This application contains material related to the following U.S. patent application: U.S. patent application Ser. No. 12/584,108, filed Aug. 31, 2009.
The subject matter relates to a temperature device for use in the estimation of deep tissue temperature (DTT) as an indication of the core body temperature of humans or animals. More particularly, the subject matter relates to constructions of zero-heat-flux DTT measurement devices.
Deep tissue temperature measurement is an estimate of the temperature of organs that occupy cavities of human and animal bodies (core body temperature). DTT measurement is desirable for many reasons. For example, maintenance of core body temperature in a normothermic range during the perioperative cycle has been shown to reduce the incidence of surgical site infection; and so it is beneficial to monitor a patient's core body temperature before, during, and after surgery. Of course noninvasive measurement is highly desirable, for the safety and the comfort of a patient, and for the convenience of the clinician. Thus, it is most advantageous to obtain a noninvasive DTT measurement by way of a device placed on the skin.
Noninvasive measurement of DTT by means of a zero-heat-flux device was described by Fox and Solman in 1971 (Fox R H, Solman A J. A new technique for monitoring the deep body temperature in man from the intact skin surface. J. Physiol. January 1971: 212(2): pp 8-10). The Fox/Solman system, illustrated in
The Fox/Solman and Togawa devices utilize heat flux normal to the body to control the operation of a heater that blocks heat flow from the skin through a thermal resistance in order to achieve a desired ZHF condition. This results in a construction that stacks the heater, thermal resistance, and thermal sensors of a ZHF temperature measurement device, which can result in a substantial vertical profile. The thermal mass added by Togawa's cover improves the tissue temperature uniformity of the Fox/Solman design and makes the measurement of deep tissue temperature more accurate. In this regard, since the goal is zero heat flux through the device, the more thermal resistance the better because it increases probe sensitivity. However, the additional thermal resistance adds mass and size, and also increases the time required to reach a stable temperature.
The size, mass, and cost of the Fox/Solman and Togawa devices do not promote disposability. Consequently, they must be sanitized after use, which exposes them to wear and tear and undetectable damage. The devices must also be stored for reuse. As a result, use of these devices raises the costs associated with zero-heat-flux DU measurement and can pose a significant risk of cross contamination between patients. It is thus desirable to reduce the size and mass of a zero-heat-flux DTT measurement device, without compromising its performance, in order to promote disposability after a single use.
An inexpensive, disposable, zero-heat-flux DU measurement device is described and claimed in the priority application and illustrated in
Operation of the heater of a zero-heat-flux DTT measurement device causes formation of an isothermal channel into tissue under the area of contact between the device and the skin of a subject. The zero-heat-flux DTT measurement is made by way of this isothermal channel. The larger the area of the heater, the larger the isothermal channel and the more deeply it penetrates into the tissue. The isothermal channel generally is at a higher temperature than the tissue which surrounds it, and so heat in the isothermal channel is lost to the surrounding tissue. This loss of heat reduces the size and depth of the isothermal channel.
Design and manufacturing choices made with respect to a zero-heat-flux DTT measurement device can influence the formation of an isothermal channel. Two such design choices relate to heater construction and measurement device size. In this regard, an important measure of heater performance is power density, the amount of power (in watts, for example) that a heater produces per unit of area (in square centimeters or cm2, for example). A convenient expression of power density is watts/cm2.
In a zero-heat-flux DTT measurement device, a heater with uniform power density does not generate a uniform temperature across its heat-emitting surface when the device is in contact with a semi-infinite solid, such as tissue. For example, if the circularly-shaped heater in the measurement device of
However, a zero-heat-flux DTT measurement device fabricated in a single size with a uniform-power-density heater that meets performance requirements for the deepest core body temperature measurement might be too large to be used at other measurement sites. Depending on the location, space for taking a core body measurement can be limited, especially if other measurements are made nearby. For example, abdominal or thoracic surgery might require simultaneous measurement of brain activity, blood oxygen, and core body temperature. In such a case, an optimal measurement site for placement of BIS electrodes, an oxygen monitor, and a DTT measurement device would be on the patient's head; preferably the patient's forehead (including the temples) which is convenient to use, nonsterile, visible, and validated for measuring core body temperature. Manifestly, the forehead area available for placement of measurement devices can quickly become limited as the number of different measurements increases. Accordingly, constructions for a disposable, noninvasive, zero-heat-flux DTT measurement device should have a relatively small contact area. However, downward scaling of a uniform-power-density device can reduce the reliability of the temperature measurements produced by a smaller device for at least two reasons: deterioration of the isothermal channel through which DTT is measured and influence of nonpowered areas on temperature uniformity.
Generally, zero-heat-flux DTT measurement requires a heater with the capacity to deliver enough heat to create and maintain an isothermal channel to some required depth. Reduction of the size of the measurement device requires constructions that still deliver enough heat to create the isothermal channel and that do not compromise the uniformity with which the heat is delivered. However, as the size of the heater is reduced, the size and depth of the isothermal channel is reduced, making it more susceptible to being compromised by the effects of multidimensional heat loss in surrounding tissue. This effect can be more pronounced at measurement sites where the core temperature is relatively deep in the body, such as on the sternum.
Reduction of heater size can also increase the effect which nonpowered areas of the measurement device have on the temperature uniformity of the heater. For a measurement device fabricated by metal deposition techniques, the conductive traces for thermal sensors and other electronic elements deliver no heat and occupy areas which are not powered by the heater. In some designs, such unpowered areas penetrate the heater, thereby reducing the temperature uniformity of the measurement device.
Inconsistencies and irregularities in the thermal insulation near the first thermal sensor can influence its operation and cause it to produce faulty readings. As the size of the measurement device is reduced, these inconsistencies and irregularities increasingly compromise the uniformity of the temperature.
Finally, if additional electronic elements are added to a zero-heat-flux DTT measurement device, additional leads and connections must be provided, which increases the total nonpowered area of the device and additionally complicates the heater layout.
An object of an invention completed in respect of the problems described above is to reduce the influence of multidimensional heat flow in tissue on the operation of a zero-heat-flux DTT measurement device constituted of a flexible substrate and an electrical circuit including a heater defined by a conductive trace which is disposed on a surface of the flexible substrate.
Another object of an invention completed in respect of the problems described above is to reduce the size of a zero-heat-flux DTT measurement device constituted of a flexible substrate and an electrical circuit including a heater defined by a conductive trace which is disposed on a surface of the flexible substrate, without compromising the ability of the device in creating an isothermal channel by which core body temperature is measured.
Another object of an invention completed in respect of the problems described above is to reduce the size of a zero-heat-flux DTT measurement device constituted of a flexible substrate and an electrical circuit including a heater defined by a conductive trace which is disposed on a surface of the flexible substrate, without compromising the uniformity of the temperature generated by the device to create an isothermal zone by which deep tissue temperature is measured.
Another object of an invention completed in respect of the problems described above is to reduce the size of a zero-heat-flux DTT measurement device constituted of a flexible substrate and electrically conductive traces on a surface of the substrate for a heater, at least two thermal sensors, and at least one additional electronic device.
These and other objects are achieved with a zero-heat-flux DTT measurement device constituted of a flexible substrate and an electrical circuit including a heater trace defining a generally planar heater surrounding a zone on a surface of the substrate, in which the heater has a central power density portion and a peripheral power density portion surrounding the central power density portion.
Preferably, the heater trace defines a heater with a central portion that surrounds the zone and has a first power density and a peripheral portion that surrounds the central portion and has a second power density that is greater than the first power density.
Alternatively, the heater trace defines a heater with a central heater element that surrounds the zone and a peripheral heater element around the outer periphery of the central heater element, in which the central and peripheral heater elements are separately controllable.
These and other objects are achieved with a zero-heat-flux DTT measurement device constituted of a flexible substrate and an electrical circuit including a heater trace with a pattern defining an annular heater, in which the heater trace has a power density with a first value in an area where the pattern is uninterrupted and a second value in areas where the pattern is interrupted, wherein the second value is greater than the first value.
These and other objects are achieved with a zero-heat-flux DTT measurement device constituted of a flexible substrate including a center section, a tab extending outwardly from the periphery of the center section, a tail extending outwardly from the periphery of the center section, and an electrical circuit on a surface of the flexible substrate, the electrical circuit including a heater trace defining a heater surrounding a zone of the surface, a first thermal sensor disposed in the zone, a second thermal sensor disposed on the tail, a plurality of electrical pads disposed on the tab, and a plurality of conductive traces connecting the first and second thermal sensors and the heater trace with the plurality of electrical pads, in which the tail and tab are separated so as to provide a path on the surface for the conductive traces connecting the second thermal sensor with electrical pads which is easily routed and does not cross the heater trace.
These and other objects are achieved with a zero-heat-flux DTT measurement device constituted of a flexible substrate and an electrical circuit on a surface of the flexible substrate, the electrical circuit including a heater trace defining a heater surrounding a zone of the surface, a first thermal sensor disposed in the zone, a second thermal sensor disposed outside of the heater, a plurality of electrical pads, and a plurality of conductive traces connecting the first and second thermal sensors and the heater trace with the plurality of electrical pads, in which at least one of the conductive traces is shared by at least two elements of the electrical circuit.
It is desirable that zero heat flux, deep tissue temperature measurement device constructions contact a minimal area of skin when placed for use, while creating and maintaining a well-formed isothermal channel for reliable, accurate measurement of core body temperature. The constructions should have a low mass and a low profile, and should present a relatively small area which contacts skin in order to make the measurement (hereinafter, this area is referred to as the “contact area” of the device). It is particularly desirable that a low-profile, light weight, flexible DTT measurement device construction enable zero heat flux temperature measurement at more than one site on a human or animal body.
A temperature device for zero-heat-flux DTT measurement includes a flexible substrate with at least two thermal sensors disposed in a spaced-apart relationship and separated by one or more flexible layers of thermally insulating material. Preferably the sensors are maintained in a spaced apart relationship by a flexible thermal (and electrical) insulator. The substrate supports at least the thermal sensors, the separating thermal insulator, and a heater. It is desirable that the substrate also support at least one additional electronic device in order to enrich the functionality of the temperature device.
Although temperature device constructions are described in terms of preferred embodiments comprising representative elements, the embodiments are merely illustrative. It is possible that other embodiments will include more elements, or fewer, than described. It is also possible that some of the described elements will be deleted, and/or other elements that are not described will be added. Further, elements may be combined with other elements, and/or partitioned into additional elements.
A Zero-Heat-Flux DTT Measurement Device
A layout for a zero-heat-flux, DTT measurement device is illustrated in
As per
In the specific layout shown of the preferred embodiment shown in
The flexibility or conformability of the flexible substrate can be enhanced by a plurality of slits 133 that define zones which move or flex independently of each other. In the preferred embodiment, the slits 133 are made in the center section 102 in a pattern that follows or accommodates the layout of the heater trace 122. The pattern at least partially separates the heater zones 124 so as to allow any one of the heater zones 124 to move independently of any other heater zone. The preferred pattern of slits is a radial pattern in that each slit is made along a respective radius of the circular center section 102, between adjacent heater zones, and extends along the radius from the periphery of the center section 102 toward the center of the circular shape of the section. This is not meant to exclude other possible slit configurations determined by the different shapes of the heater trace layout and the flexible substrate sections.
Sections of the flexible substrate are brought or folded together about an insulator to provide thermal resistance between the first and second thermal sensors 120 and 126 in a configuration that is preferred for ZHF temperature measurement. For example, at least the center and tail sections 102 and 104 of the flexible substrate are brought or folded together about a flexible insulator. Preferably, the first and second thermal sensors 120 and 126 are thereby disposed on respective sides of a thermal insulator. In this regard, with reference to
A flexible temperature measurement device construction includes an electrical circuit laid out on a side of a flexible substrate as shown in
The layout of the electrical circuit illustrated in
Another benefit of the preferred layout shown in
It is desirable that the temperature measurement device support a pluggable interface for convenience and for modularity of a patient vital signs monitoring system. In this regard, and with reference to
The temperature measurement device 200 is mounted on a region of skin where temperature is to be measured with the second thermal sensor 126 closest to the skin. As seen in
Use of an electrical circuit on a flexible substrate greatly simplifies the construction of a disposable temperature device for estimating deep tissue temperature, and substantially reduces the time and cost of manufacturing such a device. In this regard, manufacture of a temperature measurement device incorporating an electrical circuit laid out on a side of the flexible substrate 100 with the circuit elements illustrated in
In
As per
As per
As per
As per
As per
In a best mode of practice, a temperature measurement device according to this specification has been fabricated using the materials and parts listed in the following table. An electrical circuit with copper traces and pads conforming to
Zero-Heat-Flux DTT Measurement Device Constructions
Zero-heat-flux DTT measurement devices according to
These objectives are met by a heater construction with a central power density portion and a peripheral power density portion surrounding the central power density portion. The central power density portion operates with a first power density and the peripheral power density portion operates with a second power density of a higher magnitude than the first power density so as to maintain a substantially uniform temperature from the central heater portion to the periphery of the heater when the device is placed on skin to measure core body temperature.
In use, the measurement device 700 is disposed with the second thermal sensor 742 nearest the skin. The layer 702 is sandwiched between the first and second substrate layers 703 and 704 so as to separate the heater 726 and first thermal sensor 740 from the second thermal sensor 742. In operation, the layer 702 acts as a large thermal resistance between the first and second thermal sensors, the second thermal sensor 742 senses the temperature of the skin, and the first thermal sensor senses the temperature of the layer 702. While the temperature sensed by the first thermal sensor 740 is less than the temperature sensed by the second thermal sensor 742, the heater is operated to reduce heat flow through the layer 702 and the skin. When the temperature of the layer 702 equals that of the skin, heat flow through the layer 702 stops and the heater is switched off. This is the zero-heat-flux condition as it is sensed by the first and second sensors 740 and 742. When the zero-heat-flux condition occurs, the temperature of the skin, indicated by the second thermal sensor, is interpreted as core body temperature. In the zero-heat-flux DTT measurement device constructions that are to be described in detail, the heater 726 has a central heater portion 728 that operates with a first power density, and a peripheral heater portion 729 surrounding the central heater portion that operates with a second power density higher than the first power density. Of course, the flexibility of the substrate permits the measurement device 700, including the heater 726, to conform to body contours where measurement is made.
With reference to
As per
As seen in
A non-uniform power density heater structure can be understood with reference to
Preferably the heater trace 724 is continuous, but exhibits a nonuniform power density along its length such that the central heater portion 728 has a first power density and the peripheral portion 729 has a second power density that is greater than the first power density. With this configuration, a driving voltage applied to the heater 726 will cause the central heater portion 728 to produce less power per unit of heater area of the heater trace than the outer heater portion 729. The result will be a central annulus of heat at a first average power surrounded by a ring of heat a second average power higher than the first.
The differing power densities of the heater portions 728 and 729 may be invariant within each portion, or they may vary. Variation of power density may be step-wise or continuous. Power density is most simply and economically established by the width of the heater trace 724 and/or the pitch (distance) between the legs of a switchback pattern. For example, the resistance, and therefore the power generated by the heater trace, varies inversely with the width of the trace. For any resistance, the power generated by the heater trace also varies inversely with the pitch of (distance between) the switchback legs.
The electrical circuit 720 on the flexible substrate 701 seen in
Presume that the electrical circuit 720 includes a multi-pin electronically programmable memory (EEPROM) 770 such as a 24AA01T-I/OT manufactured by Microchip Technology and mounted by mounting pads to the zero-heat-flux DTT measurement device 700.
one lead of the second thermal sensor 742 and pin 1 of the memory 770 are connected by conductive trace portions to electrical pad 1;
leads of the first and second thermal sensors 740 and 742 and pin 4 of the memory 770 are connected by conductive trace portions to electrical pad 2;
one lead of the first thermal sensor 740 and pin 3 of the memory 770 are connected by conductive trace portions to electrical pad 3;
pins 2 and 5 of the memory 770 are connected by a conductive trace portion to electrical pad 4;
the return end of the heater trace 724 is connected by a conductive trace portion to electrical pad 5; and
the input end of the heater trace 724 is connected by a conductive trace portion to electrical pad 6.
With reference to
Refer again to
With respect to
The zero-heat-flux DTT measurement device 700, with the electrical circuit 720 laid out on one or more sides of the flexible substrate 701 as illustrated in
The physical layout of
Presuming inclusion of an EEPROM on the measurement device 700, a separate signal path is provided for EEPROM ground, and the thermal sensor signal paths are shared with various pins of the EEPROM as per
With reference to
In a best mode of practice, a temperature measurement device according to
In a second construction of the measurement device 700, illustrated in
In a third construction of the measurement device 700, illustrated in
In a fourth construction of the measurement device 700, illustrated in
In sixth and seventh constructions of the measurement device 700, illustrated in
In an eighth construction of the measurement device 700 including a heater 726 with two heater elements as per
It is not necessary that the flexible substrate be configured with a circular central section, nor is it necessary that the annular heater be generally circular. In ninth and tenth constructions of the measurement device 700, illustrated in
Although principles of temperature measurement device construction and manufacture have been described with reference to presently preferred embodiments, it should be understood that various modifications can be made without departing from the spirit of the described principles. Accordingly, the principles are limited only by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1363259 | Mills | Dec 1920 | A |
1526641 | Mulvany et al. | Feb 1925 | A |
1528383 | Schmidt | Mar 1925 | A |
1638943 | Little | Aug 1927 | A |
2378804 | Sparrow et al. | Jun 1945 | A |
2381819 | Graves et al. | Aug 1945 | A |
2519785 | Okolicsanyi | Aug 1950 | A |
2629757 | McKay | Feb 1953 | A |
2807657 | Jenkins et al. | Sep 1957 | A |
2969141 | Katzin | Jan 1961 | A |
3099575 | Hill | Jul 1963 | A |
3099923 | Benzinger | Aug 1963 | A |
3215265 | Welin-Berger | Nov 1965 | A |
3235063 | Jarund | Feb 1966 | A |
3238775 | Watts | Mar 1966 | A |
3301394 | Baermann et al. | Jan 1967 | A |
3367182 | Baxter | Feb 1968 | A |
3427209 | Hager, Jr. | Feb 1969 | A |
3469685 | Baermann | Sep 1969 | A |
3552558 | Poncy | Jan 1971 | A |
3581570 | Wortz | Jun 1971 | A |
3607445 | Hines | Sep 1971 | A |
3720103 | Adams et al. | Mar 1973 | A |
3767470 | Hines | Oct 1973 | A |
3781749 | Iles et al. | Dec 1973 | A |
3809230 | Poncy | May 1974 | A |
3833115 | Schapker | Sep 1974 | A |
3877463 | Cary et al. | Apr 1975 | A |
3933045 | Fox et al. | Jan 1976 | A |
3942123 | Georgi | Mar 1976 | A |
4022063 | West et al. | May 1977 | A |
4024312 | Korpman | May 1977 | A |
6886978 | Tokita et al. | May 1977 | B2 |
4142631 | Brandriff | Mar 1979 | A |
4149066 | Niibe | Apr 1979 | A |
4182313 | Aslan | Jan 1980 | A |
4253469 | Aslan | Mar 1981 | A |
4275741 | Edrich | Jun 1981 | A |
4347854 | Gosline et al. | Sep 1982 | A |
4407292 | Edrich | Oct 1983 | A |
4494550 | Blazek et al. | Jan 1985 | A |
4539994 | Baumbach et al. | Sep 1985 | A |
4541734 | Ishizaka | Sep 1985 | A |
4572213 | Kawahara | Feb 1986 | A |
4574359 | Ishizaka et al. | Mar 1986 | A |
4577976 | Hayashi et al. | Mar 1986 | A |
4592000 | Ishizaka et al. | May 1986 | A |
4629336 | Ishizaka | Dec 1986 | A |
4648055 | Ishizaka et al. | Mar 1987 | A |
4652145 | Bjornberg | Mar 1987 | A |
4669049 | Kosednar et al. | May 1987 | A |
4747413 | Bloch | May 1988 | A |
4841543 | Dittmar et al. | Jun 1989 | A |
4859078 | Bowman et al. | Aug 1989 | A |
4899297 | Sano et al. | Feb 1990 | A |
4955380 | Edell | Sep 1990 | A |
4987579 | Yoshinaka et al. | Jan 1991 | A |
5002057 | Brady | Mar 1991 | A |
5015102 | Yamaguchi | May 1991 | A |
5033866 | Kehl et al. | Jul 1991 | A |
5040901 | Suzuki | Aug 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5062432 | James et al. | Nov 1991 | A |
5088837 | Shiokawa et al. | Feb 1992 | A |
5149200 | Shiokawa et al. | Sep 1992 | A |
5172979 | Barkley et al. | Dec 1992 | A |
5178468 | Shiokawa et al. | Jan 1993 | A |
5199436 | Pompei et al. | Apr 1993 | A |
5255979 | Ferrari | Oct 1993 | A |
5263775 | Smith et al. | Nov 1993 | A |
5293877 | O'Hara et al. | Mar 1994 | A |
5483190 | McGivern | Jan 1996 | A |
5516581 | Kreckel et al. | May 1996 | A |
5576224 | Yakura et al. | Nov 1996 | A |
5816706 | Heikkila et al. | Oct 1998 | A |
5884235 | Ebert | Mar 1999 | A |
5990412 | Terrell | Nov 1999 | A |
5993698 | Frentzel et al. | Nov 1999 | A |
6001471 | Bries et al. | Dec 1999 | A |
6014890 | Breen | Jan 2000 | A |
6019507 | Takaki | Feb 2000 | A |
6059452 | Smith et al. | May 2000 | A |
6203191 | Mongan | Mar 2001 | B1 |
6220750 | Palti | Apr 2001 | B1 |
6224543 | Gammons et al. | May 2001 | B1 |
6231962 | Bries et al. | May 2001 | B1 |
6253098 | Walker et al. | Jun 2001 | B1 |
6255622 | May et al. | Jul 2001 | B1 |
6278051 | Peabody | Aug 2001 | B1 |
6280397 | Yarden et al. | Aug 2001 | B1 |
6283632 | Takaki | Sep 2001 | B1 |
6292685 | Pompei | Sep 2001 | B1 |
6312391 | Ramadhyani et al. | Nov 2001 | B1 |
6355916 | Siefert | Mar 2002 | B1 |
6377848 | Garde et al. | Apr 2002 | B1 |
6398727 | Bui et al. | Jun 2002 | B1 |
6495806 | Siefert | Dec 2002 | B2 |
6501364 | Hui et al. | Dec 2002 | B1 |
6553243 | Gurley | Apr 2003 | B2 |
6595929 | Stivoric et al. | Jul 2003 | B2 |
6676287 | Mathis et al. | Jan 2004 | B1 |
6773405 | Fraden et al. | Aug 2004 | B2 |
6827487 | Baumbach | Dec 2004 | B2 |
6890096 | Tokita et al. | May 2005 | B2 |
6929611 | Koch | Aug 2005 | B2 |
7059767 | Tokita et al. | Jun 2006 | B2 |
7270476 | Tokita et al. | Sep 2007 | B2 |
7299090 | Koch | Nov 2007 | B2 |
7306283 | Howick et al. | Dec 2007 | B2 |
7318004 | Butterfield | Jan 2008 | B2 |
7354195 | Sakano | Apr 2008 | B2 |
7364356 | Dicks et al. | Apr 2008 | B2 |
7410291 | Koch | Aug 2008 | B2 |
7426872 | Dittmar et al. | Sep 2008 | B2 |
7500780 | Miki et al. | Mar 2009 | B2 |
7597668 | Yarden | Oct 2009 | B2 |
7625117 | Haslett et al. | Dec 2009 | B2 |
7632008 | Recht et al. | Dec 2009 | B2 |
7988355 | Gierer | Aug 2011 | B2 |
8089245 | Kato et al. | Jan 2012 | B2 |
20020097775 | Hamouda et al. | Jul 2002 | A1 |
20030130590 | Bui et al. | Jul 2003 | A1 |
20040210280 | Liedtke | Oct 2004 | A1 |
20050101843 | Quinn et al. | May 2005 | A1 |
20050245839 | Stivoric et al. | Nov 2005 | A1 |
20070167859 | Finneran et al. | Jul 2007 | A1 |
20070206655 | Haslett et al. | Sep 2007 | A1 |
20070282218 | Yarden | Dec 2007 | A1 |
20080170600 | Sattler et al. | Jul 2008 | A1 |
20080200969 | Weber | Aug 2008 | A1 |
20090129433 | Zhang et al. | May 2009 | A1 |
20100121217 | Padiy et al. | May 2010 | A1 |
20100134122 | Furumura et al. | Jun 2010 | A1 |
20100268113 | Bieberich | Oct 2010 | A1 |
20100268114 | Van Duren | Oct 2010 | A1 |
20100292605 | Grassl et al. | Nov 2010 | A1 |
20110051776 | Bieberich et al. | Mar 2011 | A1 |
20110249701 | Bieberich et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
2 538 940 | Jun 2006 | CA |
2 583 034 | Sep 2007 | CA |
3527942 | Feb 1987 | DE |
0239824 | May 1992 | EP |
2266771 | Nov 1993 | GB |
55-29794 | Mar 1980 | JP |
57-183832 | Dec 1982 | JP |
H08-211000 | Aug 1996 | JP |
2002202205 | Jul 2002 | JP |
2007-212407 | Aug 2007 | JP |
2009-080000 | Apr 2009 | JP |
WO 9960356 | Nov 1999 | WO |
WO 0058702 | Oct 2000 | WO |
WO 0131305 | May 2001 | WO |
WO 02066946 | Aug 2002 | WO |
WO 2007060609 | May 2007 | WO |
WO 2008068665 | Jun 2008 | WO |
WO 2008078271 | Jul 2008 | WO |
WO 2009141780 | Nov 2009 | WO |
WO 2010082102 | Jul 2010 | WO |
WO 2010103436 | Sep 2010 | WO |
WO 2010116297 | Oct 2010 | WO |
WO 2010120360 | Oct 2010 | WO |
WO 2010120362 | Oct 2010 | WO |
WO 2011025521 | Oct 2010 | WO |
WO 2011126543 | Oct 2011 | WO |
WO 2011146098 | Nov 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20110249701 A1 | Oct 2011 | US |