column of a car.
The stabilization member helps to ensure that the connector is maintained in proper position, thereby facilitating the positioning of the connector in spaces with tight tolerances. Additionally, as the connector is maintained in position, the movement of the connector is minimized, thereby reducing or eliminating noise associated with the movement of the connector.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the spirit and scope of the invention of the invention as defined in the accompanying claims. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other specific forms, structures, arrangements, proportions, sizes, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof. One skilled in the art will appreciate that the invention may be used with many modifications of structure, arrangement, proportions, sizes, materials, and components and otherwise, used in the practice of the invention, which are particularly adapted to specific environments and operative requirements without departing from the principles of the present invention. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being defined by the appended claims, and not limited to the foregoing description or embodiments.
Number | Name | Date | Kind |
---|---|---|---|
4427879 | Becher et al. | Jan 1984 | A |
20130316599 | Goldschmidt et al. | Nov 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20140363997 A1 | Dec 2014 | US |