This invention pertains to a lighting system and, in particular, for a light emitting diode (LED) lighting system.
Lighting systems have traditionally involved the use of incandescent or fluorescent lighting. Recent advances in the use of light emitting diodes has, however, resulted in greater use of LEDs for not only display and accent lighting but interior lighting as well. With the use of LEDs comes the problem of how to disperse the concentrated light ray of the LED so as to create a more uniform and comfortable lighting environment. In addition to developing ways to disperse the LED lighting, there is also a need to improve lighting systems for use with a dropped ceiling in order to meet regulatory restrictions that deal with dropped-ceiling mounted luminaires.
Some of the more difficult regulatory restrictions to deal with involve the fact that the entire barrier between plenum space and occupied space must be bounded by an approved structural and fire rated material. Additionally, the system must be strong enough to support a load greater than its own weight, and must be anchored against earthquake, physical strikes and vibration. Furthermore, any potentially dangerous electrical components, including LED power sources must be isolated from any interaction with nearby materials or occupants. Finally, the amount of light, and the distribution of light into the occupied space is fairly static and defined by the space to be lit. Therefore, any reduction in the size of the luminous source will result in a brighter and higher glare appearance. The entire ceiling grid area, however, must glow uniformly in order to create the highest visual comfort. Finally, the luminous appearance of the energized lighting system must be visually comfortable. Also, the luminous area of the lighting system must be made as large as possible to reduce its contrast with the surrounding ceiling tiles.
Previous lighting systems for use with a dropped ceiling have involved the use of fluorescent lighting. For example, U.S. Pat. No. 5,777,857 (Degelmann) is directed to an energy efficient lighting system for use with T8 fluorescent tubes. Given the regulatory restrictions and the need to create a comfortable lighting environment using LEDs, a dropped-ceiling lighting system that would satisfy the regulatory requirements and provide for uniform lighting would be an important improvement in the art.
Disclosed is a lighting system that comprises a support element having a reflective surface with a luminaire mounted on the support element. The luminaire comprises an LED light source that provides light in a first pattern and a waveguide redirection element comprising an inner portion and an outer portion having an emission surface disposed adjacent and at an oblique angle with respect to the inner portion. The outer portion comprises an end having a first thickness adapted to receive light and an outer edge opposite the end having a second thickness less than the first thickness. The outer portion of the waveguide redirection element further comprises a third surface opposite the emission surface and disposed between the end and the outer edge, a series of first cascading surfaces spaced from one another and extending from the end to the outer edge, and a series of second surfaces each disposed between an adjacent pair of first cascading surfaces and connecting such pair of first cascading surfaces together, wherein the series of first cascading surfaces and second surfaces define at least one of the emission surface and the third surface. The waveguide redirection element receives the light from the LED light source and redirects the light into a second pattern out of the emission surface onto the reflective surface such that the second pattern illuminates a first area and the LED light source occupies a second area smaller than the first area.
Also disclosed is a lighting system that comprises a support element having a reflective surface and an LED light engine mounted on the support element. The LED light engine comprises an LED light source that provides light in a first pattern and a waveguide element that receives the light from the LED light source and redirects the light into a second pattern onto a portion of the reflective surface laterally spaced from the waveguide element, wherein the waveguide element comprises an inner portion and an outer portion having an emission surface disposed adjacent and at an oblique angle with respect to the inner portion. The outer portion of the waveguide element comprises an end having a first thickness adapted to receive light, an outer edge opposite the end having a second thickness less than the first thickness, and a third surface opposite the emission surface and disposed between the end and the outer edge. The outer portion further comprises a series of first cascading surfaces spaced from one another and extending from the end to the outer edge and a series of second surfaces each disposed between an adjacent pair of first cascading surfaces and connecting such pair of first cascading surfaces together, wherein the series of first cascading surfaces and second surfaces define the emission surface.
In an embodiment, when seen from below, the first area occupied by the reflective surface 12 is about 46 times greater than the second area occupied by the LED light source 24. In one particular version, the LED light source 24 occupies an area approximately 4 inches in diameter.
In still another embodiment, the LED light source 24 is positioned to direct incident light initially downward with respect to the reflective surface 12. In another embodiment, the LED light source 24 directs incident light initially in an upward direction relative to the reflective surface 12, while in still another embodiment, the LED light source 24 directs incident light initially at an angle of about 90° with respect to the reflective surface 12. In one embodiment, the light source 24 may emit light in a circular pattern, while in a second embodiment, the light source 24 emits light in a linear pattern.
In an embodiment, the light is emitted from the light source 24 and is reflected from the reflector 12 in a luminance per unit maximum to minimum ratio of about 1:1 to about 3:1 over the surface of the reflector 12. In another embodiment, the light is reflected from the reflector 12 in a ratio of about 1.5:1 to about 2.5:1. In a more particular embodiment, the light is reflected from the reflector in a ratio of about 2.0 to about 1.0.
In one embodiment, the reflective surface 12 is diffuse. It may also be on a ceiling. The reflective surface 12 may be smooth or textured depending upon how one wants to control how light redirects off the reflective surface 12 and into space.
Also disclosed, in
In another embodiment, the incident angle is less than about 8°, while is still another embodiment, the incident angle is between about 3° and about 8°. In a more particular embodiment, the incident angle is about 5°. Similar incident angles may occur in an embodiment using a reflective optical assembly as opposed to a waveguide 30 as a redirection element 26, as discussed below.
The reflective surface 12 may be diffuse. It may also be designed to shine light down into an area to be illuminated. The reflective surface 12 may be smooth or textured depending upon how one wants to control how light redirects off the reflective surface 12 and into space. While the reflective surface 12 is designed to shine light into an area, the distribution of the light may be changed by changing the specularity versus diffusion of the reflective surface 12, and by adding textured surfaces onto the reflective surface 12. In addition to controlling how light illuminates a space, such features also affect the appearance of the reflective surface 12.
The reflective surface 12 may be on a ceiling or on a support member 20 for the LED light engine 18 and may be rigid enough to support its own weight below a ceiling tile, but may also use the LED light engine 18 for support. The reflective surface 12 may also be a ceiling barrier that supports its own weight and may use the ceiling supports for additional strength.
In an embodiment, the waveguide 30 generally defines a plane, and the plane of the waveguide 30 is generally parallel to the plane of the reflective surface 12. In still another embodiment, the LED light engine 18 is supported by a support member 20 and the reflective surface 12 is a surface of the supporting member of the reflective surface. In yet another embodiment, the reflective surface 12 is positioned in an opening in a grid used to suspend a dropped ceiling.
The waveguide 30 may be adapted to direct all of the light generated from the LED light source 24 onto the reflective surface 12. Likewise, the waveguide 30 may also be directed to direct most of the light generated from the LED light source 24 onto the reflective surface 12. In one embodiment, the emission surface 31 angles away from the reflective surface 12, as shown for example in
In an embodiment, the LED light engine 18 comprises a reflector 26. In still another embodiment, the waveguide 30 comprises a reflector 26 opposite the reflective surface 12. In a particular version of such embodiment, the reflective surface 12 has a first area and the LED light source 24 has a second area that is smaller than the first area. In a more particular embodiment, the first area is 12 times greater than the second area. The LED light engine 18 may be located adjacent to yet spaced apart from said reflective surface 12. In still another embodiment, the support element 21 may be adapted to fit in a modular ceiling system.
Also disclosed is a lighting system kit 10 comprising a support element 21 having a reflective surface 12 and an LED light engine 18 mounted on the support element 21. The LED light engine 18 includes an LED light source 24 that provides light in a first pattern, and a waveguide element 30 that receives the light from the LED light source 24 and redirects the light into a second pattern onto a portion of the reflective surface 12 laterally space from the waveguide element 30.
In an embodiment, the reflective surface 12 is diffuse. In another embodiment, the light shines downward from the reflective surface 12 into an area to be illuminated. In still another embodiment, the reflective surface 12 is on a ceiling. The reflective surface 12 may also be on a support member for the LED light engine 18.
In another embodiment, the waveguide 30 generally defines a plane and the plane of the waveguide 30 is generally parallel to the plane of the reflective surface 12. The LED light engine 18 may be supported by a support member, and the reflective surface 12 is a surface of the supporting member of the reflective surface 12. The reflective surface 12 may also be positioned in an opening in a grid used to suspend a dropped ceiling.
In the kit 10, the waveguide 30 may be adapted to direct all of the light generated from the LED light source 24 onto the reflective surface 12. In another embodiment, the waveguide 30 is directed to direct most of the light generated from the LED light source 24 onto the reflective surface 12. In still another embodiment, the emission surface 31 angles away from the reflective surface 12.
In another embodiment, the LED light engine 18 comprises a reflector 26. In still another embodiment, the waveguide 30 comprises a reflector 26 opposite the reflective surface 12. In a particular version of such embodiment, the reflective surface 12 has a first area and the LED light source 24 has a second area that is smaller than the first area. In a more particular embodiment, the first area is 12 times greater than the second area. The LED light engine 18 may be located adjacent to yet spaced apart from said reflective surface 12. In yet another embodiment, the reflective surface 12 is positioned in an opening in a grid used to suspend a dropped ceiling.
In an embodiment, as shown in
In still another embodiment, as shown in
In an embodiment, the light source 24 is a light emitting diode (“LED”). In one version of the embodiment, the light source 24 is oriented away from the reflector 12, as shown, for example, in
Depending on the orientation of the light source 24, a waveguide 30 may be positioned adjacent to the light source 24, as is shown in
In still another embodiment, the reflector 12 may be a substrate. In yet another embodiment, the reflector 12 is a coating painted on the plenum barrier 28.
Also disclosed is a dropped-ceiling lighting system 10 comprised of a reflector 12 attached to a plenum barrier 28 such as a ceiling tile positioned in an opening in a grid 16 used to suspend a dropped ceiling 14. A power source 22 extends from a first edge 34 of the plenum barrier 28 to a second edge 36 of the plenum barrier 28, as shown in
In an embodiment, the power source 22 is mounted so as to extend along a portion of the ceiling grid 16 between adjacent ceiling tiles, as shown in
In another embodiment, the reflector 12 is a substrate. The reflector 12 may also be a coating that is painted on the plenum barrier 28. In all of the embodiments discussed above, the light source 24 may be an LED.
When in operation, power is transmitted to the lighting device 18 from the power source 22. In one embodiment, the lighting device 18 (e.g., LEDs) emits light either downward from the ceiling, upward toward the ceiling, or outward from the center of the lighting system in a direction parallel to the ceiling tile. The emitted light radiates through an optical reflector 26 and lens 38 before entering a space or room to be illuminated where it then reflects off of the reflector 12 so as to light the space.
The appearance of the light will be guided by the shape of the light source but can be controlled by changing the geometry of the optics. The design results in a constant output of light being directed to different orientations on the troffer. This allows one to avoid high brightness areas in favor of low brightness so as to reduce glare.
In an embodiment, the light emitted from the LEDs is directed into a waveguide 30 made of a thin body of an acrylic-like substance. As shown in
In yet another embodiment, a long, thin lighting device 18 runs from a first edge 34 to a second edge 36 of the reflector 12 where it fastens directly to the ceiling grid, as shown in
Depending on whether a radial or linear light fixture is utilized, the light may be distributed in a manner shown in
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. It should be understood that the illustrated embodiments are exemplary only, and should not be taken as limiting the scope of the invention.
This patent application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/758,660, filed, Jan. 30, 2013, and is a continuation-in-part of U.S. patent application Ser. No. 13/839,949, filed, Mar. 15, 2013, U.S. patent application Ser. No. 13/840,563, filed, Mar. 15, 2013, U.S. patent application Ser. No. 13/841,074, filed, Mar. 15, 2013, U.S. patent application Ser. No. 13/842,521, filed, Mar. 15, 2013, U.S. patent application Ser. No. 13/841,651, filed, Mar. 15, 2013, and U.S. patent application Ser. No. 13/842,557, filed Mar. 15, 2013 and incorporates the disclosures of such applications by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
615108 | De Segundo | Nov 1898 | A |
766515 | Northrup | Aug 1904 | A |
D67806 | Hoyt et al. | Jul 1925 | S |
2043951 | Eksergian | Jun 1936 | A |
2992587 | Hicks, Jr. et al. | Apr 1958 | A |
3372740 | Kastovich et al. | Mar 1968 | A |
3532871 | Shipman | Oct 1970 | A |
D219546 | Kaiser et al. | Dec 1970 | S |
4146297 | Alferness et al. | Mar 1979 | A |
4441787 | Lichtenberger | Apr 1984 | A |
4714983 | Lang | Dec 1987 | A |
D298861 | Ewing et al. | Dec 1988 | S |
4954930 | Maegawa et al. | Sep 1990 | A |
4977486 | Gotoh | Dec 1990 | A |
5005108 | Pristash | Apr 1991 | A |
5009483 | Rockwell, III | Apr 1991 | A |
5026161 | Werner | Jun 1991 | A |
5040098 | Tanaka et al. | Aug 1991 | A |
5047761 | Sell | Sep 1991 | A |
5061404 | Wu et al. | Oct 1991 | A |
5097258 | Iwaki | Mar 1992 | A |
5113177 | Cohen | May 1992 | A |
5113472 | Gualtieri et al. | May 1992 | A |
5171080 | Bathurst | Dec 1992 | A |
5175787 | Gualtieri et al. | Dec 1992 | A |
5186865 | Wu et al. | Feb 1993 | A |
5245689 | Gualtieri | Sep 1993 | A |
5253317 | Allen et al. | Oct 1993 | A |
5295019 | Rapoport | Mar 1994 | A |
5309544 | Saxe | May 1994 | A |
5359687 | McFarland | Oct 1994 | A |
5359691 | Tai et al. | Oct 1994 | A |
5396350 | Beeson et al. | Mar 1995 | A |
5398179 | Pacheco | Mar 1995 | A |
5400224 | DuNah et al. | Mar 1995 | A |
5428468 | Zimmerman et al. | Jun 1995 | A |
5461547 | Ciupke et al. | Oct 1995 | A |
5462700 | Beeson et al. | Oct 1995 | A |
5481385 | Zimmerman et al. | Jan 1996 | A |
5506924 | Inoue | Apr 1996 | A |
5521725 | Beeson et al. | May 1996 | A |
5521726 | Zimmerman et al. | May 1996 | A |
5528720 | Winston et al. | Jun 1996 | A |
5537304 | Klaus | Jul 1996 | A |
5541039 | McFarland et al. | Jul 1996 | A |
5548670 | Koike | Aug 1996 | A |
5553092 | Bruce et al. | Sep 1996 | A |
5555109 | Zimmerman et al. | Sep 1996 | A |
5555160 | Tawara et al. | Sep 1996 | A |
5555329 | Kuper et al. | Sep 1996 | A |
5572411 | Watai et al. | Nov 1996 | A |
5577492 | Parkyn, Jr. et al. | Nov 1996 | A |
5584556 | Yokoyama et al. | Dec 1996 | A |
5598280 | Nishio et al. | Jan 1997 | A |
5598281 | Zimmerman et al. | Jan 1997 | A |
5613751 | Parker et al. | Mar 1997 | A |
5613770 | Chin, Jr. et al. | Mar 1997 | A |
5657408 | Ferm et al. | Aug 1997 | A |
5658066 | Hirsch | Aug 1997 | A |
5659410 | Koike et al. | Aug 1997 | A |
5676453 | Parkyn, Jr. et al. | Oct 1997 | A |
5676457 | Simon | Oct 1997 | A |
5677702 | Inoue et al. | Oct 1997 | A |
5685634 | Mulligan | Nov 1997 | A |
5696865 | Beeson et al. | Dec 1997 | A |
5702176 | Engle | Dec 1997 | A |
5718497 | Yokoyama et al. | Feb 1998 | A |
5727107 | Umemoto et al. | Mar 1998 | A |
5735590 | Kashima et al. | Apr 1998 | A |
5739931 | Zimmerman et al. | Apr 1998 | A |
5748828 | Steiner et al. | May 1998 | A |
5761355 | Kuper et al. | Jun 1998 | A |
5769522 | Kaneko et al. | Jun 1998 | A |
5771039 | Ditzik | Jun 1998 | A |
5777857 | Degelmann | Jul 1998 | A |
5806955 | Parkyn, Jr. et al. | Sep 1998 | A |
5812714 | Hulse | Sep 1998 | A |
5818555 | Yokoyama et al. | Oct 1998 | A |
5839823 | Hou et al. | Nov 1998 | A |
5850498 | Shacklette et al. | Dec 1998 | A |
5854872 | Tai | Dec 1998 | A |
5863113 | Oe et al. | Jan 1999 | A |
5872883 | Ohba et al. | Feb 1999 | A |
5897201 | Simon | Apr 1999 | A |
5914759 | Higuchi et al. | Jun 1999 | A |
5914760 | Daiku | Jun 1999 | A |
5949933 | Steiner et al. | Sep 1999 | A |
5961198 | Hira et al. | Oct 1999 | A |
5967637 | Ishikawa et al. | Oct 1999 | A |
5974214 | Shacklette et al. | Oct 1999 | A |
5997148 | Ohkawa | Dec 1999 | A |
5999281 | Abbott et al. | Dec 1999 | A |
5999685 | Goto et al. | Dec 1999 | A |
6002829 | Winston et al. | Dec 1999 | A |
6007209 | Pelka | Dec 1999 | A |
6043951 | Lee | Mar 2000 | A |
6044196 | Winston et al. | Mar 2000 | A |
6079838 | Parker et al. | Jun 2000 | A |
6097549 | Jenkins et al. | Aug 2000 | A |
6134092 | Pelka et al. | Oct 2000 | A |
6139176 | Hulse et al. | Oct 2000 | A |
6151089 | Yang et al. | Nov 2000 | A |
6155692 | Ohkawa | Dec 2000 | A |
6155693 | Spiegel et al. | Dec 2000 | A |
6161939 | Bansbach | Dec 2000 | A |
6164790 | Lee | Dec 2000 | A |
6164791 | Gwo-Juh et al. | Dec 2000 | A |
6167182 | Shinohara et al. | Dec 2000 | A |
6185357 | Zou et al. | Feb 2001 | B1 |
6206535 | Hattori et al. | Mar 2001 | B1 |
6231200 | Shinohara et al. | May 2001 | B1 |
6232592 | Sugiyama | May 2001 | B1 |
6241363 | Lee | Jun 2001 | B1 |
6257737 | Marshall et al. | Jul 2001 | B1 |
6259854 | Shinji et al. | Jul 2001 | B1 |
6304693 | Buelow, II et al. | Oct 2001 | B1 |
6310704 | Dogan et al. | Oct 2001 | B1 |
6379016 | Boyd et al. | Apr 2002 | B1 |
6379017 | Nakabayashi et al. | Apr 2002 | B2 |
6400086 | Huter | Jun 2002 | B1 |
6421103 | Yamaguchi | Jul 2002 | B2 |
6443594 | Marshall et al. | Sep 2002 | B1 |
6461007 | Akaoka | Oct 2002 | B1 |
6473554 | Pelka et al. | Oct 2002 | B1 |
6480307 | Yang et al. | Nov 2002 | B1 |
6485157 | Ohkawa | Nov 2002 | B2 |
6508563 | Parker et al. | Jan 2003 | B2 |
6523986 | Hoffmann | Feb 2003 | B1 |
6536921 | Simon | Mar 2003 | B1 |
6541720 | Gerald et al. | Apr 2003 | B2 |
6554451 | Keuper | Apr 2003 | B1 |
6568819 | Yamazaki et al. | May 2003 | B1 |
6582103 | Popovich et al. | Jun 2003 | B1 |
6585356 | Ohkawa | Jul 2003 | B1 |
6598998 | West et al. | Jul 2003 | B2 |
6612723 | Futhey et al. | Sep 2003 | B2 |
6616290 | Ohkawa | Sep 2003 | B2 |
6629764 | Uehara | Oct 2003 | B1 |
6633722 | Kohara et al. | Oct 2003 | B1 |
6634772 | Yaphe et al. | Oct 2003 | B2 |
6637924 | Pelka et al. | Oct 2003 | B2 |
6647199 | Pelka et al. | Nov 2003 | B1 |
6652109 | Nakamura | Nov 2003 | B2 |
6659628 | Gomez Del Campo | Dec 2003 | B2 |
6671452 | Winston et al. | Dec 2003 | B2 |
6676284 | Wynne Willson | Jan 2004 | B1 |
6678021 | Ohkawa | Jan 2004 | B2 |
6679621 | West et al. | Jan 2004 | B2 |
6712481 | Parker et al. | Mar 2004 | B2 |
6724529 | Sinkoff | Apr 2004 | B2 |
6724543 | Chinniah et al. | Apr 2004 | B1 |
6727965 | Kubota | Apr 2004 | B1 |
6752505 | Parker et al. | Jun 2004 | B2 |
6755546 | Ohkawa | Jun 2004 | B2 |
6755556 | Gasquet et al. | Jun 2004 | B2 |
6758582 | Hsiao et al. | Jul 2004 | B1 |
6775460 | Steiner et al. | Aug 2004 | B2 |
6796676 | Severtson et al. | Sep 2004 | B2 |
6802626 | Belfer et al. | Oct 2004 | B2 |
6802628 | Kuo | Oct 2004 | B2 |
6840656 | Kuo | Jan 2005 | B2 |
6845212 | Gardiner et al. | Jan 2005 | B2 |
6854857 | Hara et al. | Feb 2005 | B2 |
6876408 | Yamaguchi | Apr 2005 | B2 |
6894740 | Ohkawa | May 2005 | B2 |
6896381 | Benitez et al. | May 2005 | B2 |
6924943 | Minano et al. | Aug 2005 | B2 |
6974241 | Hara et al. | Dec 2005 | B2 |
6992335 | Ohkawa | Jan 2006 | B2 |
7025482 | Yamashita et al. | Apr 2006 | B2 |
7046318 | Yu et al. | May 2006 | B2 |
7046905 | Gardiner et al. | May 2006 | B1 |
7063430 | Greiner | Jun 2006 | B2 |
7072096 | Holman et al. | Jul 2006 | B2 |
7083313 | Smith | Aug 2006 | B2 |
7085460 | Leu et al. | Aug 2006 | B2 |
7090370 | Clark et al. | Aug 2006 | B2 |
7090389 | Parker et al. | Aug 2006 | B2 |
7097341 | Tsai | Aug 2006 | B2 |
7106528 | Ohmori et al. | Sep 2006 | B2 |
7111969 | Bottesch et al. | Sep 2006 | B2 |
7118253 | Simon | Oct 2006 | B1 |
7131764 | Hsu et al. | Nov 2006 | B2 |
7152985 | Benitez et al. | Dec 2006 | B2 |
7160010 | Chinniah et al. | Jan 2007 | B1 |
7160015 | Parker | Jan 2007 | B2 |
7168841 | Hsieh et al. | Jan 2007 | B2 |
7175330 | Chen | Feb 2007 | B1 |
7178941 | Roberge et al. | Feb 2007 | B2 |
7178946 | Saccomanno et al. | Feb 2007 | B2 |
7182480 | Kan | Feb 2007 | B2 |
7192174 | Myoung | Mar 2007 | B2 |
7195374 | Saccomanno et al. | Mar 2007 | B2 |
7204634 | Chen et al. | Apr 2007 | B2 |
7209628 | Winston et al. | Apr 2007 | B2 |
7222995 | Bayat et al. | May 2007 | B1 |
7223004 | Chen et al. | May 2007 | B2 |
7246931 | Hsieh et al. | Jul 2007 | B2 |
7258467 | Saccomanno et al. | Aug 2007 | B2 |
7265800 | Jagt et al. | Sep 2007 | B2 |
7273299 | Parkyn et al. | Sep 2007 | B2 |
7290906 | Suzuki et al. | Nov 2007 | B2 |
7292767 | Cheng | Nov 2007 | B2 |
7364342 | Parker et al. | Apr 2008 | B2 |
7369918 | Cosgrove | May 2008 | B2 |
7393124 | Williams | Jul 2008 | B1 |
7399108 | Ayabe et al. | Jul 2008 | B2 |
7400809 | Erben et al. | Jul 2008 | B2 |
7404660 | Parker | Jul 2008 | B2 |
7422357 | Chang | Sep 2008 | B1 |
7455416 | Chen | Nov 2008 | B2 |
7458714 | Chang | Dec 2008 | B2 |
7465074 | Blumel | Dec 2008 | B2 |
7486854 | Van Ostrand et al. | Feb 2009 | B2 |
7488093 | Huang et al. | Feb 2009 | B1 |
7513672 | Parker | Apr 2009 | B2 |
7520650 | Smith | Apr 2009 | B2 |
7534013 | Simon | May 2009 | B1 |
7559672 | Parkyn et al. | Jul 2009 | B1 |
7566148 | Noh et al. | Jul 2009 | B2 |
7566159 | Oon et al. | Jul 2009 | B2 |
7581854 | Ford | Sep 2009 | B2 |
7614764 | Williams et al. | Nov 2009 | B2 |
7626655 | Yamazaki et al. | Dec 2009 | B2 |
7628508 | Kita et al. | Dec 2009 | B2 |
7635193 | Chang | Dec 2009 | B2 |
7635205 | Yu et al. | Dec 2009 | B2 |
7639918 | Sayers et al. | Dec 2009 | B2 |
7641363 | Chang et al. | Jan 2010 | B1 |
7648256 | Shiratsuchi et al. | Jan 2010 | B2 |
7654719 | Chang | Feb 2010 | B2 |
7663804 | Chang | Feb 2010 | B2 |
7674018 | Holder et al. | Mar 2010 | B2 |
7696531 | Miyao | Apr 2010 | B2 |
7703950 | Ewert et al. | Apr 2010 | B2 |
7703967 | Parker | Apr 2010 | B2 |
7710663 | Barnes et al. | May 2010 | B2 |
7722224 | Coleman et al. | May 2010 | B1 |
7722241 | Chang | May 2010 | B2 |
7724321 | Hsieh et al. | May 2010 | B2 |
7730967 | Ballantyne et al. | Jun 2010 | B2 |
7736019 | Shimada et al. | Jun 2010 | B2 |
7736045 | Yamashita et al. | Jun 2010 | B2 |
7750982 | Nelson et al. | Jul 2010 | B2 |
7753551 | Yaphe et al. | Jul 2010 | B2 |
7758227 | Coleman | Jul 2010 | B1 |
7760290 | Kang et al. | Jul 2010 | B2 |
7762705 | Sakai et al. | Jul 2010 | B2 |
7766515 | Condon et al. | Aug 2010 | B2 |
7771087 | Wilcox et al. | Aug 2010 | B2 |
7775697 | Hirano et al. | Aug 2010 | B2 |
7776236 | Shih et al. | Aug 2010 | B2 |
7780306 | Hoshi | Aug 2010 | B2 |
7784954 | Coleman | Aug 2010 | B1 |
7798695 | Parker | Sep 2010 | B2 |
7806581 | Lee | Oct 2010 | B2 |
7810949 | Chang | Oct 2010 | B2 |
7810960 | Soderman et al. | Oct 2010 | B1 |
7810968 | Walker et al. | Oct 2010 | B1 |
7813131 | Liang | Oct 2010 | B2 |
7821982 | Chen et al. | Oct 2010 | B2 |
7826698 | Meir et al. | Nov 2010 | B1 |
7845826 | Aylward et al. | Dec 2010 | B2 |
7850357 | Kim et al. | Dec 2010 | B2 |
7857487 | Wu et al. | Dec 2010 | B2 |
7857619 | Liu | Dec 2010 | B2 |
7866871 | Couzin et al. | Jan 2011 | B2 |
7905646 | Adachi et al. | Mar 2011 | B2 |
7907804 | Meir et al. | Mar 2011 | B2 |
7909496 | Matheson et al. | Mar 2011 | B2 |
7914192 | Coleman | Mar 2011 | B2 |
7914193 | Peifer et al. | Mar 2011 | B2 |
7914196 | Parker et al. | Mar 2011 | B2 |
7929816 | Meir et al. | Apr 2011 | B2 |
7934851 | Boissevain et al. | May 2011 | B1 |
7967477 | Bloemen et al. | Jun 2011 | B2 |
7969531 | Li et al. | Jun 2011 | B1 |
7970246 | Travis et al. | Jun 2011 | B2 |
7976204 | Li et al. | Jul 2011 | B2 |
7991257 | Coleman | Aug 2011 | B1 |
7997784 | Tsai | Aug 2011 | B2 |
8002450 | Van Ostrand et al. | Aug 2011 | B2 |
8033674 | Coleman et al. | Oct 2011 | B1 |
8033706 | Kelly et al. | Oct 2011 | B1 |
8038308 | Greiner | Oct 2011 | B2 |
8047696 | Ijzerman et al. | Nov 2011 | B2 |
8052316 | Lee | Nov 2011 | B2 |
8054409 | Hsieh et al. | Nov 2011 | B2 |
8057056 | Zhu et al. | Nov 2011 | B2 |
8061877 | Chang | Nov 2011 | B2 |
8064743 | Meir et al. | Nov 2011 | B2 |
8067884 | Li | Nov 2011 | B2 |
8070345 | Zhang et al. | Dec 2011 | B2 |
8075157 | Zhang et al. | Dec 2011 | B2 |
8087807 | Liu et al. | Jan 2012 | B2 |
8092068 | Parker et al. | Jan 2012 | B2 |
8096671 | Cronk et al. | Jan 2012 | B1 |
8096681 | Fang et al. | Jan 2012 | B2 |
8113704 | Bae et al. | Feb 2012 | B2 |
8128272 | Fine et al. | Mar 2012 | B2 |
8129731 | Vissenberg et al. | Mar 2012 | B2 |
8152339 | Morgan | Apr 2012 | B2 |
8152352 | Richardson | Apr 2012 | B2 |
8162524 | Van Ostrand et al. | Apr 2012 | B2 |
8172447 | Meir et al. | May 2012 | B2 |
8177408 | Coleman | May 2012 | B1 |
8182128 | Meir et al. | May 2012 | B2 |
8186847 | Hu et al. | May 2012 | B2 |
8189973 | Travis et al. | May 2012 | B2 |
8192051 | Dau et al. | Jun 2012 | B2 |
8198109 | Lerman et al. | Jun 2012 | B2 |
8210716 | Lerman et al. | Jul 2012 | B2 |
8212263 | Bierhuizen et al. | Jul 2012 | B2 |
8218920 | Van Ostrand et al. | Jul 2012 | B2 |
8220955 | Kwak et al. | Jul 2012 | B2 |
8220980 | Gingrich, III | Jul 2012 | B2 |
8226287 | Teng et al. | Jul 2012 | B2 |
8231256 | Coleman et al. | Jul 2012 | B1 |
8231258 | Kim et al. | Jul 2012 | B2 |
8231259 | Keller et al. | Jul 2012 | B2 |
8242518 | Lerman et al. | Aug 2012 | B2 |
8246187 | Cheong et al. | Aug 2012 | B2 |
8246197 | Huang | Aug 2012 | B2 |
8249408 | Coleman | Aug 2012 | B2 |
8258524 | Tan et al. | Sep 2012 | B2 |
8272756 | Patrick | Sep 2012 | B1 |
8272770 | Richardson | Sep 2012 | B2 |
8277106 | Van Gorkom et al. | Oct 2012 | B2 |
8282261 | Pance et al. | Oct 2012 | B2 |
8282853 | Mori et al. | Oct 2012 | B2 |
8283354 | Wilson et al. | Oct 2012 | B2 |
8283853 | Yan et al. | Oct 2012 | B2 |
8287152 | Gill | Oct 2012 | B2 |
8292467 | Vissenberg et al. | Oct 2012 | B2 |
8297786 | Shani et al. | Oct 2012 | B2 |
8297801 | Coushaine et al. | Oct 2012 | B2 |
8297818 | Richardson | Oct 2012 | B2 |
8301002 | Shani | Oct 2012 | B2 |
8310158 | Coplin et al. | Nov 2012 | B2 |
8314566 | Steele et al. | Nov 2012 | B2 |
8317363 | Zheng | Nov 2012 | B2 |
8317366 | Dalton et al. | Nov 2012 | B2 |
8319130 | Lee et al. | Nov 2012 | B2 |
8328403 | Morgan et al. | Dec 2012 | B1 |
8328406 | Zimmermann | Dec 2012 | B2 |
8331746 | Bogner et al. | Dec 2012 | B2 |
8338199 | Lerman et al. | Dec 2012 | B2 |
8338839 | Lerman et al. | Dec 2012 | B2 |
8338840 | Lerman et al. | Dec 2012 | B2 |
8338841 | Lerman et al. | Dec 2012 | B2 |
8338842 | Lerman et al. | Dec 2012 | B2 |
8344397 | Lerman et al. | Jan 2013 | B2 |
8348446 | Nakamura | Jan 2013 | B2 |
8348489 | Holman et al. | Jan 2013 | B2 |
8351744 | Travis et al. | Jan 2013 | B2 |
8353606 | Jeong | Jan 2013 | B2 |
8369678 | Chakmakjian et al. | Feb 2013 | B2 |
8371735 | Chen et al. | Feb 2013 | B2 |
8376582 | Catone et al. | Feb 2013 | B2 |
8382354 | Kim et al. | Feb 2013 | B2 |
8382387 | Sandoval | Feb 2013 | B1 |
8388173 | Sloan et al. | Mar 2013 | B2 |
8388190 | Li et al. | Mar 2013 | B2 |
8398259 | Kwak et al. | Mar 2013 | B2 |
8398262 | Sloan et al. | Mar 2013 | B2 |
8408737 | Wright et al. | Apr 2013 | B2 |
8410726 | Dau et al. | Apr 2013 | B2 |
8412010 | Ghosh et al. | Apr 2013 | B2 |
8414154 | Dau et al. | Apr 2013 | B2 |
8419224 | Wan-Chih et al. | Apr 2013 | B2 |
8430536 | Zhao | Apr 2013 | B1 |
8430548 | Kelly et al. | Apr 2013 | B1 |
8432628 | Shiau et al. | Apr 2013 | B2 |
8434892 | Zwak et al. | May 2013 | B2 |
8434893 | Boyer et al. | May 2013 | B2 |
8434913 | Vissenberg et al. | May 2013 | B2 |
8434914 | Li et al. | May 2013 | B2 |
8449128 | Ko et al. | May 2013 | B2 |
8449142 | Martin et al. | May 2013 | B1 |
8454218 | Wang et al. | Jun 2013 | B2 |
8461602 | Lerman et al. | Jun 2013 | B2 |
8469559 | Williams | Jun 2013 | B2 |
8475010 | Vissenberg et al. | Jul 2013 | B2 |
8482186 | Wang et al. | Jul 2013 | B2 |
8485684 | Lou et al. | Jul 2013 | B2 |
8506112 | Dau et al. | Aug 2013 | B1 |
8511868 | Haugaard et al. | Aug 2013 | B2 |
8534896 | Boonekamp | Sep 2013 | B2 |
8534901 | Panagotacos et al. | Sep 2013 | B2 |
8541795 | Keller et al. | Sep 2013 | B2 |
8547022 | Summerford et al. | Oct 2013 | B2 |
8567983 | Boyer et al. | Oct 2013 | B2 |
8567986 | Szprengiel et al. | Oct 2013 | B2 |
8573823 | Dau et al. | Nov 2013 | B2 |
8585253 | Duong et al. | Nov 2013 | B2 |
8591072 | Shani et al. | Nov 2013 | B2 |
8591090 | Lin | Nov 2013 | B2 |
8593070 | Wang et al. | Nov 2013 | B2 |
8598778 | Allen et al. | Dec 2013 | B2 |
8602586 | Dau et al. | Dec 2013 | B1 |
8608351 | Peifer | Dec 2013 | B2 |
8618735 | Coplin et al. | Dec 2013 | B2 |
8632214 | Tickner et al. | Jan 2014 | B1 |
8641219 | Johnson et al. | Feb 2014 | B1 |
8657479 | Morgan et al. | Feb 2014 | B2 |
8696173 | Urtiga et al. | Apr 2014 | B2 |
8702281 | Okada et al. | Apr 2014 | B2 |
8724052 | Hsieh et al. | May 2014 | B2 |
8740440 | Mizuno et al. | Jun 2014 | B2 |
8755005 | Bierhuizen et al. | Jun 2014 | B2 |
8770821 | Ijzerman et al. | Jul 2014 | B2 |
8780299 | Ryu et al. | Jul 2014 | B2 |
8833999 | Wang et al. | Sep 2014 | B2 |
8840276 | Shani et al. | Sep 2014 | B2 |
8851712 | Shani et al. | Oct 2014 | B2 |
8864360 | Parker et al. | Oct 2014 | B2 |
8870431 | Lin et al. | Oct 2014 | B2 |
8882323 | Solomon et al. | Nov 2014 | B2 |
8905569 | Thomas et al. | Dec 2014 | B2 |
8915611 | Zhang | Dec 2014 | B2 |
8917962 | Nichol et al. | Dec 2014 | B1 |
8950919 | Chen | Feb 2015 | B2 |
8960969 | Freund | Feb 2015 | B2 |
9046225 | Meyers et al. | Jun 2015 | B2 |
20010019479 | Nakabayashi et al. | Sep 2001 | A1 |
20020061178 | Winston et al. | May 2002 | A1 |
20020172039 | Inditsky | Nov 2002 | A1 |
20030034985 | Needham Riddle et al. | Feb 2003 | A1 |
20030146688 | Kitazawa et al. | Aug 2003 | A1 |
20040008952 | Kragl | Jan 2004 | A1 |
20040080938 | Holman et al. | Apr 2004 | A1 |
20040135933 | Leu et al. | Jul 2004 | A1 |
20040213003 | Lauderdale et al. | Oct 2004 | A1 |
20040240217 | Rice | Dec 2004 | A1 |
20050111235 | Suzuki et al. | May 2005 | A1 |
20050201103 | Saccomanno et al. | Sep 2005 | A1 |
20050210643 | Mezei et al. | Sep 2005 | A1 |
20050286251 | Smith | Dec 2005 | A1 |
20060002146 | Baba | Jan 2006 | A1 |
20060072203 | Lee | Apr 2006 | A1 |
20060076568 | Keller et al. | Apr 2006 | A1 |
20060187651 | Kim et al. | Aug 2006 | A1 |
20060262521 | Piepgras et al. | Nov 2006 | A1 |
20070081780 | Scholl | Apr 2007 | A1 |
20070086179 | Chen et al. | Apr 2007 | A1 |
20070121340 | Hoshi | May 2007 | A1 |
20070139905 | Birman et al. | Jun 2007 | A1 |
20070189033 | Watanabe et al. | Aug 2007 | A1 |
20070223247 | Lee et al. | Sep 2007 | A1 |
20070245607 | Awai et al. | Oct 2007 | A1 |
20070253058 | Wood | Nov 2007 | A1 |
20070274654 | Choudhury et al. | Nov 2007 | A1 |
20080037284 | Rudisill | Feb 2008 | A1 |
20080094853 | Kim et al. | Apr 2008 | A1 |
20080137695 | Takahashi et al. | Jun 2008 | A1 |
20080186273 | Krijn et al. | Aug 2008 | A1 |
20080192458 | Li | Aug 2008 | A1 |
20080199143 | Turner | Aug 2008 | A1 |
20080266879 | Chang | Oct 2008 | A1 |
20080266901 | Chang | Oct 2008 | A1 |
20090027893 | Chang | Jan 2009 | A1 |
20090091948 | Wang et al. | Apr 2009 | A1 |
20090103293 | Harbers et al. | Apr 2009 | A1 |
20090196071 | Matheson et al. | Aug 2009 | A1 |
20090257242 | Wendman | Oct 2009 | A1 |
20090297090 | Bogner et al. | Dec 2009 | A1 |
20090309494 | Patterson et al. | Dec 2009 | A1 |
20090310367 | Kuo | Dec 2009 | A1 |
20090316414 | Yang et al. | Dec 2009 | A1 |
20100008088 | Koizumi et al. | Jan 2010 | A1 |
20100027257 | Boonekamp et al. | Feb 2010 | A1 |
20100046219 | Pijlman et al. | Feb 2010 | A1 |
20100053959 | Ijzerman et al. | Mar 2010 | A1 |
20100073597 | Bierhuizen et al. | Mar 2010 | A1 |
20100079843 | Derichs et al. | Apr 2010 | A1 |
20100079980 | Sakai | Apr 2010 | A1 |
20100110673 | Bergman et al. | May 2010 | A1 |
20100118531 | Montagne | May 2010 | A1 |
20100128483 | Reo et al. | May 2010 | A1 |
20100133422 | Lin et al. | Jun 2010 | A1 |
20100157577 | Montgomery et al. | Jun 2010 | A1 |
20100208460 | Ladewig et al. | Aug 2010 | A1 |
20100220484 | Shani et al. | Sep 2010 | A1 |
20100220497 | Ngai | Sep 2010 | A1 |
20100231143 | May et al. | Sep 2010 | A1 |
20100238645 | Bailey | Sep 2010 | A1 |
20100238671 | Catone et al. | Sep 2010 | A1 |
20100246158 | Van Gorkom et al. | Sep 2010 | A1 |
20100302218 | Bita et al. | Dec 2010 | A1 |
20100302616 | Bita et al. | Dec 2010 | A1 |
20100302783 | Shastry et al. | Dec 2010 | A1 |
20100302803 | Bita et al. | Dec 2010 | A1 |
20100315833 | Holman et al. | Dec 2010 | A1 |
20100320904 | Meir | Dec 2010 | A1 |
20100328936 | Pance et al. | Dec 2010 | A1 |
20110007505 | Wang et al. | Jan 2011 | A1 |
20110013397 | Catone et al. | Jan 2011 | A1 |
20110013420 | Coleman et al. | Jan 2011 | A1 |
20110037388 | Lou et al. | Feb 2011 | A1 |
20110044582 | Travis et al. | Feb 2011 | A1 |
20110051457 | Chen | Mar 2011 | A1 |
20110058372 | Lerman et al. | Mar 2011 | A1 |
20110063830 | Narendran et al. | Mar 2011 | A1 |
20110063838 | Dau et al. | Mar 2011 | A1 |
20110063855 | Vissenberg | Mar 2011 | A1 |
20110069843 | Cohen | Mar 2011 | A1 |
20110122616 | Hochstein | May 2011 | A1 |
20110163681 | Dau et al. | Jul 2011 | A1 |
20110163683 | Steele et al. | Jul 2011 | A1 |
20110170289 | Allen et al. | Jul 2011 | A1 |
20110180818 | Lerman et al. | Jul 2011 | A1 |
20110187273 | Summerford et al. | Aug 2011 | A1 |
20110193105 | Lerman et al. | Aug 2011 | A1 |
20110193106 | Lerman et al. | Aug 2011 | A1 |
20110193114 | Lerman et al. | Aug 2011 | A1 |
20110195532 | Lerman et al. | Aug 2011 | A1 |
20110198631 | Lerman et al. | Aug 2011 | A1 |
20110198632 | Lerman et al. | Aug 2011 | A1 |
20110199769 | Bretschneider et al. | Aug 2011 | A1 |
20110204390 | Lerman et al. | Aug 2011 | A1 |
20110204391 | Lerman et al. | Aug 2011 | A1 |
20110210861 | Winton et al. | Sep 2011 | A1 |
20110228527 | Van Gorkom et al. | Sep 2011 | A1 |
20110233568 | An et al. | Sep 2011 | A1 |
20110248287 | Yuan et al. | Oct 2011 | A1 |
20110249467 | Boonekamp | Oct 2011 | A1 |
20110261570 | Okada et al. | Oct 2011 | A1 |
20110273079 | Pickard et al. | Nov 2011 | A1 |
20110273882 | Pickard | Nov 2011 | A1 |
20110280043 | Van Ostrand et al. | Nov 2011 | A1 |
20110299807 | Kim et al. | Dec 2011 | A1 |
20110305018 | Angelini et al. | Dec 2011 | A1 |
20110305027 | Ham | Dec 2011 | A1 |
20110317436 | Kuan | Dec 2011 | A1 |
20120008338 | Ono et al. | Jan 2012 | A1 |
20120014128 | Lin | Jan 2012 | A1 |
20120026728 | Lou et al. | Feb 2012 | A1 |
20120026828 | Fjellstad et al. | Feb 2012 | A1 |
20120033445 | Desmet et al. | Feb 2012 | A1 |
20120039073 | Tong | Feb 2012 | A1 |
20120051041 | Edmond et al. | Mar 2012 | A1 |
20120068615 | Duong et al. | Mar 2012 | A1 |
20120069575 | Koh et al. | Mar 2012 | A1 |
20120069579 | Koh et al. | Mar 2012 | A1 |
20120069595 | Catalano | Mar 2012 | A1 |
20120113676 | Van Dijk et al. | May 2012 | A1 |
20120114284 | Ender | May 2012 | A1 |
20120120651 | Peck | May 2012 | A1 |
20120140461 | Pickard | Jun 2012 | A1 |
20120147624 | Li et al. | Jun 2012 | A1 |
20120152490 | Wen et al. | Jun 2012 | A1 |
20120170266 | Germain et al. | Jul 2012 | A1 |
20120170316 | Lee et al. | Jul 2012 | A1 |
20120170318 | Tsai et al. | Jul 2012 | A1 |
20120182767 | Petcavich et al. | Jul 2012 | A1 |
20120188774 | Okada | Jul 2012 | A1 |
20120212957 | Hyun et al. | Aug 2012 | A1 |
20120230019 | Peifer | Sep 2012 | A1 |
20120242930 | Ryu et al. | Sep 2012 | A1 |
20120250296 | Lu et al. | Oct 2012 | A1 |
20120250319 | Dau et al. | Oct 2012 | A1 |
20120257383 | Zhang | Oct 2012 | A1 |
20120268931 | Lerman et al. | Oct 2012 | A1 |
20120268932 | Lerman et al. | Oct 2012 | A1 |
20120287619 | Pickard et al. | Nov 2012 | A1 |
20120287654 | He et al. | Nov 2012 | A1 |
20120298181 | Cashion et al. | Nov 2012 | A1 |
20120320626 | Quilici et al. | Dec 2012 | A1 |
20120326614 | Tsuji et al. | Dec 2012 | A1 |
20130003409 | Vissenberg et al. | Jan 2013 | A1 |
20130010464 | Shuja et al. | Jan 2013 | A1 |
20130028557 | Lee et al. | Jan 2013 | A1 |
20130033867 | Coplin et al. | Feb 2013 | A1 |
20130037838 | Speier et al. | Feb 2013 | A1 |
20130038219 | Dau et al. | Feb 2013 | A1 |
20130039050 | Dau et al. | Feb 2013 | A1 |
20130039090 | Dau et al. | Feb 2013 | A1 |
20130044480 | Sato et al. | Feb 2013 | A1 |
20130077298 | Steele et al. | Mar 2013 | A1 |
20130107518 | Boyer et al. | May 2013 | A1 |
20130107527 | Boyer et al. | May 2013 | A1 |
20130107528 | Boyer et al. | May 2013 | A1 |
20130128593 | Luo | May 2013 | A1 |
20130170210 | Athalye | Jul 2013 | A1 |
20130201715 | Dau et al. | Aug 2013 | A1 |
20130208461 | Warton et al. | Aug 2013 | A1 |
20130208495 | Dau et al. | Aug 2013 | A1 |
20130214300 | Lerman et al. | Aug 2013 | A1 |
20130215612 | Garcia | Aug 2013 | A1 |
20130223057 | Gassner et al. | Aug 2013 | A1 |
20130229804 | Holder et al. | Sep 2013 | A1 |
20130229810 | Pelka et al. | Sep 2013 | A1 |
20130250584 | Wang et al. | Sep 2013 | A1 |
20130279198 | Lin et al. | Oct 2013 | A1 |
20130294059 | Galluccio et al. | Nov 2013 | A1 |
20130294063 | Lou et al. | Nov 2013 | A1 |
20130343045 | Lodhie et al. | Dec 2013 | A1 |
20130343055 | Eckert et al. | Dec 2013 | A1 |
20130343079 | Unger et al. | Dec 2013 | A1 |
20140003041 | Dau et al. | Jan 2014 | A1 |
20140029257 | Boyer et al. | Jan 2014 | A1 |
20140036510 | Preston et al. | Feb 2014 | A1 |
20140071687 | Tickner et al. | Mar 2014 | A1 |
20140168955 | Gershaw | Jun 2014 | A1 |
20140211457 | Tarsa et al. | Jul 2014 | A1 |
20140211462 | Keller et al. | Jul 2014 | A1 |
20140211476 | Yuan et al. | Jul 2014 | A1 |
20140211495 | Yuan et al. | Jul 2014 | A1 |
20140211497 | Yuan et al. | Jul 2014 | A1 |
20140211502 | Keller et al. | Jul 2014 | A1 |
20140211503 | Tarsa | Jul 2014 | A1 |
20140211504 | Yuan et al. | Jul 2014 | A1 |
20140211508 | Yuan et al. | Jul 2014 | A1 |
20140212090 | Wilcox et al. | Jul 2014 | A1 |
20140268879 | Mizuyama et al. | Sep 2014 | A1 |
20140334126 | Speier et al. | Nov 2014 | A1 |
20140355297 | Castillo et al. | Dec 2014 | A1 |
20140355302 | Wilcox et al. | Dec 2014 | A1 |
20150003059 | Haitz et al. | Jan 2015 | A1 |
20150049507 | Shani et al. | Feb 2015 | A1 |
20150109820 | Wilcox et al. | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
20014114 | Dec 2000 | DE |
20107425 | Jul 2001 | DE |
10047101 | May 2002 | DE |
10203106 | Jul 2003 | DE |
10302563 | Jul 2004 | DE |
10302564 | Jul 2004 | DE |
102006009325 | Sep 2007 | DE |
102006011296 | Sep 2007 | DE |
102006013343 | Sep 2007 | DE |
H10173870 | Jun 1998 | JP |
2000147264 | May 2000 | JP |
2004227934 | Aug 2004 | JP |
3093080 | Dec 2005 | JP |
2006131444 | May 2006 | JP |
20060221922 | Aug 2006 | JP |
2007123130 | May 2007 | JP |
WO 9621122 | Jul 1996 | WO |
WO 9621884 | Jul 1996 | WO |
WO 994531 | Jan 1999 | WO |
WO 03031869 | Apr 2003 | WO |
WO 2009012484 | Jan 2009 | WO |
WO 2011130648 | Oct 2011 | WO |
WO 2013078463 | May 2013 | WO |
WO 2013082537 | Jun 2013 | WO |
WO 2014120672 | Aug 2014 | WO |
WO 2014120672 | Sep 2014 | WO |
Entry |
---|
Iijima et al., “Document Scanner Using Polymer Waveguides With a Microlens Array,” Optical Engineering, vol. 41, Issue 11, pp. 2743-2748, Oct. 28, 2002 (4 pages). |
Ji et al., “Electrically Controllable Microlens Array Fabricated by Anisotropic Phase Separation From Liquid-Crystal and Polymer Composite Materials,” vol. 28, No. 13, Optics Letters, pp. 1147-1149, Jul. 1, 2003 (4 pages). |
International Search Report and Written Opinion for International Application No. PCT/US2014/013400, Applicant, Cree, Inc. (21 pages). |
Invitation to Pay Additional Fees for International Application No. PCT/US2014/013400, Applicant, Cree, Inc. (2 pages). |
Web page at http://www.fusionoptix.com/lighting/components/array-optics.htm, printed May 9, 2013 (2 pages). |
U.S. Appl. No. 13/657,421, filed Oct. 22, 2012 (38 pages). |
Web page at http://www.oluce.com/en/lamps/table/colombo-281-detail, printed Nov. 19, 2013 (2 pages). |
Drain, Kieran, “Transformations in Lighting: 2011 DOE Solid-State Lighting R&D Workshop, Panel 3: Novel Lighting Concepts for Large Interior Spaces,” PowerPoint presentation printed Nov. 2013 (23 pages). |
Number | Date | Country | |
---|---|---|---|
20140211496 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61758660 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13839949 | Mar 2013 | US |
Child | 14015801 | US | |
Parent | 13840563 | Mar 2013 | US |
Child | 13839949 | US | |
Parent | 13841074 | Mar 2013 | US |
Child | 13840563 | US | |
Parent | 13842521 | Mar 2013 | US |
Child | 13841074 | US | |
Parent | 13841651 | Mar 2013 | US |
Child | 13842521 | US | |
Parent | 13842557 | Mar 2013 | US |
Child | 13841651 | US |