Consolidated troffer

Information

  • Patent Grant
  • 9291320
  • Patent Number
    9,291,320
  • Date Filed
    Friday, August 30, 2013
    10 years ago
  • Date Issued
    Tuesday, March 22, 2016
    8 years ago
Abstract
A dropped-ceiling lighting system having a reflector positioned in an opening in a grid used to suspend a dropped ceiling, a lighting device including a light source mounted adjacent to the reflector, a structural support securing the lighting device to the grid, and a power source for the lighting device. Also discloses is a dropped-ceiling lighting system comprised of a reflector attached to a plenum barrier positioned in an opening in a grid used to suspend a dropped ceiling, a power source extends from a first edge of the plenum barrier to a second edge of the plenum barrier, and a light source is mounted to the power source.
Description
FIELD OF THE INVENTION

This invention pertains to a lighting system and, in particular, for a light emitting diode (LED) lighting system.


BACKGROUND OF THE INVENTION

Lighting systems have traditionally involved the use of incandescent or fluorescent lighting. Recent advances in the use of light emitting diodes has, however, resulted in greater use of LEDs for not only display and accent lighting but interior lighting as well. With the use of LEDs comes the problem of how to disperse the concentrated light ray of the LED so as to create a more uniform and comfortable lighting environment. In addition to developing ways to disperse the LED lighting, there is also a need to improve lighting systems for use with a dropped ceiling in order to meet regulatory restrictions that deal with dropped-ceiling mounted luminaires.


Some of the more difficult regulatory restrictions to deal with involve the fact that the entire barrier between plenum space and occupied space must be bounded by an approved structural and fire rated material. Additionally, the system must be strong enough to support a load greater than its own weight, and must be anchored against earthquake, physical strikes and vibration. Furthermore, any potentially dangerous electrical components, including LED power sources must be isolated from any interaction with nearby materials or occupants. Finally, the amount of light, and the distribution of light into the occupied space is fairly static and defined by the space to be lit. Therefore, any reduction in the size of the luminous source will result in a brighter and higher glare appearance. The entire ceiling grid area, however, must glow uniformly in order to create the highest visual comfort. Finally, the luminous appearance of the energized lighting system must be visually comfortable. Also, the luminous area of the lighting system must be made as large as possible to reduce its contrast with the surrounding ceiling tiles.


Previous lighting systems for use with a dropped ceiling have involved the use of fluorescent lighting. For example, U.S. Pat. No. 5,777,857 (Degelmann) is directed to an energy efficient lighting system for use with T8 fluorescent tubes. Given the regulatory restrictions and the need to create a comfortable lighting environment using LEDs, a dropped-ceiling lighting system that would satisfy the regulatory requirements and provide for uniform lighting would be an important improvement in the art.


BRIEF SUMMARY OF THE INVENTION

Disclosed is a lighting system that comprises a support element having a reflective surface with a luminaire mounted on the support element. The luminaire comprises an LED light source that provides light in a first pattern and a waveguide redirection element comprising an inner portion and an outer portion having an emission surface disposed adjacent and at an oblique angle with respect to the inner portion. The outer portion comprises an end having a first thickness adapted to receive light and an outer edge opposite the end having a second thickness less than the first thickness. The outer portion of the waveguide redirection element further comprises a third surface opposite the emission surface and disposed between the end and the outer edge, a series of first cascading surfaces spaced from one another and extending from the end to the outer edge, and a series of second surfaces each disposed between an adjacent pair of first cascading surfaces and connecting such pair of first cascading surfaces together, wherein the series of first cascading surfaces and second surfaces define at least one of the emission surface and the third surface. The waveguide redirection element receives the light from the LED light source and redirects the light into a second pattern out of the emission surface onto the reflective surface such that the second pattern illuminates a first area and the LED light source occupies a second area smaller than the first area.


Also disclosed is a lighting system that comprises a support element having a reflective surface and an LED light engine mounted on the support element. The LED light engine comprises an LED light source that provides light in a first pattern and a waveguide element that receives the light from the LED light source and redirects the light into a second pattern onto a portion of the reflective surface laterally spaced from the waveguide element, wherein the waveguide element comprises an inner portion and an outer portion having an emission surface disposed adjacent and at an oblique angle with respect to the inner portion. The outer portion of the waveguide element comprises an end having a first thickness adapted to receive light, an outer edge opposite the end having a second thickness less than the first thickness, and a third surface opposite the emission surface and disposed between the end and the outer edge. The outer portion further comprises a series of first cascading surfaces spaced from one another and extending from the end to the outer edge and a series of second surfaces each disposed between an adjacent pair of first cascading surfaces and connecting such pair of first cascading surfaces together, wherein the series of first cascading surfaces and second surfaces define the emission surface.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is an isometric view showing a top side of an embodiment of a dropped-ceiling lighting system.



FIG. 1B is an isometric view showing a bottom side view of an embodiment of a dropped-ceiling lighting system.



FIG. 1C is a side view of an embodiment of a dropped-ceiling lighting system.



FIG. 1D is a sectional view of a plenum barrier showing an embodiment of a dropped-ceiling lighting system with a lighting device positioned in the barrier and having a light source oriented in a position away from the reflector.



FIG. 2A is an isometric view showing a top side of a second embodiment of a dropped-ceiling lighting system.



FIG. 2B is an isometric view showing a bottom side of a second embodiment of a dropped-ceiling lighting system.



FIG. 2C is a side view of a second embodiment of a dropped-ceiling lighting system.



FIG. 2D is a sectional view of a plenum barrier showing a second embodiment of a dropped-ceiling lighting system with a lighting device positioned in the barrier and having a light source oriented in a position parallel to the reflector.



FIG. 3A is an isometric view showing a top side of another embodiment of a dropped-ceiling lighting system.



FIG. 3B is an isometric view showing a bottom side view of another embodiment of a dropped-ceiling lighting system having a waveguide adjacent to the light source.



FIG. 3C is a side view of another embodiment of a dropped-ceiling lighting system having a waveguide adjacent to the light source.



FIG. 3D is a sectional view of a plenum barrier showing another embodiment of a dropped-ceiling lighting system with a lighting device positioned in the barrier and having a light source adjacent to a waveguide and oriented in a position away from the reflector.



FIG. 3E is an enlarged view of the area identified by line 3E in FIG. 3D.



FIG. 3F is a sectional view showing a light source oriented downward from the reflector and a portion of the waveguide.



FIG. 4A is an isometric view showing a top side of another embodiment of a dropped-ceiling lighting system.



FIG. 4B is an isometric view showing a bottom side view of another embodiment of a dropped-ceiling lighting system having a waveguide adjacent to the light source.



FIG. 4C is a side view of another embodiment of a dropped-ceiling lighting system having a waveguide adjacent to the light source.



FIG. 4D is a sectional view of a plenum barrier showing another embodiment of a dropped-ceiling lighting system with a lighting device positioned in the barrier and having a light source adjacent to a waveguide and oriented in a position away from the reflector.



FIG. 4E is an enlarged view of the area identified by line 4E in FIG. 4D.



FIG. 4F is a sectional view showing a light source oriented downward from the reflector and a portion of the waveguide.



FIG. 5A is an isometric view showing a top side of another embodiment of a dropped-ceiling lighting system.



FIG. 5B is an isometric view showing a bottom side view of another embodiment of a dropped-ceiling lighting system.



FIG. 5C is a side view of another embodiment of a dropped-ceiling lighting system.



FIG. 5D is a sectional view of a plenum barrier showing another embodiment of a dropped-ceiling lighting system with a lighting device positioned in the barrier and having a light source adjacent to a waveguide and oriented in a direction parallel to the reflector



FIG. 6A is an isometric view showing a top side of an embodiment of a dropped-ceiling lighting system.



FIG. 6B is an isometric view showing a bottom side view of an embodiment of a dropped-ceiling lighting system.



FIG. 6C is a side view of an embodiment of a dropped-ceiling lighting system.



FIG. 6D is a sectional view of a plenum barrier showing an embodiment of a dropped-ceiling lighting system with a lighting device positioned in the barrier and having a light source oriented in a position away from the reflector.



FIG. 7A is an isometric view showing a top side of an embodiment of a dropped-ceiling lighting system.



FIG. 7B is an isometric view showing a bottom side view of an embodiment of a dropped-ceiling lighting system.



FIG. 7C is a side view of an embodiment of a dropped-ceiling lighting system.



FIG. 7D is a sectional view of a plenum barrier showing an embodiment of a dropped-ceiling lighting system with a lighting device positioned in the barrier and having a light source oriented in a position toward the reflector.



FIG. 8A is an isometric view showing a top side of an embodiment of a dropped-ceiling lighting system.



FIG. 8B is an isometric view showing a bottom side view of an embodiment of a dropped-ceiling lighting system having a linear power source and a waveguide adjacent to the light source.



FIG. 8C is a sectional view of a plenum barrier showing another embodiment of a dropped-ceiling lighting system with a lighting device positioned along the bottom side of the barrier and having a light source adjacent to a waveguide and oriented in a position away from the reflector.



FIG. 8D is a side view of an embodiment of a dropped-ceiling lighting system.



FIG. 8E is a cross-section of the lighting device shown in FIG. 8B.



FIG. 9A is an isometric view showing a top side of a dropped-ceiling.



FIG. 9B is an isometric showing a bottom side view of an embodiment of a dropped-ceiling lighting system secured to a portion of a ceiling grid between two tiles or plenum barriers.



FIG. 9C is a side view of an embodiment of a dropped-ceiling lighting system secured to a portion of a ceiling grid.



FIG. 9D is a bottom view of an embodiment of a dropped-ceiling lighting system with a lighting device secured to a portion of a ceiling grid.



FIG. 10A is an isometric view showing a top side of a dropped-ceiling.



FIG. 10B is an isometric showing a bottom side view of an embodiment of a dropped-ceiling lighting system secured to a portion of a ceiling grid between two tiles or plenum barriers.



FIG. 11A is an isometric view showing a top view of a dropped-ceiling and an embodiment of a dropped-ceiling lighting system.



FIG. 11B is an isometric showing a bottom view of an embodiment of a dropped-ceiling lighting system



FIG. 11C is a side view of an embodiment of a dropped-ceiling lighting system.



FIG. 11D is a bottom view of an embodiment of a dropped-ceiling lighting.



FIG. 12A is a partial view showing an embodiment of a waveguide and the extrusions on the waveguide.



FIG. 12B is a partial view showing another embodiment of a waveguide and the extrusions on the waveguide.



FIG. 12C is a partial view showing yet another embodiment of a waveguide and the extrusions on the waveguide.



FIG. 12D is a partial view showing another embodiment of a waveguide and the extrusions on the waveguide.



FIG. 13A shows the light distribution resulting from an embodiment utilizing a radial design of a lighting fixture.



FIG. 13B shows the light distribution resulting from a second embodiment utilizing a radial design of a lighting fixture.



FIG. 13C shows the light distribution resulting from still another embodiment utilizing a radial design of a lighting fixture.



FIG. 13D shows the light distribution resulting from an embodiment utilizing a linear design of a light fixture.



FIG. 13E shows the light distribution resulting from a second embodiment utilizing another linear design of a light fixture.





DETAILED DESCRIPTION OF THE INVENTION


FIGS. 1-13E disclosed is a lighting system 10 comprised of a support element 21 having a reflective surface 12 and a luminaire 18 mounted on the support element 21. The luminaire 18 includes a light emitting diode (“LED”) light source 24 that provides light in a first pattern, and a redirection element 26 that receives the light from the LED light source 24 and redirects the light into a second pattern onto the reflective surface 12, wherein the reflective surface 12 occupies a first area, the LED light source 24 occupies a second area, and the first area is greater than the second area, as shown in FIGS. 13A-13E.


In an embodiment, when seen from below, the first area occupied by the reflective surface 12 is about 46 times greater than the second area occupied by the LED light source 24. In one particular version, the LED light source 24 occupies an area approximately 4 inches in diameter.


In still another embodiment, the LED light source 24 is positioned to direct incident light initially downward with respect to the reflective surface 12. In another embodiment, the LED light source 24 directs incident light initially in an upward direction relative to the reflective surface 12, while in still another embodiment, the LED light source 24 directs incident light initially at an angle of about 90° with respect to the reflective surface 12. In one embodiment, the light source 24 may emit light in a circular pattern, while in a second embodiment, the light source 24 emits light in a linear pattern.


In an embodiment, the light is emitted from the light source 24 and is reflected from the reflector 12 in a luminance per unit maximum to minimum ratio of about 1:1 to about 3:1 over the surface of the reflector 12. In another embodiment, the light is reflected from the reflector 12 in a ratio of about 1.5:1 to about 2.5:1. In a more particular embodiment, the light is reflected from the reflector in a ratio of about 2.0 to about 1.0.


In one embodiment, the reflective surface 12 is diffuse. It may also be on a ceiling. The reflective surface 12 may be smooth or textured depending upon how one wants to control how light redirects off the reflective surface 12 and into space.


Also disclosed, in FIGS. 1A-5D and FIGS. 8A-8D is a lighting system 10, comprising a reflective surface 12, an LED light engine 18 comprising at least one LED 24 and a waveguide 30 that receives the light generated from said at least one LED 24 and directs the light from an emission surface 31 towards the reflective surface 12, as shown in, for example, FIGS. 1C, 2C, 12A and 12D. In an embodiment, the LED light engine 18 is adjacent to the reflective surface 12, while the emission surface 31 is spaced from said reflective surface 12 and adapted to direct light uniformly across at least a portion of the reflective surface 12 laterally spaced from said LED light engine 18 at an incident angle of no greater than about 10° from the emission surface 31 to the end of the reflective surface 12.


In another embodiment, the incident angle is less than about 8°, while is still another embodiment, the incident angle is between about 3° and about 8°. In a more particular embodiment, the incident angle is about 5°. Similar incident angles may occur in an embodiment using a reflective optical assembly as opposed to a waveguide 30 as a redirection element 26, as discussed below.


The reflective surface 12 may be diffuse. It may also be designed to shine light down into an area to be illuminated. The reflective surface 12 may be smooth or textured depending upon how one wants to control how light redirects off the reflective surface 12 and into space. While the reflective surface 12 is designed to shine light into an area, the distribution of the light may be changed by changing the specularity versus diffusion of the reflective surface 12, and by adding textured surfaces onto the reflective surface 12. In addition to controlling how light illuminates a space, such features also affect the appearance of the reflective surface 12.


The reflective surface 12 may be on a ceiling or on a support member 20 for the LED light engine 18 and may be rigid enough to support its own weight below a ceiling tile, but may also use the LED light engine 18 for support. The reflective surface 12 may also be a ceiling barrier that supports its own weight and may use the ceiling supports for additional strength.


In an embodiment, the waveguide 30 generally defines a plane, and the plane of the waveguide 30 is generally parallel to the plane of the reflective surface 12. In still another embodiment, the LED light engine 18 is supported by a support member 20 and the reflective surface 12 is a surface of the supporting member of the reflective surface. In yet another embodiment, the reflective surface 12 is positioned in an opening in a grid used to suspend a dropped ceiling.


The waveguide 30 may be adapted to direct all of the light generated from the LED light source 24 onto the reflective surface 12. Likewise, the waveguide 30 may also be directed to direct most of the light generated from the LED light source 24 onto the reflective surface 12. In one embodiment, the emission surface 31 angles away from the reflective surface 12, as shown for example in FIGS. 1C and 2C.


In an embodiment, the LED light engine 18 comprises a reflector 26. In still another embodiment, the waveguide 30 comprises a reflector 26 opposite the reflective surface 12. In a particular version of such embodiment, the reflective surface 12 has a first area and the LED light source 24 has a second area that is smaller than the first area. In a more particular embodiment, the first area is 12 times greater than the second area. The LED light engine 18 may be located adjacent to yet spaced apart from said reflective surface 12. In still another embodiment, the support element 21 may be adapted to fit in a modular ceiling system.


Also disclosed is a lighting system kit 10 comprising a support element 21 having a reflective surface 12 and an LED light engine 18 mounted on the support element 21. The LED light engine 18 includes an LED light source 24 that provides light in a first pattern, and a waveguide element 30 that receives the light from the LED light source 24 and redirects the light into a second pattern onto a portion of the reflective surface 12 laterally space from the waveguide element 30.


In an embodiment, the reflective surface 12 is diffuse. In another embodiment, the light shines downward from the reflective surface 12 into an area to be illuminated. In still another embodiment, the reflective surface 12 is on a ceiling. The reflective surface 12 may also be on a support member for the LED light engine 18.


In another embodiment, the waveguide 30 generally defines a plane and the plane of the waveguide 30 is generally parallel to the plane of the reflective surface 12. The LED light engine 18 may be supported by a support member, and the reflective surface 12 is a surface of the supporting member of the reflective surface 12. The reflective surface 12 may also be positioned in an opening in a grid used to suspend a dropped ceiling.


In the kit 10, the waveguide 30 may be adapted to direct all of the light generated from the LED light source 24 onto the reflective surface 12. In another embodiment, the waveguide 30 is directed to direct most of the light generated from the LED light source 24 onto the reflective surface 12. In still another embodiment, the emission surface 31 angles away from the reflective surface 12.


In another embodiment, the LED light engine 18 comprises a reflector 26. In still another embodiment, the waveguide 30 comprises a reflector 26 opposite the reflective surface 12. In a particular version of such embodiment, the reflective surface 12 has a first area and the LED light source 24 has a second area that is smaller than the first area. In a more particular embodiment, the first area is 12 times greater than the second area. The LED light engine 18 may be located adjacent to yet spaced apart from said reflective surface 12. In yet another embodiment, the reflective surface 12 is positioned in an opening in a grid used to suspend a dropped ceiling.



FIGS. 1-11D show a dropped-ceiling lighting system 10 that is comprised of a reflector 12 positioned in an opening in a grid 16 used to suspend a dropped ceiling 14. A lighting device 18 including a light source 24 is mounted adjacent to the reflector 12. The light source 24 provides light in a first pattern, and a redirection element 26 receives light from the light source 24 and redirects the light into a second pattern onto the reflector 12. A structural support 20 secures the lighting device 18 to the grid 16 independent of the reflector 12. A power source 22 supplies power for the lighting device 18.


In an embodiment, as shown in FIGS. 6D, 7D, and 8D, the redirection element 26 may be an optical reflector that is positioned adjacent to the light source 24. In another embodiment, the power source 22 is remotely located within the dropped ceiling 14.


In still another embodiment, as shown in FIGS. 1-11D, the reflector 12 is attached to a plenum barrier 28 such as a ceiling tile that spans the opening in the grid. In another version of this embodiment, the plenum barrier 28 defines an opening and the lighting device 18 is mounted in the opening, as shown in FIGS. 1-7. In a more particular version of the embodiment, the lighting device 18 is mounted flush with the plenum barrier 28.


In an embodiment, the light source 24 is a light emitting diode (“LED”). In one version of the embodiment, the light source 24 is oriented away from the reflector 12, as shown, for example, in FIGS. 1D, 4D, and 6D. In a second version of the embodiment, the light source 24 is oriented toward the reflector 12, as in FIGS. 7D and 8D, while in a third version of the embodiment, the light source 24 is oriented parallel to the reflector 12 as, for example, in FIG. 5D.


Depending on the orientation of the light source 24, a waveguide 30 may be positioned adjacent to the light source 24, as is shown in FIGS. 1C and D, 2C and D, 3C and D, 4C and D, and 5C and D. The waveguide 30 may be comprised of a thin body of acrylic having multiple extraction features 32, as shown in FIGS. 12A-C. Light from the light source 24 bounces through the waveguide 30 until it strikes one of the multiple extraction features 32 and is redirected.


In still another embodiment, the reflector 12 may be a substrate. In yet another embodiment, the reflector 12 is a coating painted on the plenum barrier 28.


Also disclosed is a dropped-ceiling lighting system 10 comprised of a reflector 12 attached to a plenum barrier 28 such as a ceiling tile positioned in an opening in a grid 16 used to suspend a dropped ceiling 14. A power source 22 extends from a first edge 34 of the plenum barrier 28 to a second edge 36 of the plenum barrier 28, as shown in FIGS. 8-10, and a light source 24 is mounted to the power source 22.


In an embodiment, the power source 22 is mounted so as to extend along a portion of the ceiling grid 16 between adjacent ceiling tiles, as shown in FIGS. 9A-D. In another embodiment, as shown in FIG. 8E, a linear array having a plurality of light sources 24 extends along the power source 22 and light generated by each of the plurality of light sources 24 is directed into a solid volume of acrylic.


In another embodiment, the reflector 12 is a substrate. The reflector 12 may also be a coating that is painted on the plenum barrier 28. In all of the embodiments discussed above, the light source 24 may be an LED.


When in operation, power is transmitted to the lighting device 18 from the power source 22. In one embodiment, the lighting device 18 (e.g., LEDs) emits light either downward from the ceiling, upward toward the ceiling, or outward from the center of the lighting system in a direction parallel to the ceiling tile. The emitted light radiates through an optical reflector 26 and lens 38 before entering a space or room to be illuminated where it then reflects off of the reflector 12 so as to light the space.


The appearance of the light will be guided by the shape of the light source but can be controlled by changing the geometry of the optics. The design results in a constant output of light being directed to different orientations on the troffer. This allows one to avoid high brightness areas in favor of low brightness so as to reduce glare.


In an embodiment, the light emitted from the LEDs is directed into a waveguide 30 made of a thin body of an acrylic-like substance. As shown in FIG. 12A, the light repeatedly bounces through the shaped acrylic body by total internal reflection until it strikes an extraction feature and is redirected into the body or escapes into the space or room to be illuminated where it then reflects off of the reflector 12 at a relatively high angle (e.g., 70°) with respect to a vertical axis of the lighting fixture, thereby lighting the space. In one embodiment, as shown in FIG. 12A, facets may be placed on the exiting surface, where they use refraction to extract the light. In another embodiment, as shown in FIG. 12D, facets may be placed opposite the exiting surface, where they use total internal reflection, then refraction, to extract light. The light bounces through the shaped acrylic body until it strikes an extraction feature and is redirected into the body or escapes. The full array of facets creates a controllable distribution of light out of the guide. The waveguide 30 may include a diffuser, and/or a reflector mounted below an exposed portion of the waveguide 30. This is to control the appearance of the guide 30 and to provide for additional control of the extracted light.


In yet another embodiment, a long, thin lighting device 18 runs from a first edge 34 to a second edge 36 of the reflector 12 where it fastens directly to the ceiling grid, as shown in FIGS. 8A-E. A linear array of light sources 24 runs along the lighting device 18 and directs its output into waveguide 30 made of a solid volume of acrylic-like material. Light emitted from the light sources 24 travels through the acrylic until striking an extraction feature and redirecting out of the optic where it is reflected off of the reflector 12, thereby lighting the space or room as desired. In a particular version of this embodiment, the electrical driver is mounted remotely above the ceiling plane and supplies power to the engine. The lighting device 18 can be mounted so that it runs across the ceiling tile, or so that it runs along the ceiling grid between tiles, as shown in FIGS. 9A-D. The waveguide 30 may include a diffuser, and/or a reflector mounted below an exposed portion of the waveguide 30. This is to control the appearance of the guide 30 and to provide for additional control of the extracted light.


Depending on whether a radial or linear light fixture is utilized, the light may be distributed in a manner shown in FIGS. 13A-E. FIGS. 13A-C shows the distribution of light across a reflector when using a radial design while FIGS. 13D-E shows the light distribution resulting from a linear design.


All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.


The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.


Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. It should be understood that the illustrated embodiments are exemplary only, and should not be taken as limiting the scope of the invention.

Claims
  • 1. A lighting system, comprising: a support element having a reflective surface; anda luminaire mounted on the support element, said luminaire comprisingan LED light source that provides light in a first pattern, anda waveguide redirection element comprising an inner portion and an outer portion having an emission surface disposed adjacent and at an oblique angle with respect to the inner portion, the outer portion comprisingan end having a first thickness adapted to receive light and an outer edge opposite the end having a second thickness less than the first thickness;a third surface opposite the emission surface and disposed between the end and the outer edge;a series of first cascading surfaces spaced from one another and extending from the end to the outer edge; anda series of second surfaces each disposed between an adjacent pair of first cascading surfaces and connecting such pair of first cascading surfaces together, wherein the series of first cascading surfaces and second surfaces define at least one of the emission surface and the third surface, wherein the waveguide redirection element receives the light from the LED light source and redirects the light into a second pattern out of the emission surface onto the reflective surface such that the second pattern illuminates a first area and the LED light source occupies a second area smaller than the first area.
  • 2. The lighting system of claim 1, wherein the first area illuminated by the second pattern is 12 times greater than the second area occupied by the LED light source.
  • 3. The lighting system of claim 1, wherein the LED light source occupies an area approximately 4 inches in diameter.
  • 4. The lighting system of claim 1, wherein the LED light source provides light in a direction downward from the reflective surface.
  • 5. The lighting system of claim 1, wherein the LED light source provides light in an upward direction toward the reflective surface.
  • 6. The lighting system of claim 1, wherein the LED light source provides light at an angle less than 90° with respect to the reflective surface.
  • 7. The lighting system of claim 1, wherein the light source emits light in a circular pattern.
  • 8. The lighting system of claim 1, wherein the light source emits light in a linear pattern.
  • 9. The lighting system of claim 1, wherein the light is emitted from the light source and reflected from the reflective surface in a luminance per unit maximum to minimum ratio of about 1:1 to about 3:1 over the reflective surface.
  • 10. The lighting system of claim 1, wherein the light is emitted from the light source and reflected from the reflective surface in a luminance per unit maximum to minimum ratio of about 1.5:1 to about 2.5:1 over the reflective surface.
  • 11. The lighting system of claim 1, wherein the light is emitted from the light source and reflected from the reflective surface in a luminance per unit maximum to minimum ratio of about 2.0:1.0 over the reflective surface.
  • 12. The lighting system of claim 1, wherein the reflective surface is diffuse.
  • 13. The lighting system of claim 1, wherein the reflective surface is on a ceiling.
  • 14. The lighting system of claim 1, wherein the support element is adapted to fit in a modular ceiling system.
  • 15. A lighting system, comprising; a support element having a reflective surface; andan LED light engine mounted on the support element comprisingan LED light source that provides light in a first pattern, anda waveguide element that receives the light from the LED light source and redirects the light into a second pattern onto a portion of the reflective surface laterally spaced from the waveguide element, wherein the waveguide element comprises an inner portion and an outer portion having an emission surface disposed adjacent and at an oblique angle with respect to the inner portion, the outer portion comprises:an end having a first thickness adapted to receive light and an outer edge opposite the end having a second thickness less than the first thickness,a third surface opposite the emission surface and disposed between the end and the outer edge;a series of first cascading surfaces spaced from one another and extending from the end to the outer edge;a series of second surfaces each disposed between an adjacent pair of first cascading surfaces and connecting such pair of first cascading surfaces together, wherein the series of first cascading surfaces and second surfaces define the emission surface.
  • 16. The lighting system of claim 15, wherein the reflective surface is diffuse.
  • 17. The lighting system of claim 15, wherein the light shines downward from the reflective surface into an area to be illuminated.
  • 18. The lighting system of claim 15, wherein the reflective surface is on a ceiling.
  • 19. The lighting system of claim 15, wherein the reflective surface is on a support member for the LED light engine.
  • 20. The lighting system of claim 15, wherein the waveguide generally defines a plane and the plane of the waveguide is generally parallel to the plane of the reflective surface.
  • 21. The lighting system of claim 15, wherein: the LED light engine is supported by a support member; andthe reflective surface is a surface of the supporting member of the reflective surface.
  • 22. The lighting system of claim 15, wherein the reflective surface is positioned in an opening in a grid used to suspend a dropped ceiling.
  • 23. The lighting system of claim 15, wherein the waveguide is adapted to direct all of the light generated from said one LED light source onto the reflective surface.
  • 24. The lighting system of claim 15, wherein the waveguide is directed to direct most of the light generated from said one LED light source onto the reflective surface.
  • 25. The lighting system of claim 15, wherein the emission surface angles away from the reflective surface.
  • 26. The lighting system of claim 15, wherein the LED light engine comprises a reflector.
  • 27. The lighting system of claim 15, wherein the waveguide comprises a reflector opposite the reflective surface.
  • 28. The lighting system of claim 15, wherein: the second pattern illuminates a first area;said one LED light source occupies a second area; andthe first area is greater than the second area.
  • 29. The lighting system of claim 28, wherein the first area is 12 times greater than the second area.
  • 30. The lighting system of claim 15, wherein the LED light engine is adjacent to yet spaced apart from said reflective surface.
  • 31. The lighting system of claim 15, wherein the support element is adapted to fit in a modular ceiling system.
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This patent application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/758,660, filed, Jan. 30, 2013, and is a continuation-in-part of U.S. patent application Ser. No. 13/839,949, filed, Mar. 15, 2013, U.S. patent application Ser. No. 13/840,563, filed, Mar. 15, 2013, U.S. patent application Ser. No. 13/841,074, filed, Mar. 15, 2013, U.S. patent application Ser. No. 13/842,521, filed, Mar. 15, 2013, U.S. patent application Ser. No. 13/841,651, filed, Mar. 15, 2013, and U.S. patent application Ser. No. 13/842,557, filed Mar. 15, 2013 and incorporates the disclosures of such applications by reference herein.

US Referenced Citations (621)
Number Name Date Kind
615108 De Segundo Nov 1898 A
766515 Northrup Aug 1904 A
D67806 Hoyt et al. Jul 1925 S
2043951 Eksergian Jun 1936 A
2992587 Hicks, Jr. et al. Apr 1958 A
3372740 Kastovich et al. Mar 1968 A
3532871 Shipman Oct 1970 A
D219546 Kaiser et al. Dec 1970 S
4146297 Alferness et al. Mar 1979 A
4441787 Lichtenberger Apr 1984 A
4714983 Lang Dec 1987 A
D298861 Ewing et al. Dec 1988 S
4954930 Maegawa et al. Sep 1990 A
4977486 Gotoh Dec 1990 A
5005108 Pristash Apr 1991 A
5009483 Rockwell, III Apr 1991 A
5026161 Werner Jun 1991 A
5040098 Tanaka et al. Aug 1991 A
5047761 Sell Sep 1991 A
5061404 Wu et al. Oct 1991 A
5097258 Iwaki Mar 1992 A
5113177 Cohen May 1992 A
5113472 Gualtieri et al. May 1992 A
5171080 Bathurst Dec 1992 A
5175787 Gualtieri et al. Dec 1992 A
5186865 Wu et al. Feb 1993 A
5245689 Gualtieri Sep 1993 A
5253317 Allen et al. Oct 1993 A
5295019 Rapoport Mar 1994 A
5309544 Saxe May 1994 A
5359687 McFarland Oct 1994 A
5359691 Tai et al. Oct 1994 A
5396350 Beeson et al. Mar 1995 A
5398179 Pacheco Mar 1995 A
5400224 DuNah et al. Mar 1995 A
5428468 Zimmerman et al. Jun 1995 A
5461547 Ciupke et al. Oct 1995 A
5462700 Beeson et al. Oct 1995 A
5481385 Zimmerman et al. Jan 1996 A
5506924 Inoue Apr 1996 A
5521725 Beeson et al. May 1996 A
5521726 Zimmerman et al. May 1996 A
5528720 Winston et al. Jun 1996 A
5537304 Klaus Jul 1996 A
5541039 McFarland et al. Jul 1996 A
5548670 Koike Aug 1996 A
5553092 Bruce et al. Sep 1996 A
5555109 Zimmerman et al. Sep 1996 A
5555160 Tawara et al. Sep 1996 A
5555329 Kuper et al. Sep 1996 A
5572411 Watai et al. Nov 1996 A
5577492 Parkyn, Jr. et al. Nov 1996 A
5584556 Yokoyama et al. Dec 1996 A
5598280 Nishio et al. Jan 1997 A
5598281 Zimmerman et al. Jan 1997 A
5613751 Parker et al. Mar 1997 A
5613770 Chin, Jr. et al. Mar 1997 A
5657408 Ferm et al. Aug 1997 A
5658066 Hirsch Aug 1997 A
5659410 Koike et al. Aug 1997 A
5676453 Parkyn, Jr. et al. Oct 1997 A
5676457 Simon Oct 1997 A
5677702 Inoue et al. Oct 1997 A
5685634 Mulligan Nov 1997 A
5696865 Beeson et al. Dec 1997 A
5702176 Engle Dec 1997 A
5718497 Yokoyama et al. Feb 1998 A
5727107 Umemoto et al. Mar 1998 A
5735590 Kashima et al. Apr 1998 A
5739931 Zimmerman et al. Apr 1998 A
5748828 Steiner et al. May 1998 A
5761355 Kuper et al. Jun 1998 A
5769522 Kaneko et al. Jun 1998 A
5771039 Ditzik Jun 1998 A
5777857 Degelmann Jul 1998 A
5806955 Parkyn, Jr. et al. Sep 1998 A
5812714 Hulse Sep 1998 A
5818555 Yokoyama et al. Oct 1998 A
5839823 Hou et al. Nov 1998 A
5850498 Shacklette et al. Dec 1998 A
5854872 Tai Dec 1998 A
5863113 Oe et al. Jan 1999 A
5872883 Ohba et al. Feb 1999 A
5897201 Simon Apr 1999 A
5914759 Higuchi et al. Jun 1999 A
5914760 Daiku Jun 1999 A
5949933 Steiner et al. Sep 1999 A
5961198 Hira et al. Oct 1999 A
5967637 Ishikawa et al. Oct 1999 A
5974214 Shacklette et al. Oct 1999 A
5997148 Ohkawa Dec 1999 A
5999281 Abbott et al. Dec 1999 A
5999685 Goto et al. Dec 1999 A
6002829 Winston et al. Dec 1999 A
6007209 Pelka Dec 1999 A
6043951 Lee Mar 2000 A
6044196 Winston et al. Mar 2000 A
6079838 Parker et al. Jun 2000 A
6097549 Jenkins et al. Aug 2000 A
6134092 Pelka et al. Oct 2000 A
6139176 Hulse et al. Oct 2000 A
6151089 Yang et al. Nov 2000 A
6155692 Ohkawa Dec 2000 A
6155693 Spiegel et al. Dec 2000 A
6161939 Bansbach Dec 2000 A
6164790 Lee Dec 2000 A
6164791 Gwo-Juh et al. Dec 2000 A
6167182 Shinohara et al. Dec 2000 A
6185357 Zou et al. Feb 2001 B1
6206535 Hattori et al. Mar 2001 B1
6231200 Shinohara et al. May 2001 B1
6232592 Sugiyama May 2001 B1
6241363 Lee Jun 2001 B1
6257737 Marshall et al. Jul 2001 B1
6259854 Shinji et al. Jul 2001 B1
6304693 Buelow, II et al. Oct 2001 B1
6310704 Dogan et al. Oct 2001 B1
6379016 Boyd et al. Apr 2002 B1
6379017 Nakabayashi et al. Apr 2002 B2
6400086 Huter Jun 2002 B1
6421103 Yamaguchi Jul 2002 B2
6443594 Marshall et al. Sep 2002 B1
6461007 Akaoka Oct 2002 B1
6473554 Pelka et al. Oct 2002 B1
6480307 Yang et al. Nov 2002 B1
6485157 Ohkawa Nov 2002 B2
6508563 Parker et al. Jan 2003 B2
6523986 Hoffmann Feb 2003 B1
6536921 Simon Mar 2003 B1
6541720 Gerald et al. Apr 2003 B2
6554451 Keuper Apr 2003 B1
6568819 Yamazaki et al. May 2003 B1
6582103 Popovich et al. Jun 2003 B1
6585356 Ohkawa Jul 2003 B1
6598998 West et al. Jul 2003 B2
6612723 Futhey et al. Sep 2003 B2
6616290 Ohkawa Sep 2003 B2
6629764 Uehara Oct 2003 B1
6633722 Kohara et al. Oct 2003 B1
6634772 Yaphe et al. Oct 2003 B2
6637924 Pelka et al. Oct 2003 B2
6647199 Pelka et al. Nov 2003 B1
6652109 Nakamura Nov 2003 B2
6659628 Gomez Del Campo Dec 2003 B2
6671452 Winston et al. Dec 2003 B2
6676284 Wynne Willson Jan 2004 B1
6678021 Ohkawa Jan 2004 B2
6679621 West et al. Jan 2004 B2
6712481 Parker et al. Mar 2004 B2
6724529 Sinkoff Apr 2004 B2
6724543 Chinniah et al. Apr 2004 B1
6727965 Kubota Apr 2004 B1
6752505 Parker et al. Jun 2004 B2
6755546 Ohkawa Jun 2004 B2
6755556 Gasquet et al. Jun 2004 B2
6758582 Hsiao et al. Jul 2004 B1
6775460 Steiner et al. Aug 2004 B2
6796676 Severtson et al. Sep 2004 B2
6802626 Belfer et al. Oct 2004 B2
6802628 Kuo Oct 2004 B2
6840656 Kuo Jan 2005 B2
6845212 Gardiner et al. Jan 2005 B2
6854857 Hara et al. Feb 2005 B2
6876408 Yamaguchi Apr 2005 B2
6894740 Ohkawa May 2005 B2
6896381 Benitez et al. May 2005 B2
6924943 Minano et al. Aug 2005 B2
6974241 Hara et al. Dec 2005 B2
6992335 Ohkawa Jan 2006 B2
7025482 Yamashita et al. Apr 2006 B2
7046318 Yu et al. May 2006 B2
7046905 Gardiner et al. May 2006 B1
7063430 Greiner Jun 2006 B2
7072096 Holman et al. Jul 2006 B2
7083313 Smith Aug 2006 B2
7085460 Leu et al. Aug 2006 B2
7090370 Clark et al. Aug 2006 B2
7090389 Parker et al. Aug 2006 B2
7097341 Tsai Aug 2006 B2
7106528 Ohmori et al. Sep 2006 B2
7111969 Bottesch et al. Sep 2006 B2
7118253 Simon Oct 2006 B1
7131764 Hsu et al. Nov 2006 B2
7152985 Benitez et al. Dec 2006 B2
7160010 Chinniah et al. Jan 2007 B1
7160015 Parker Jan 2007 B2
7168841 Hsieh et al. Jan 2007 B2
7175330 Chen Feb 2007 B1
7178941 Roberge et al. Feb 2007 B2
7178946 Saccomanno et al. Feb 2007 B2
7182480 Kan Feb 2007 B2
7192174 Myoung Mar 2007 B2
7195374 Saccomanno et al. Mar 2007 B2
7204634 Chen et al. Apr 2007 B2
7209628 Winston et al. Apr 2007 B2
7222995 Bayat et al. May 2007 B1
7223004 Chen et al. May 2007 B2
7246931 Hsieh et al. Jul 2007 B2
7258467 Saccomanno et al. Aug 2007 B2
7265800 Jagt et al. Sep 2007 B2
7273299 Parkyn et al. Sep 2007 B2
7290906 Suzuki et al. Nov 2007 B2
7292767 Cheng Nov 2007 B2
7364342 Parker et al. Apr 2008 B2
7369918 Cosgrove May 2008 B2
7393124 Williams Jul 2008 B1
7399108 Ayabe et al. Jul 2008 B2
7400809 Erben et al. Jul 2008 B2
7404660 Parker Jul 2008 B2
7422357 Chang Sep 2008 B1
7455416 Chen Nov 2008 B2
7458714 Chang Dec 2008 B2
7465074 Blumel Dec 2008 B2
7486854 Van Ostrand et al. Feb 2009 B2
7488093 Huang et al. Feb 2009 B1
7513672 Parker Apr 2009 B2
7520650 Smith Apr 2009 B2
7534013 Simon May 2009 B1
7559672 Parkyn et al. Jul 2009 B1
7566148 Noh et al. Jul 2009 B2
7566159 Oon et al. Jul 2009 B2
7581854 Ford Sep 2009 B2
7614764 Williams et al. Nov 2009 B2
7626655 Yamazaki et al. Dec 2009 B2
7628508 Kita et al. Dec 2009 B2
7635193 Chang Dec 2009 B2
7635205 Yu et al. Dec 2009 B2
7639918 Sayers et al. Dec 2009 B2
7641363 Chang et al. Jan 2010 B1
7648256 Shiratsuchi et al. Jan 2010 B2
7654719 Chang Feb 2010 B2
7663804 Chang Feb 2010 B2
7674018 Holder et al. Mar 2010 B2
7696531 Miyao Apr 2010 B2
7703950 Ewert et al. Apr 2010 B2
7703967 Parker Apr 2010 B2
7710663 Barnes et al. May 2010 B2
7722224 Coleman et al. May 2010 B1
7722241 Chang May 2010 B2
7724321 Hsieh et al. May 2010 B2
7730967 Ballantyne et al. Jun 2010 B2
7736019 Shimada et al. Jun 2010 B2
7736045 Yamashita et al. Jun 2010 B2
7750982 Nelson et al. Jul 2010 B2
7753551 Yaphe et al. Jul 2010 B2
7758227 Coleman Jul 2010 B1
7760290 Kang et al. Jul 2010 B2
7762705 Sakai et al. Jul 2010 B2
7766515 Condon et al. Aug 2010 B2
7771087 Wilcox et al. Aug 2010 B2
7775697 Hirano et al. Aug 2010 B2
7776236 Shih et al. Aug 2010 B2
7780306 Hoshi Aug 2010 B2
7784954 Coleman Aug 2010 B1
7798695 Parker Sep 2010 B2
7806581 Lee Oct 2010 B2
7810949 Chang Oct 2010 B2
7810960 Soderman et al. Oct 2010 B1
7810968 Walker et al. Oct 2010 B1
7813131 Liang Oct 2010 B2
7821982 Chen et al. Oct 2010 B2
7826698 Meir et al. Nov 2010 B1
7845826 Aylward et al. Dec 2010 B2
7850357 Kim et al. Dec 2010 B2
7857487 Wu et al. Dec 2010 B2
7857619 Liu Dec 2010 B2
7866871 Couzin et al. Jan 2011 B2
7905646 Adachi et al. Mar 2011 B2
7907804 Meir et al. Mar 2011 B2
7909496 Matheson et al. Mar 2011 B2
7914192 Coleman Mar 2011 B2
7914193 Peifer et al. Mar 2011 B2
7914196 Parker et al. Mar 2011 B2
7929816 Meir et al. Apr 2011 B2
7934851 Boissevain et al. May 2011 B1
7967477 Bloemen et al. Jun 2011 B2
7969531 Li et al. Jun 2011 B1
7970246 Travis et al. Jun 2011 B2
7976204 Li et al. Jul 2011 B2
7991257 Coleman Aug 2011 B1
7997784 Tsai Aug 2011 B2
8002450 Van Ostrand et al. Aug 2011 B2
8033674 Coleman et al. Oct 2011 B1
8033706 Kelly et al. Oct 2011 B1
8038308 Greiner Oct 2011 B2
8047696 Ijzerman et al. Nov 2011 B2
8052316 Lee Nov 2011 B2
8054409 Hsieh et al. Nov 2011 B2
8057056 Zhu et al. Nov 2011 B2
8061877 Chang Nov 2011 B2
8064743 Meir et al. Nov 2011 B2
8067884 Li Nov 2011 B2
8070345 Zhang et al. Dec 2011 B2
8075157 Zhang et al. Dec 2011 B2
8087807 Liu et al. Jan 2012 B2
8092068 Parker et al. Jan 2012 B2
8096671 Cronk et al. Jan 2012 B1
8096681 Fang et al. Jan 2012 B2
8113704 Bae et al. Feb 2012 B2
8128272 Fine et al. Mar 2012 B2
8129731 Vissenberg et al. Mar 2012 B2
8152339 Morgan Apr 2012 B2
8152352 Richardson Apr 2012 B2
8162524 Van Ostrand et al. Apr 2012 B2
8172447 Meir et al. May 2012 B2
8177408 Coleman May 2012 B1
8182128 Meir et al. May 2012 B2
8186847 Hu et al. May 2012 B2
8189973 Travis et al. May 2012 B2
8192051 Dau et al. Jun 2012 B2
8198109 Lerman et al. Jun 2012 B2
8210716 Lerman et al. Jul 2012 B2
8212263 Bierhuizen et al. Jul 2012 B2
8218920 Van Ostrand et al. Jul 2012 B2
8220955 Kwak et al. Jul 2012 B2
8220980 Gingrich, III Jul 2012 B2
8226287 Teng et al. Jul 2012 B2
8231256 Coleman et al. Jul 2012 B1
8231258 Kim et al. Jul 2012 B2
8231259 Keller et al. Jul 2012 B2
8242518 Lerman et al. Aug 2012 B2
8246187 Cheong et al. Aug 2012 B2
8246197 Huang Aug 2012 B2
8249408 Coleman Aug 2012 B2
8258524 Tan et al. Sep 2012 B2
8272756 Patrick Sep 2012 B1
8272770 Richardson Sep 2012 B2
8277106 Van Gorkom et al. Oct 2012 B2
8282261 Pance et al. Oct 2012 B2
8282853 Mori et al. Oct 2012 B2
8283354 Wilson et al. Oct 2012 B2
8283853 Yan et al. Oct 2012 B2
8287152 Gill Oct 2012 B2
8292467 Vissenberg et al. Oct 2012 B2
8297786 Shani et al. Oct 2012 B2
8297801 Coushaine et al. Oct 2012 B2
8297818 Richardson Oct 2012 B2
8301002 Shani Oct 2012 B2
8310158 Coplin et al. Nov 2012 B2
8314566 Steele et al. Nov 2012 B2
8317363 Zheng Nov 2012 B2
8317366 Dalton et al. Nov 2012 B2
8319130 Lee et al. Nov 2012 B2
8328403 Morgan et al. Dec 2012 B1
8328406 Zimmermann Dec 2012 B2
8331746 Bogner et al. Dec 2012 B2
8338199 Lerman et al. Dec 2012 B2
8338839 Lerman et al. Dec 2012 B2
8338840 Lerman et al. Dec 2012 B2
8338841 Lerman et al. Dec 2012 B2
8338842 Lerman et al. Dec 2012 B2
8344397 Lerman et al. Jan 2013 B2
8348446 Nakamura Jan 2013 B2
8348489 Holman et al. Jan 2013 B2
8351744 Travis et al. Jan 2013 B2
8353606 Jeong Jan 2013 B2
8369678 Chakmakjian et al. Feb 2013 B2
8371735 Chen et al. Feb 2013 B2
8376582 Catone et al. Feb 2013 B2
8382354 Kim et al. Feb 2013 B2
8382387 Sandoval Feb 2013 B1
8388173 Sloan et al. Mar 2013 B2
8388190 Li et al. Mar 2013 B2
8398259 Kwak et al. Mar 2013 B2
8398262 Sloan et al. Mar 2013 B2
8408737 Wright et al. Apr 2013 B2
8410726 Dau et al. Apr 2013 B2
8412010 Ghosh et al. Apr 2013 B2
8414154 Dau et al. Apr 2013 B2
8419224 Wan-Chih et al. Apr 2013 B2
8430536 Zhao Apr 2013 B1
8430548 Kelly et al. Apr 2013 B1
8432628 Shiau et al. Apr 2013 B2
8434892 Zwak et al. May 2013 B2
8434893 Boyer et al. May 2013 B2
8434913 Vissenberg et al. May 2013 B2
8434914 Li et al. May 2013 B2
8449128 Ko et al. May 2013 B2
8449142 Martin et al. May 2013 B1
8454218 Wang et al. Jun 2013 B2
8461602 Lerman et al. Jun 2013 B2
8469559 Williams Jun 2013 B2
8475010 Vissenberg et al. Jul 2013 B2
8482186 Wang et al. Jul 2013 B2
8485684 Lou et al. Jul 2013 B2
8506112 Dau et al. Aug 2013 B1
8511868 Haugaard et al. Aug 2013 B2
8534896 Boonekamp Sep 2013 B2
8534901 Panagotacos et al. Sep 2013 B2
8541795 Keller et al. Sep 2013 B2
8547022 Summerford et al. Oct 2013 B2
8567983 Boyer et al. Oct 2013 B2
8567986 Szprengiel et al. Oct 2013 B2
8573823 Dau et al. Nov 2013 B2
8585253 Duong et al. Nov 2013 B2
8591072 Shani et al. Nov 2013 B2
8591090 Lin Nov 2013 B2
8593070 Wang et al. Nov 2013 B2
8598778 Allen et al. Dec 2013 B2
8602586 Dau et al. Dec 2013 B1
8608351 Peifer Dec 2013 B2
8618735 Coplin et al. Dec 2013 B2
8632214 Tickner et al. Jan 2014 B1
8641219 Johnson et al. Feb 2014 B1
8657479 Morgan et al. Feb 2014 B2
8696173 Urtiga et al. Apr 2014 B2
8702281 Okada et al. Apr 2014 B2
8724052 Hsieh et al. May 2014 B2
8740440 Mizuno et al. Jun 2014 B2
8755005 Bierhuizen et al. Jun 2014 B2
8770821 Ijzerman et al. Jul 2014 B2
8780299 Ryu et al. Jul 2014 B2
8833999 Wang et al. Sep 2014 B2
8840276 Shani et al. Sep 2014 B2
8851712 Shani et al. Oct 2014 B2
8864360 Parker et al. Oct 2014 B2
8870431 Lin et al. Oct 2014 B2
8882323 Solomon et al. Nov 2014 B2
8905569 Thomas et al. Dec 2014 B2
8915611 Zhang Dec 2014 B2
8917962 Nichol et al. Dec 2014 B1
8950919 Chen Feb 2015 B2
8960969 Freund Feb 2015 B2
9046225 Meyers et al. Jun 2015 B2
20010019479 Nakabayashi et al. Sep 2001 A1
20020061178 Winston et al. May 2002 A1
20020172039 Inditsky Nov 2002 A1
20030034985 Needham Riddle et al. Feb 2003 A1
20030146688 Kitazawa et al. Aug 2003 A1
20040008952 Kragl Jan 2004 A1
20040080938 Holman et al. Apr 2004 A1
20040135933 Leu et al. Jul 2004 A1
20040213003 Lauderdale et al. Oct 2004 A1
20040240217 Rice Dec 2004 A1
20050111235 Suzuki et al. May 2005 A1
20050201103 Saccomanno et al. Sep 2005 A1
20050210643 Mezei et al. Sep 2005 A1
20050286251 Smith Dec 2005 A1
20060002146 Baba Jan 2006 A1
20060072203 Lee Apr 2006 A1
20060076568 Keller et al. Apr 2006 A1
20060187651 Kim et al. Aug 2006 A1
20060262521 Piepgras et al. Nov 2006 A1
20070081780 Scholl Apr 2007 A1
20070086179 Chen et al. Apr 2007 A1
20070121340 Hoshi May 2007 A1
20070139905 Birman et al. Jun 2007 A1
20070189033 Watanabe et al. Aug 2007 A1
20070223247 Lee et al. Sep 2007 A1
20070245607 Awai et al. Oct 2007 A1
20070253058 Wood Nov 2007 A1
20070274654 Choudhury et al. Nov 2007 A1
20080037284 Rudisill Feb 2008 A1
20080094853 Kim et al. Apr 2008 A1
20080137695 Takahashi et al. Jun 2008 A1
20080186273 Krijn et al. Aug 2008 A1
20080192458 Li Aug 2008 A1
20080199143 Turner Aug 2008 A1
20080266879 Chang Oct 2008 A1
20080266901 Chang Oct 2008 A1
20090027893 Chang Jan 2009 A1
20090091948 Wang et al. Apr 2009 A1
20090103293 Harbers et al. Apr 2009 A1
20090196071 Matheson et al. Aug 2009 A1
20090257242 Wendman Oct 2009 A1
20090297090 Bogner et al. Dec 2009 A1
20090309494 Patterson et al. Dec 2009 A1
20090310367 Kuo Dec 2009 A1
20090316414 Yang et al. Dec 2009 A1
20100008088 Koizumi et al. Jan 2010 A1
20100027257 Boonekamp et al. Feb 2010 A1
20100046219 Pijlman et al. Feb 2010 A1
20100053959 Ijzerman et al. Mar 2010 A1
20100073597 Bierhuizen et al. Mar 2010 A1
20100079843 Derichs et al. Apr 2010 A1
20100079980 Sakai Apr 2010 A1
20100110673 Bergman et al. May 2010 A1
20100118531 Montagne May 2010 A1
20100128483 Reo et al. May 2010 A1
20100133422 Lin et al. Jun 2010 A1
20100157577 Montgomery et al. Jun 2010 A1
20100208460 Ladewig et al. Aug 2010 A1
20100220484 Shani et al. Sep 2010 A1
20100220497 Ngai Sep 2010 A1
20100231143 May et al. Sep 2010 A1
20100238645 Bailey Sep 2010 A1
20100238671 Catone et al. Sep 2010 A1
20100246158 Van Gorkom et al. Sep 2010 A1
20100302218 Bita et al. Dec 2010 A1
20100302616 Bita et al. Dec 2010 A1
20100302783 Shastry et al. Dec 2010 A1
20100302803 Bita et al. Dec 2010 A1
20100315833 Holman et al. Dec 2010 A1
20100320904 Meir Dec 2010 A1
20100328936 Pance et al. Dec 2010 A1
20110007505 Wang et al. Jan 2011 A1
20110013397 Catone et al. Jan 2011 A1
20110013420 Coleman et al. Jan 2011 A1
20110037388 Lou et al. Feb 2011 A1
20110044582 Travis et al. Feb 2011 A1
20110051457 Chen Mar 2011 A1
20110058372 Lerman et al. Mar 2011 A1
20110063830 Narendran et al. Mar 2011 A1
20110063838 Dau et al. Mar 2011 A1
20110063855 Vissenberg Mar 2011 A1
20110069843 Cohen Mar 2011 A1
20110122616 Hochstein May 2011 A1
20110163681 Dau et al. Jul 2011 A1
20110163683 Steele et al. Jul 2011 A1
20110170289 Allen et al. Jul 2011 A1
20110180818 Lerman et al. Jul 2011 A1
20110187273 Summerford et al. Aug 2011 A1
20110193105 Lerman et al. Aug 2011 A1
20110193106 Lerman et al. Aug 2011 A1
20110193114 Lerman et al. Aug 2011 A1
20110195532 Lerman et al. Aug 2011 A1
20110198631 Lerman et al. Aug 2011 A1
20110198632 Lerman et al. Aug 2011 A1
20110199769 Bretschneider et al. Aug 2011 A1
20110204390 Lerman et al. Aug 2011 A1
20110204391 Lerman et al. Aug 2011 A1
20110210861 Winton et al. Sep 2011 A1
20110228527 Van Gorkom et al. Sep 2011 A1
20110233568 An et al. Sep 2011 A1
20110248287 Yuan et al. Oct 2011 A1
20110249467 Boonekamp Oct 2011 A1
20110261570 Okada et al. Oct 2011 A1
20110273079 Pickard et al. Nov 2011 A1
20110273882 Pickard Nov 2011 A1
20110280043 Van Ostrand et al. Nov 2011 A1
20110299807 Kim et al. Dec 2011 A1
20110305018 Angelini et al. Dec 2011 A1
20110305027 Ham Dec 2011 A1
20110317436 Kuan Dec 2011 A1
20120008338 Ono et al. Jan 2012 A1
20120014128 Lin Jan 2012 A1
20120026728 Lou et al. Feb 2012 A1
20120026828 Fjellstad et al. Feb 2012 A1
20120033445 Desmet et al. Feb 2012 A1
20120039073 Tong Feb 2012 A1
20120051041 Edmond et al. Mar 2012 A1
20120068615 Duong et al. Mar 2012 A1
20120069575 Koh et al. Mar 2012 A1
20120069579 Koh et al. Mar 2012 A1
20120069595 Catalano Mar 2012 A1
20120113676 Van Dijk et al. May 2012 A1
20120114284 Ender May 2012 A1
20120120651 Peck May 2012 A1
20120140461 Pickard Jun 2012 A1
20120147624 Li et al. Jun 2012 A1
20120152490 Wen et al. Jun 2012 A1
20120170266 Germain et al. Jul 2012 A1
20120170316 Lee et al. Jul 2012 A1
20120170318 Tsai et al. Jul 2012 A1
20120182767 Petcavich et al. Jul 2012 A1
20120188774 Okada Jul 2012 A1
20120212957 Hyun et al. Aug 2012 A1
20120230019 Peifer Sep 2012 A1
20120242930 Ryu et al. Sep 2012 A1
20120250296 Lu et al. Oct 2012 A1
20120250319 Dau et al. Oct 2012 A1
20120257383 Zhang Oct 2012 A1
20120268931 Lerman et al. Oct 2012 A1
20120268932 Lerman et al. Oct 2012 A1
20120287619 Pickard et al. Nov 2012 A1
20120287654 He et al. Nov 2012 A1
20120298181 Cashion et al. Nov 2012 A1
20120320626 Quilici et al. Dec 2012 A1
20120326614 Tsuji et al. Dec 2012 A1
20130003409 Vissenberg et al. Jan 2013 A1
20130010464 Shuja et al. Jan 2013 A1
20130028557 Lee et al. Jan 2013 A1
20130033867 Coplin et al. Feb 2013 A1
20130037838 Speier et al. Feb 2013 A1
20130038219 Dau et al. Feb 2013 A1
20130039050 Dau et al. Feb 2013 A1
20130039090 Dau et al. Feb 2013 A1
20130044480 Sato et al. Feb 2013 A1
20130077298 Steele et al. Mar 2013 A1
20130107518 Boyer et al. May 2013 A1
20130107527 Boyer et al. May 2013 A1
20130107528 Boyer et al. May 2013 A1
20130128593 Luo May 2013 A1
20130170210 Athalye Jul 2013 A1
20130201715 Dau et al. Aug 2013 A1
20130208461 Warton et al. Aug 2013 A1
20130208495 Dau et al. Aug 2013 A1
20130214300 Lerman et al. Aug 2013 A1
20130215612 Garcia Aug 2013 A1
20130223057 Gassner et al. Aug 2013 A1
20130229804 Holder et al. Sep 2013 A1
20130229810 Pelka et al. Sep 2013 A1
20130250584 Wang et al. Sep 2013 A1
20130279198 Lin et al. Oct 2013 A1
20130294059 Galluccio et al. Nov 2013 A1
20130294063 Lou et al. Nov 2013 A1
20130343045 Lodhie et al. Dec 2013 A1
20130343055 Eckert et al. Dec 2013 A1
20130343079 Unger et al. Dec 2013 A1
20140003041 Dau et al. Jan 2014 A1
20140029257 Boyer et al. Jan 2014 A1
20140036510 Preston et al. Feb 2014 A1
20140071687 Tickner et al. Mar 2014 A1
20140168955 Gershaw Jun 2014 A1
20140211457 Tarsa et al. Jul 2014 A1
20140211462 Keller et al. Jul 2014 A1
20140211476 Yuan et al. Jul 2014 A1
20140211495 Yuan et al. Jul 2014 A1
20140211497 Yuan et al. Jul 2014 A1
20140211502 Keller et al. Jul 2014 A1
20140211503 Tarsa Jul 2014 A1
20140211504 Yuan et al. Jul 2014 A1
20140211508 Yuan et al. Jul 2014 A1
20140212090 Wilcox et al. Jul 2014 A1
20140268879 Mizuyama et al. Sep 2014 A1
20140334126 Speier et al. Nov 2014 A1
20140355297 Castillo et al. Dec 2014 A1
20140355302 Wilcox et al. Dec 2014 A1
20150003059 Haitz et al. Jan 2015 A1
20150049507 Shani et al. Feb 2015 A1
20150109820 Wilcox et al. Apr 2015 A1
Foreign Referenced Citations (26)
Number Date Country
20014114 Dec 2000 DE
20107425 Jul 2001 DE
10047101 May 2002 DE
10203106 Jul 2003 DE
10302563 Jul 2004 DE
10302564 Jul 2004 DE
102006009325 Sep 2007 DE
102006011296 Sep 2007 DE
102006013343 Sep 2007 DE
H10173870 Jun 1998 JP
2000147264 May 2000 JP
2004227934 Aug 2004 JP
3093080 Dec 2005 JP
2006131444 May 2006 JP
20060221922 Aug 2006 JP
2007123130 May 2007 JP
WO 9621122 Jul 1996 WO
WO 9621884 Jul 1996 WO
WO 994531 Jan 1999 WO
WO 03031869 Apr 2003 WO
WO 2009012484 Jan 2009 WO
WO 2011130648 Oct 2011 WO
WO 2013078463 May 2013 WO
WO 2013082537 Jun 2013 WO
WO 2014120672 Aug 2014 WO
WO 2014120672 Sep 2014 WO
Non-Patent Literature Citations (8)
Entry
Iijima et al., “Document Scanner Using Polymer Waveguides With a Microlens Array,” Optical Engineering, vol. 41, Issue 11, pp. 2743-2748, Oct. 28, 2002 (4 pages).
Ji et al., “Electrically Controllable Microlens Array Fabricated by Anisotropic Phase Separation From Liquid-Crystal and Polymer Composite Materials,” vol. 28, No. 13, Optics Letters, pp. 1147-1149, Jul. 1, 2003 (4 pages).
International Search Report and Written Opinion for International Application No. PCT/US2014/013400, Applicant, Cree, Inc. (21 pages).
Invitation to Pay Additional Fees for International Application No. PCT/US2014/013400, Applicant, Cree, Inc. (2 pages).
Web page at http://www.fusionoptix.com/lighting/components/array-optics.htm, printed May 9, 2013 (2 pages).
U.S. Appl. No. 13/657,421, filed Oct. 22, 2012 (38 pages).
Web page at http://www.oluce.com/en/lamps/table/colombo-281-detail, printed Nov. 19, 2013 (2 pages).
Drain, Kieran, “Transformations in Lighting: 2011 DOE Solid-State Lighting R&D Workshop, Panel 3: Novel Lighting Concepts for Large Interior Spaces,” PowerPoint presentation printed Nov. 2013 (23 pages).
Related Publications (1)
Number Date Country
20140211496 A1 Jul 2014 US
Provisional Applications (1)
Number Date Country
61758660 Jan 2013 US
Continuation in Parts (6)
Number Date Country
Parent 13839949 Mar 2013 US
Child 14015801 US
Parent 13840563 Mar 2013 US
Child 13839949 US
Parent 13841074 Mar 2013 US
Child 13840563 US
Parent 13842521 Mar 2013 US
Child 13841074 US
Parent 13841651 Mar 2013 US
Child 13842521 US
Parent 13842557 Mar 2013 US
Child 13841651 US