Contactless card and method of assembly

Information

  • Patent Grant
  • 10860914
  • Patent Number
    10,860,914
  • Date Filed
    Tuesday, December 31, 2019
    4 years ago
  • Date Issued
    Tuesday, December 8, 2020
    3 years ago
Abstract
A method of forming a contactless transaction card. The method may include providing a card body, defining a window, and attaching an antenna assembly layer to the card body, where the antenna assembly layer includes an antenna, a set of curable connectors, disposed on a set of end regions of the antenna within the window, and a UV-transparent layer, supporting the antenna. The method may include providing a contactless chip module within the window on a first side of the antenna assembly layer, and directing radiation through the UV-transparent layer, wherein the contactless chip module is electrically connected to the antenna via the curable connectors.
Description
FIELD

Embodiments of the present disclosure relate to transaction cards and, more particularly, to transaction cards having a metallic body.


BACKGROUND

Generally, transaction cards such as smart credit/debit cards, access cards, EMV cards, and the like may include components such as electronic chips to perform memory storage, computing, or communication functions. Transaction cards having electronic chips generally include a region on or near the card surface to embed the electronic chip. Such cards may or may not have contactless capabilities. Contactless capability enables wireless communication using radio frequency (RF) signals provided by radio communication functionality built into the contactless card.


Metal transaction cards, such as metal credit cards, have enjoyed increasing popularity in recent years. Because the body of a metal credit cards is electrically conductive, there are various difficulties in fabricating a metal credit card, especially in the case of contactless cards that incorporate an electrically conductive antenna such as in the shape of a coil. One approach is to laminate a coil onto one side of the metal card. In the case of assembling a plastic transaction card, a layered stack formed of a front layer, back layer and coil may be preassembled, so that the electronic chip may be placed in the preassembled layer stack to be bonded to the other components of the card, using a conductive material. However, this bonding approach is somewhat imprecise, and does not present a robust approach for forming metal contactless cards, due to the possibility of accidental contact of the metal card body with the conductive material.


With respect to the above considerations, the present embodiments are provided.


SUMMARY

This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended as an aid in determining the scope of the claimed subject matter.


In one embodiment, a method of forming a contactless transaction card is provided. The method may include providing a card body, defining a window, and attaching an antenna assembly layer to the card body, where the antenna assembly layer includes an antenna, a set of curable connectors, disposed on a set of end regions of the antenna within the window, and a UV-transparent layer, supporting the antenna. The method may include providing a contactless chip module within the window on a first side of the antenna assembly layer, and directing radiation through the UV-transparent layer, wherein the contactless chip module is electrically connected to the antenna via the curable connectors.


In a further embodiment, a contactless transaction card is provided. The contactless transaction card may include a card body, defining a window, and an antenna assembly layer, disposed subjacent the card body, where the antenna assembly layer includes an antenna, comprising a set of end regions, a UV-transparent layer, supporting the antenna, and a set of curable connectors, disposed on the set of end regions. The set of end regions, and set of curable connectors may be disposed within the window. The contactless transaction card may further include a contactless chip module, disposed within the window, and electrically connected to the set of end regions, via the set of curable connectors.


In another embodiment, a method of forming a contactless transaction card, may include providing a card body that defines a window, and coupling an antenna assembly layer to the card body, where the antenna assembly layer includes an antenna, and a transparent layer, supporting the antenna. The method may include providing a first curable connector on a first end region of the antenna, and a second curable connector on a second end region of the antenna, wherein the first end region, the second end region, the first curable connector and the second curable connector are disposed in the window. The method may also include providing a contactless chip module within the window on a first side of the transparent layer, and directing radiation through the transparent layer from a second side of the transparent layer, opposite the first side. As such, the contactless chip module may be electrically connected to the antenna via the first curable connector and the second curable connector.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate example approaches of the disclosure, including the practical application of the principles thereof, as follows:



FIG. 1 is a top view illustrating a contactless card, in accordance with embodiments of the present disclosure;



FIG. 2 is a side exploded view of a variant of the contactless card of FIG. 1, in accordance with embodiments of the present disclosure;



FIG. 3 is a side exploded view of another variant of the contactless card of FIG. 1, in accordance with embodiments of the present disclosure;



FIG. 4A is a top view illustrating an antenna assembly layer according to some embodiments of the disclosure;



FIG. 4B is a top view illustrating details of end region of an antenna, according to embodiments of the disclosure;



FIG. 5 is a side exploded view of a contactless card illustrating one instance during fabrication of a contactless card, in accordance with embodiments of the present disclosure;



FIG. 6 is a top perspective view of the portions of the contactless card at the instance of FIG. 5, in accordance with embodiments of the present disclosure;



FIG. 7 illustrates a flowchart for performing methods in accordance with embodiments of the present disclosure;



FIG. 8 illustrates another flowchart for performing methods in accordance with embodiments of the present disclosure; and



FIG. 9 illustrates another flowchart for performing methods in accordance with embodiments of the present disclosure.





The drawings are not necessarily to scale. The drawings are merely representations, not intended to portray specific parameters of the disclosure. The drawings are intended to depict example embodiments of the disclosure, and therefore are not be considered as limiting in scope. In the drawings, like numbering represents like elements.


Furthermore, certain elements in some of the figures may be omitted, or illustrated not-to-scale, for illustrative clarity. The cross-sectional views may be in the form of “slices”, or “near-sighted” cross-sectional views, omitting certain background lines otherwise visible in a “true” cross-sectional view, for illustrative clarity. Furthermore, some reference numbers may be omitted in certain drawings.


DETAILED DESCRIPTION

The present embodiments will now be described more fully hereinafter with reference to the accompanying drawings, where some embodiments are shown. The subject matter of the present disclosure may be embodied in many different forms and are not to be construed as limited to the embodiments set forth herein. These embodiments are provided so this disclosure will be thorough and complete, and will fully convey the scope of the subject matter to those skilled in the art. In the drawings, like numbers refer to like elements throughout.


Embodiments herein are directed to contactless transaction cards including an electronic chip module, or semiconductor chip module, as well as an antenna. The present embodiments may be suitable, for example, in transaction cards having a metallic or otherwise electrically conductive body.



FIG. 1 is a top view illustrating a contactless card 100, arranged in accordance with embodiments of the present disclosure. FIG. 2 is a side exploded view of a variant of the contactless card of FIG. 1, in accordance with embodiments of the present disclosure, while FIG. 3 is a side exploded view of another variant of the contactless card of FIG. 1, in accordance with embodiments of the present disclosure.


As used herein, the term contactless card may refer to a transaction card, such as a credit card, debit card, or other card. The contactless card may include an electronic component, such as a semiconductor chip, or semiconductor chip module, as well as circuitry for wireless communication, such as an antenna. In various embodiments, contactless cards as detailed herein may be arranged in conformance with SO/IEC 7816, an international standard related to electronic identification cards with contacts, where the standard is managed jointly by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC).


As shown in FIG. 2, for example, the contactless card 100 may be arranged with a card body 102. In accordance with various embodiments, the card body 102 may formed of a metallic material. In these embodiments, the contactless card 100 may thus be deemed a metallic contactless card. Generally a card body of the contactless cards of the present embodiments may constitute a relatively thicker layer of a transaction card as opposed to other layers that are laminated together with the card body to form the complete contactless card. As shown in FIG. 1, for example, the contactless card 100 includes a window 104, representing an aperture or recess to accommodate an electronic chip module, which module may include an electronic chip and packaging, such as contacts, for electrically coupling to external components. In the embodiments of FIG. 1-3, the electronic chip module is configured to contact an antenna, for example, and is referred to herein as a contactless chip module 140. The contactless card 100 may include an antenna assembly layer 106, which layer is attached to the card body 102 after assembly. The antenna assembly layer 106 may include an antenna 110, a set of curable connectors 112, disposed on a set of end regions of the antenna 110 that lie within the window 104, and a UV-transparent layer 109, supporting the antenna 110. The set of end regions are shown as serpentine regions, located at opposite ends of the antenna 110. In various embodiments, these components of the antenna assembly layer 106 may be assembled to one another before attachment to other components of the contactless card 100, as detailed below.


As shown in FIG. 2, the contactless card 100 may also include a contactless chip module 140, within the window 104, and disposed on a first side of the antenna assembly layer 106, where the first side 111, is an upper side in the view of FIG. 2. When fully assembled the contactless chip module 140 may be electrically connected to the set of end regions, via the set of curable connectors 112. For example, the electronic chip module 140 may include a semiconductor die (not separately shown) and a set of contacts or leads that come into contact with the curable connectors 112.


As shown in FIG. 1, the curable connectors 112 may lie within the window 104 so as not to be in contact with the card body 102. Thus, in the case where the card body 102 is a metallic body, the curable connectors 112 and the antenna 110 will not be electrically shorted to the card body 102. As further shown in FIG. 2, the contactless chip module 140 may lie within the window 104 so as not to electrically contact the card body 102 at the edges 114 of the window 104.


Notably, while the antenna 110 may be disposed on the first side 111 of the UV-transparent layer 109, facing the card body 102, an insulator material, meaning an electrical insulator, may be disposed between the antenna 110 and the card body 102 in the outer region of the antenna 110 that lies outside of the window 104. In one example, the antenna 110 may be formed with a metallic core that is covered with an insulating coating. Thus, when assembled, where the card body 102 is bonded to the UV-transparent layer 109, the metallic core of the antenna 110 is still electrically isolated from the card body 102, preventing any electrical shorting between the antenna 110 and card body 102 in embodiments where the card body 102 is formed of a metallic material.


As further illustrated in FIG. 1 and FIG. 2, the UV-transparent layer 109 may define a recess 108. As shown in FIG. 2, the recess 108 is aligned within the window 104, such as being centered within the window 104. As shown in FIG. 2, the window 104 defines a first area (A1, the area within the dotted line, where the area is defined within the X-Y plane of the Cartesian coordinate system shown in FIG. 1), while the recess 108 defines a second area (A2, the area within the solid line) that is smaller than the first area. Notably, the contactless chip module 140 defines a third area (A3) intermediate in size between the first area and the second area.



FIG. 3 presents another embodiment of a contactless card 150, where the contactless card 150 includes various components of the contactless card 100, as discussed above. In this embodiment, an electrically insulating layer, shown as layer 152, is disposed between the antenna assembly layer 106 and the card body 102 to provide electrical isolation between the antenna 110 of antenna assembly layer 106 and the card body 102. Notably, the layer 152 may include an opening to form part of the window 104 in the region of the contactless chip module 140, to accommodate the contactless chip module 140 for connection to the antenna 110.


To assemble the contactless card 100 or contactless card 150, when the contactless chip module 140 is joined to the antenna assembly layer 106, the contactless chip module 140 may be aligned within the window 104, such as being generally centered within the window 104. Accordingly, when assembled, in the embodiments of FIGS. 2 and 3, the contactless chip module 140 is arranged within the window 104, and in electrical contact with the antenna 110 via the curable connectors 112, without contacting the card body 102.


To illustrate further details of the geometry for assembling a contactless card FIG. 4A is a top view showing details of the antenna assembly layer 106 according to some embodiments of the disclosure. In this view, a portion of antenna assembly layer 106 is shown that lies within the window 104, as well as an outer portion 116 of the antenna assembly layer 106 that lies subjacent to the card body 102, as explained previously. The antenna 110 may define any suitable shape, as generally shown in FIG. 4A. In two different end regions, the antenna 110 terminates within the window 104, as shown. In particular, an end region 122 and an end region 124 of the antenna 110 are arranged towards opposite sides of the window 104. In embodiments where the UV-transparent layer 109 includes the recess 108, the end region 122 and end region 124 may be arranged on opposite sides of the recess 108.


In particular embodiments, the set of end regions of an antenna, such as end region 122 and end region 124, may be arranged in a serpentine pattern (shown in FIG. 4A), spiral pattern, or other pattern. As further illustrated in FIG. 4A, a first curable connector 132 and a second curable connector 134 are arranged over the end region 122 and the end region 124, respectively. Moreover, the first curable connector 132 extends partially over the end region 122 of the antenna 110, and partially over an exposed region of the UV-transparent layer 109.


In particular, as shown in the detailed view of FIG. 4B, the serpentine pattern of the end region 122 or end region 124 defines open areas of the UV-transparent layer 109 that are not covered by the antenna 110. Thus, first regions 136 of the first curable connector 132 or second curable connector 134 will lie directly over the material of antenna 110, which material may be an opaque metal wire or foil. Second regions 138 of the first curable connector 132, or second curable connector 134 will lie directly over exposed regions of the UV-transparent layer 109. These second regions 138 will be directly exposed to light such as UV radiation and/or visible radiation that is directed to the underside of the UV-transparent layer 109, that is the side opposite to first side 111, defined above.


To facilitate assembly of the contactless card 100 or contactless card 150, for example, the curable connectors 112 (shown as first curable connector 132 and second curable connector 134 in FIG. 4A) may be formed of a conductive adhesive. Examples of a suitable conductive adhesive according to the present embodiments include a conductive epoxy material, or similar conductive composite. The conductive adhesive may be applied on top of the end region 122 and end region 124 as a dot or similarly shaped object, as suggested by the illustration of FIG. 4A. The first curable connector 132 and second curable connector 134 may be placed well away from the edge 114 of the window 104, so that when a card body 102 is brought into contact with the antenna assembly layer 106, the first curable connector 132 and second curable connector 134 do not deform sufficiently to touch the edge 114, avoiding electrical connection between the antenna 110 and card body 102.


Thus, with reference again to FIGS. 2 and 3, the aforementioned embodiments of a contactless card may be formed by the process of attaching the antenna assembly layer 106 to the card body 102, with optional layers disposed between the antenna assembly layer 106 and card body, such as in the embodiment of FIG. 3. As such, a window 104, already defined at least partially within the card body 102, will form a recess that extends at least to the top surface of the antenna assembly layer 106.


A contactless chip module 140 may then be provided within the window 104 on the first side 111 of antenna assembly layer 106. To affix the contactless chip module in the contactless card, and to electrically connect the contactless chip module to the antenna 110, the contactless chip module 140 may be brought into contact with the curable connectors 112 (or first curable connector 132, second curable connector 134), so the curable connectors 112 may be cured while in contact with the contactless chip module 140. In this manner, after curing, a mechanical bond and an electrical connection is established between the antenna 110 and contactless chip module 140.


Advantageously, the curing of curable connectors 112 may take place by directing short exposures of radiation through the UV-transparent layer 109, while the contactless chip module 140 is in place within the window 104. The curable connectors 112 may be formed of a chemical or set of chemicals that are amenable to curing when exposed to suitable radiation, such as ultraviolet radiation.


To illustrate this process, FIG. 5 presents a side exploded view of a contactless card illustrating one instance during fabrication of a contactless card, in accordance with embodiments of the present disclosure. FIG. 6 presents a top perspective view of the same operation as depicted in FIG. 5, with the card body 102 removed for clarity. In the operation depicted in FIGS. 5 and 6, a light source, such as a laser source 160, is arranged on the lower side 115 of the UV-transparent layer 109. In the example of FIG. 5, a laser source 160 is arranged to direct the laser beams 162 through the UV-transparent layer 109 to a pair of curable connectors 112, disposed on the first side 111 of the UV-transparent layer 109. According to different embodiments, the laser source 160 may include, for example, two laser beams, to simultaneously direct two different laser beams, each beam shown as a laser beam 162, to two different curable connectors. Thus, a first exposure, such as a first UV laser beam exposure may be directed to a first curable connector of the pair of curable connectors 112, while a second exposure, such as a second UV laser beam exposure may be directed to a second curable connector of the pair of curable connectors 112.


Alternatively, the laser source 160 may use just one laser to direct the laser beam 162 in a sequential manner through the UV-transparent layer 109 to a first of the curable connectors 112, and then to a second of the curable connectors 112. In accordance with various non-limiting embodiments, a wavelength of the radiation of the laser beam 162 may be in the ultraviolet range, such as below approximately 400 nm. The wavelength may be chosen to be suitable for a given material of the curable connectors 112. For example, some known epoxies may be suitable for curing using radiation in the range of 320 nm to 380 nm. Accordingly, the wavelength of laser beam 162 may be set in the range of 320 nm to 380 nm for examples where the curable connectors 112 are made from epoxy that is curable in this wavelength range. Of course for epoxies or other curable materials that are suitable for curing in a different wavelength range, the wavelength of laser beam 162 may be in the different range. In accordance with various non-limiting embodiments, the UV-transparent layer 109 may transmit more than 5%, than 10%, more than 20%, more than 50% percent of radiation from the side 115 to the first side 111, for UV radiation in the suitable range for curing the curable connectors 112, such as below 400 nm. Notably, the percent transmission of the UV-transparent layer 109 suitable for curing the curable connectors 112 will be dependent upon the epoxy material or other material used for curable connectors, and the sensitivity to the radiation. In some cases, a lower transmission may be compensated by increasing the amount of exposure time required for complete curing. Also, the power output of the laser beam 162 may be adjusted upwardly to adapt to lower percent transmission.


In addition, referring again to FIG. 4B, the serpentine pattern of the end regions 122, 124 may be arranged to provide a large fraction of exposed area of the curable connectors 112, meaning the area of second regions 138 (A138). For example, the ratio of A138 to the total area of the first regions 136 and second regions 138 (A136+138), may be greater than 10%, greater than 20%, greater than 30%, greater than 50%, in some non-limiting embodiments. Again, the power or duration of exposure to laser beam 162 may be adjusted according to the percent transmission of UV-transparent layer 109 as well as the ratio of A138/(A136+138). Accordingly, the curable connectors may be exposed for a duration of 0.1 to seconds to many seconds to cause the curable connectors to cure. Notably, curing time may vary with energy intensity and exact material of the curable connectors. For example, curing using a mercury vapor lamp source having energy density in the range of 200 watt/inch may cure the curable connectors in a time frame of seconds to one minute, when positioned approximately 6-10 inches from the curable connectors. Curing user a laser source affords higher energy density and may therefore effect curing in a matter of tenths of seconds to a few seconds, for example.


In embodiments of a conductive adhesive material, such as conductive epoxy, the exposure to the laser beams 162 may result in rapid curing of the curable connectors 112, forming a solid bond between the antenna 110 and the contactless chip module 140, through the curable connectors 112. UV exposure accordingly triggers a polymerization (curing) reaction, promoting adhesion of the contactless chip module 140 with the antenna assembly layer 106.


Because the curable connectors are electrically conductive, an electrically conductive path is thus established between the antenna 110 and contactless chip module 140. The exposure to the laser beams 162 may be of sufficiently short duration, wherein the curable connectors 112 do not unduly deform, or spread out, so the curable connectors 112 do not touch the edges 114 of the window 104 defined by the card body 102.


Referring again to FIGS. 1-3, according to some embodiments, the recess 108 may accommodate a portion of the curable connectors 112 during the process to join the contactless chip modules 140 to the antenna 110. Because the recess 108 is below the main surface of the UV transparent layer on the first side 111, the curable connectors 112, under pressure, may tend to deform so as to flow into the recess 108, rather than toward the edge 114.



FIG. 7 illustrates a flowchart 700 for performing methods in accordance with embodiments of the present disclosure. At block 710, a card body of a transaction card is provided, where the card body of includes a window. In some embodiments, the card body may be formed of a metallic material, while the window extends through the card body.


At block 720 an antenna assembly layer is attached to the card body. The antenna assembly layer may include a thin transparent layer, such as a UV transparent layer, where the transparent layer supports an antenna on a first side of the transparent layer. The antenna assembly layer may further include a set of curable connectors that are disposed over end regions of the antenna. In various embodiments, the set of curable connectors may be two curable connectors that are electrically conductive and are placed over the opposing end regions of the antenna in an uncured state. Suitable material for the set of curable connectors includes a conductive epoxy, or other conductive composite.


At block 730, a contactless chip module is provided within the window on the first side of the antenna assembly layer. In various embodiments, the curable connectors may extend above the antenna. As such, the contactless chip module may be brought into direct contact with the set of curable connectors. The contactless chip module may include two electrical contacts, for example, that are brought into contact with two respective curable connectors.


At block 740, when the contactless chip module is disposed in the window, radiation is directed through the transparent layer, from a second side of the antenna assembly layer, opposite the first side. The radiation may constitute UV radiation that cures the curable connectors, and facilitates adhesion between the curable connectors and the contactless chip module. In particular embodiments, the radiation may be directed as one or more laser beams characterized by an electromagnetic wavelength in the ultraviolet range, that impinges upon each curable connector of the set of curable connectors. At least a portion of the curable connectors may be directly disposed over the UV transparent layer, while another portion is disposed over end regions of the antenna. As such, the curable connectors may be sufficiently exposed to the radiation to cause rapid curing, wherein the contactless chip module becomes electrically connected to the antenna via the set of curable connectors.



FIG. 8 illustrates another flowchart 800 for performing methods in accordance with other embodiments of the present disclosure.


At block 810, an antenna assembly layer is provided, including an antenna, a set of curable connectors, disposed on the antenna, and a transparent layer, supporting the antenna. In various embodiments, the set of curable connectors may be two curable connectors that are electrically conductive and are placed over the opposing end regions of the antenna in an uncured state. Suitable material for the set of curable connectors includes a conductive epoxy, or other conductive composite.


At block 820, a contactless chip module is placed on a first side of the antenna assembly layer. The set of curable connectors may extend above the surface of the antenna, so that the contactless chip module is brought into direct contact with the set of curable connectors. The contactless chip module may include two electrical contacts, for example, that are brought into contact with two respective curable connectors.


At block 830, radiation is directed through the transparent layer, from a second side of the antenna assembly layer, wherein the contactless chip module is electrically connected to the antenna via the set of curable connectors. The radiation may constitute UV radiation that cures the curable connectors, and facilitates adhesion between the curable connectors and the contactless chip module. In particular embodiments, the radiation may be directed as one or more laser beams characterized by an electromagnetic wavelength in the ultraviolet range, that impinges upon each curable connector of the set of curable connectors. As such, the curable connectors may experience rapid curing, wherein the contactless chip module becomes electrically connected to the antenna via the set of curable connectors.


At block 840 a card body having a window is attached to the antenna assembly layer, in a manner wherein the contactless chip is disposed within the window and does not contact the card body. In other words, the card body may be placed in alignment with the antenna assembly layer in a manner that positions the window around the contactless chip.



FIG. 9 illustrates another flowchart 900 for performing methods in accordance with embodiments of the present disclosure. At block 910, a metallic card body is provided, where the metallic card body defines a chip window. The chip window may extend entirely through the metallic card body.


At block 920 an antenna assembly layer is aligned adjacent to the metallic card body, wherein the antenna assembly layer includes an antenna and transparent layer supporting the antenna. The antenna may include a first end region and second end region, such that the aligning of the antenna assembly layer places the first end region and the second end region within the chip window. In some embodiments, the antenna assembly layer may be joined to the card body at this stage.


At block 930 a first curable connector is provided on the first end region of the antenna, and a second curable connector is provided on the second end region of the antenna. The placement of the first curable connector and second curable connector on the first end region and the second end region, respectively, may take place when the first end region and second end region are located within the window of the card body. The first curable connector and the second curable connector may be electrically conductive such as a conductive epoxy, or other conductive composite.


At block 940 a contactless chip module is provided on the first curable connector and the second curable connector, in a manner wherein the contactless chip module does not contact the metallic card body. The contactless chip module may include a semiconductor chip, and two electrical contacts, for example, that are brought into contact with the first curable connector and the second curable connector when the contactless chip module is placed in the window of the metallic card body.


At block 950, a laser (beam) is directed through the transparent layer to the first curable connector and the second curable connector, so as to cure the first curable connector and the second curable connector. In some examples, the transparent layer may be a UV transparent layer, and the laser may be formed of radiation having a wavelength in the UV range. In some non-limiting embodiments, the laser may expose the first curable connector and the second curable connector for a duration of between 0.1 second and several seconds. As such, the contactless chip module may be electrically connected to the antenna, in a manner wherein the first curable connector and the second curable connector do not contact the metallic card body.


The foregoing discussion has been presented for purposes of illustration and description and is not intended to limit the disclosure to the form or forms disclosed herein. For example, various features of the disclosure may be grouped together in one or more aspects, embodiments, or configurations for the purpose of streamlining the disclosure. However, it should be understood that various features of the certain aspects, embodiments, or configurations of the disclosure may be combined in alternate aspects, embodiments, or configurations. Moreover, the following claims are hereby incorporated into this Detailed Description by this reference, with each claim standing on its own as a separate embodiment of the present disclosure.


As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural elements or steps, unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.


The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Accordingly, the terms “including,” “comprising,” or “having” and variations thereof are open-ended expressions and can be used interchangeably herein.


The phrases “at least one”, “one or more”, and “and/or”, as used herein, are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C”, “at least one of A, B, or C”, “one or more of A, B, and C”, “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.


All directional references (e.g., proximal, distal, upper, lower, upward, downward, left, right, lateral, longitudinal, front, back, top, bottom, above, below, vertical, horizontal, radial, axial, clockwise, and counterclockwise) are just used for identification purposes to aid the reader's understanding of the present disclosure, and do not create limitations, particularly as to the position, orientation, or use of this disclosure. Connection references (e.g., attached, coupled, connected, and joined) are to be construed broadly and may include intermediate members between a collection of elements and relative movement between elements unless otherwise indicated. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to each other.


Furthermore, identification references (e.g., primary, secondary, first, second, third, fourth, etc.) are not intended to connote importance or priority, but are used to distinguish one feature from another. The drawings are for purposes of illustration and the dimensions, positions, order and relative sizes reflected in the drawings attached hereto may vary. Although non-limiting, the contactless card 150 and the contactless card 150 described herein may have standardized dimensions. For example, ISO/IEC 7816 is an international standard related to electronic identification cards with contacts, especially smart cards, managed jointly by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). There are other standards, however, such as ISO/IEC 14443 for contactless cards (PayPass, PayWave, ExpressPay). A further standard ISO/IEC 7810 ID-1, with which most credit cards are compliant, defines dimensions as 85.60×53.98 mm (3.370×2.125 in) and a thickness of 0.76 mm (0.030 in).


Furthermore, the terms “substantial” or “substantially,” as well as the terms “approximate” or “approximately,” can be used interchangeably in some embodiments, and can be described using any relative measures acceptable by one of ordinary skill in the art. For example, these terms can serve as a comparison to a reference parameter, to indicate a deviation capable of providing the intended function. Although non-limiting, the deviation from the reference parameter can be, for example, in an amount of less than 1%, less than 3%, less than 5%, less than 10%, less than 15%, less than 20%, and so on.


Still furthermore, although the above illustrative methods are described above as a series of acts or events, the present disclosure is not limited by the illustrated ordering of such acts or events unless specifically stated. For example, some acts may occur in different orders and/or concurrently with other acts or events apart from those illustrated and/or described herein, in accordance with the disclosure. In addition, not all illustrated acts or events may be required to implement a methodology in accordance with the present disclosure. Furthermore, the methods may be implemented in association with the formation and/or processing of structures illustrated and described herein as well as in association with other structures not illustrated.


The present disclosure is not to be limited in scope by the specific embodiments described herein. Indeed, other various embodiments of and modifications to the present disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. Thus, such other embodiments and modifications are intended to fall within the scope of the present disclosure. Furthermore, the present disclosure has been described herein in the context of a particular implementation in a particular environment for a particular purpose. Those of ordinary skill in the art will recognize the usefulness is not limited thereto and the present disclosure may be beneficially implemented in any number of environments for any number of purposes. Thus, the claims set forth below are to be construed in view of the full breadth and spirit of the present disclosure as described herein.

Claims
  • 1. A method of forming a contactless transaction card, comprising: providing a card body, the card body defining a window;attaching an antenna assembly layer to the card body,the antenna assembly layer comprising an antenna, a set of curable connectors, the set of curable connectors comprising a chemical or set of chemicals that are amenable to curing when exposed to radiation, the set of curable connectors being disposed on a set of end regions of the antenna within the window, and a UV-transparent layer, supporting the antenna;providing a contactless chip module within the window on a first side of the antenna assembly layer; anddirecting radiation through the UV-transparent layer, wherein the radiation cures the set of curable connectors, and wherein the contactless chip module is electrically connected to the antenna via the set of curable connectors.
  • 2. The method of claim 1, wherein the directing the radiation through the UV-transparent layer comprises: directing a first UV laser beam exposure to a first curable connector, disposed on a first end region of the antenna;and directing a second UV laser beam exposure to a second curable connector, disposed on a second end region of the antenna.
  • 3. The method of claim 1, wherein the set of curable connectors comprises a conductive epoxy material.
  • 4. The method of claim 1, wherein the card body is electrically conductive, wherein an outer portion of the antenna extends subjacent the card body, the method further comprising providing an insulator material between the outer portion of the antenna and the card body before the attaching the antenna assembly layer.
  • 5. The method of claim 1, wherein the set of curable connectors extends partially over the set of end regions of the antenna, and partially over exposed regions of the UV-transparent layer, not covered by the antenna.
  • 6. The method of claim 1, wherein the set of end regions of the antenna comprise a serpentine pattern.
  • 7. The method of claim 1, wherein the UV-transparent layer defines a recess, wherein the window comprises a first area, the recess comprises a second area, smaller than the first area, the method further comprising aligning the window to the recess.
  • 8. The method of claim 7, wherein the set of end regions comprises a first end region and a second end region, wherein the recess is disposed between the first end region and the second end region.
  • 9. The method of claim 8, wherein the set of curable connectors comprises a first connector, disposed on the first end region of the antenna, and a second connector, disposed on the second end region of the antenna, wherein the aligning the window comprises aligning the window to avoid contact with the set of curable connectors.
  • 10. A contactless transaction card, comprising: a card body, the card body defining a window;an antenna assembly layer, disposed subjacent the card body, the antenna assembly layer comprising: an antenna, comprising a set of end regions;a UV-transparent layer, supporting the antenna; anda set of curable connectors, disposed on the set of end regions, and comprising a chemical or set of chemicals that are amenable to curing when exposed to UV radiation,the set of end regions, and set of curable connectors being disposed within the window; anda contactless chip module, disposed within the window, and electrically connected to the set of end regions, via the set of curable connectors.
  • 11. The contactless transaction card of claim 10, the set of curable connectors and the contactless chip module not being in contact with the card body.
  • 12. The contactless transaction card of claim 10, wherein the set of curable connectors comprises a conductive epoxy material.
  • 13. The contactless transaction card of claim 10, wherein the card body is electrically conductive, wherein an outer portion of the antenna extends subjacent the card body, the contactless transaction card further comprising an insulator material, disposed between the outer portion of the antenna and the card body.
  • 14. The contactless transaction card of claim 10, wherein the set of curable connectors extends partially over the set of end regions of the antenna, and partially over exposed regions of the UV-transparent layer, not covered by the antenna.
  • 15. The contactless transaction card of claim 10, wherein the set of end regions of the antenna comprise a serpentine pattern.
  • 16. The contactless transaction card of claim 10, wherein the UV-transparent layer defines a recess, wherein the window comprises a first area, the recess comprises a second area, smaller than the first area, wherein the recess is aligned within the window.
  • 17. The contactless transaction card of claim 16, wherein the set of end regions comprises a first end region and a second end region, wherein the recess is disposed between the first end region and the second end region.
  • 18. A method of forming a contactless transaction card, comprising: providing a card body, the card body defining window;coupling an antenna assembly layer to the card body, the antenna assembly layer comprising an antenna, and a transparent layer, supporting the antenna;providing a first curable connector on a first end region of the antenna, and a second curable connector on a second end region of the antenna, wherein the first end region, the second end region, the first curable connector and the second curable connector are disposed in the window, the first curable connector and the second curable connector comprising a chemical or set of chemicals that are amenable to curing when exposed to radiation;providing a contactless chip module within the window on a first side of the transparent layer; anddirecting radiation through the transparent layer from a second side of the transparent layer, opposite the first side, wherein the radiation cures the first curable connector and the second curable connector, and wherein the contactless chip module is electrically connected to the antenna via the first curable connector and the second curable connector.
  • 19. The method of claim 18, wherein the directing the radiation through the transparent layer comprises: directing a UV laser beam exposure to the first curable connector; anddirecting a second UV laser beam exposure to the second curable connector.
  • 20. The method of claim 18, wherein the first curable connector extends partially over the first end region of the antenna, and partially over a first exposed region of the transparent layer, not covered by the antenna, andwherein the second curable connector extends partially over the second end region of the antenna, and partially a second exposed region of the transparent layer, not covered by the antenna.
US Referenced Citations (550)
Number Name Date Kind
4683553 Mollier Jul 1987 A
4827113 Rikuna May 1989 A
4910773 Hazard et al. Mar 1990 A
5036461 Elliott et al. Jul 1991 A
5363448 Koopman, Jr. et al. Nov 1994 A
5377270 Koopman, Jr. et al. Dec 1994 A
5533126 Hazard Jul 1996 A
5537314 Kanter Jul 1996 A
5592553 Guski et al. Jan 1997 A
5616901 Crandall Apr 1997 A
5666415 Kaufman Sep 1997 A
5763373 Robinson et al. Jun 1998 A
5764789 Pare, Jr. et al. Jun 1998 A
5768373 Lohstroh et al. Jun 1998 A
5778072 Samar Jul 1998 A
5796827 Coppersmith et al. Aug 1998 A
5832090 Raspotnik Nov 1998 A
5883810 Franklin et al. Mar 1999 A
5901874 Deters May 1999 A
5929413 Gardner Jul 1999 A
5960411 Hartman et al. Sep 1999 A
6021203 Douceur et al. Feb 2000 A
6049328 Vanderheiden Apr 2000 A
6058373 Blinn et al. May 2000 A
6061666 Do et al. May 2000 A
6105013 Curry et al. Aug 2000 A
6199114 White et al. Mar 2001 B1
6199762 Hohle Mar 2001 B1
6216227 Goldstein et al. Apr 2001 B1
6227447 Campisano May 2001 B1
6282522 Davis et al. Aug 2001 B1
6324271 Sawyer et al. Nov 2001 B1
6342844 Rozin Jan 2002 B1
6367011 Lee et al. Apr 2002 B1
6400323 Yasukawa et al. Jun 2002 B2
6402028 Graham, Jr. et al. Jun 2002 B1
6438550 Doyle et al. Aug 2002 B1
6501847 Helot et al. Dec 2002 B2
6631197 Taenzer Oct 2003 B1
6641050 Kelley et al. Nov 2003 B2
6655585 Shinn Dec 2003 B2
6662020 Aaro et al. Dec 2003 B1
6721706 Strubbe et al. Apr 2004 B1
6731778 Oda et al. May 2004 B1
6732936 Kiekhaefer May 2004 B1
6779115 Naim Aug 2004 B1
6792533 Jablon Sep 2004 B2
6829711 Kwok et al. Dec 2004 B1
6834271 Hodgson et al. Dec 2004 B1
6834795 Rasmussen et al. Dec 2004 B1
6852031 Rowe Feb 2005 B1
6865547 Brake, Jr. et al. Mar 2005 B1
6873260 Lancos et al. Mar 2005 B2
6877656 Jaros et al. Apr 2005 B1
6889198 Kawan May 2005 B2
6905411 Nguyen et al. Jun 2005 B2
6910627 Simpson-Young et al. Jun 2005 B1
6971031 Haala Nov 2005 B2
6990588 Yasukura Jan 2006 B1
7006986 Sines et al. Feb 2006 B1
7085931 Smith et al. Aug 2006 B1
7127605 Montgomery et al. Oct 2006 B1
7128274 Kelley et al. Oct 2006 B2
7140550 Ramachandran Nov 2006 B2
7152045 Hoffman Dec 2006 B2
7165727 de Jong Jan 2007 B2
7175076 Block et al. Feb 2007 B1
7202773 Oba et al. Apr 2007 B1
7206806 Pineau Apr 2007 B2
7232073 de Jong Jun 2007 B1
7246752 Brown Jul 2007 B2
7254569 Goodman et al. Aug 2007 B2
7263507 Brake, Jr. et al. Aug 2007 B1
7270276 Vayssiere Sep 2007 B2
7278025 Saito et al. Oct 2007 B2
7287692 Patel et al. Oct 2007 B1
7290709 Tsai et al. Nov 2007 B2
7306143 Bonneau, Jr. et al. Dec 2007 B2
7319986 Praisner et al. Jan 2008 B2
7325132 Takayama et al. Jan 2008 B2
7355270 Hasebe et al. Apr 2008 B2
7373515 Owen et al. May 2008 B2
7374099 de Jong May 2008 B2
7375616 Rowse et al. May 2008 B2
7380710 Brown Jun 2008 B2
7424977 Smets et al. Sep 2008 B2
7453439 Kushler et al. Nov 2008 B1
7472829 Brown Jan 2009 B2
7487357 Smith et al. Feb 2009 B2
7568631 Gibbs et al. Aug 2009 B2
7584153 Brown et al. Sep 2009 B2
7597250 Finn Oct 2009 B2
7628322 Holtmanns et al. Dec 2009 B2
7652578 Braun et al. Jan 2010 B2
7689832 Talmor et al. Mar 2010 B2
7703142 Wilson et al. Apr 2010 B1
7748609 Sachdeva et al. Jul 2010 B2
7748617 Gray Jul 2010 B2
7748636 Finn Jul 2010 B2
7762457 Bonalle et al. Jul 2010 B2
7789302 Tame Sep 2010 B2
7793851 Mullen Sep 2010 B2
7796013 Murakami et al. Sep 2010 B2
7801799 Brake, Jr. et al. Sep 2010 B1
7801829 Gray et al. Sep 2010 B2
7805755 Brown et al. Sep 2010 B2
7809643 Phillips et al. Oct 2010 B2
7827115 Weller et al. Nov 2010 B2
7828214 Narendra et al. Nov 2010 B2
7848746 Juels Dec 2010 B2
7882553 Tuliani Feb 2011 B2
7900048 Andersson Mar 2011 B2
7908216 Davis et al. Mar 2011 B1
7922082 Muscato Apr 2011 B2
7933589 Mamdani et al. Apr 2011 B1
7949559 Freiberg May 2011 B2
7954716 Narendra et al. Jun 2011 B2
7954723 Charrat Jun 2011 B2
7962369 Rosenberg Jun 2011 B2
7993197 Kaminkow Aug 2011 B2
8005426 Huomo et al. Aug 2011 B2
8010405 Bortolin et al. Aug 2011 B1
RE42762 Shin et al. Sep 2011 E
8041954 Plesman Oct 2011 B2
8060012 Sklovsky et al. Nov 2011 B2
8074877 Mullen et al. Dec 2011 B2
8082450 Frey et al. Dec 2011 B2
8095113 Kean et al. Jan 2012 B2
8099332 Lemay et al. Jan 2012 B2
8103249 Markison Jan 2012 B2
8108687 Ellis et al. Jan 2012 B2
8127143 Abdallah et al. Feb 2012 B2
8135648 Oram et al. Mar 2012 B2
8140010 Symons et al. Mar 2012 B2
8141136 Lee et al. Mar 2012 B2
8150321 Winter et al. Apr 2012 B2
8150767 Wankmueller Apr 2012 B2
8186602 Itay et al. May 2012 B2
8196131 von Behren et al. Jun 2012 B1
8215563 Levy et al. Jul 2012 B2
8224753 Atef et al. Jul 2012 B2
8232879 Davis Jul 2012 B2
8233841 Griffin et al. Jul 2012 B2
8245292 Buer Aug 2012 B2
8249654 Zhu Aug 2012 B1
8266451 Leydier et al. Sep 2012 B2
8285329 Zhu Oct 2012 B1
8302872 Mullen Nov 2012 B2
8312519 Bailey et al. Nov 2012 B1
8316237 Felsher et al. Nov 2012 B1
8332272 Fisher Dec 2012 B2
8365988 Medina, III et al. Feb 2013 B1
8369960 Tran et al. Feb 2013 B2
8371501 Hopkins Feb 2013 B1
8381307 Cimino Feb 2013 B2
8391719 Alameh et al. Mar 2013 B2
8417231 Sanding et al. Apr 2013 B2
8439271 Smets et al. May 2013 B2
8475367 Yuen et al. Jul 2013 B1
8489112 Roeding et al. Jul 2013 B2
8511542 Pan Aug 2013 B2
8559872 Butler Oct 2013 B2
8566916 Bailey et al. Oct 2013 B1
8567670 Stanfield et al. Oct 2013 B2
8572386 Takekawa et al. Oct 2013 B2
8577810 Dalit et al. Nov 2013 B1
8583454 Beraja et al. Nov 2013 B2
8589335 Smith et al. Nov 2013 B2
8594730 Bona et al. Nov 2013 B2
8615468 Varadarajan Dec 2013 B2
8620218 Awad Dec 2013 B2
8667285 Coulier et al. Mar 2014 B2
8723941 Shirbabadi et al. May 2014 B1
8726405 Bailey et al. May 2014 B1
8740073 Vijayshankar et al. Jun 2014 B2
8750514 Gallo et al. Jun 2014 B2
8752189 de Jong Jun 2014 B2
8794509 Bishop et al. Aug 2014 B2
8799668 Cheng Aug 2014 B2
8806592 Ganesan Aug 2014 B2
8807440 von Behren et al. Aug 2014 B1
8811892 Khan et al. Aug 2014 B2
8814039 Bishop et al. Aug 2014 B2
8814052 Bona et al. Aug 2014 B2
8818867 Baldwin et al. Aug 2014 B2
8850538 Vernon et al. Sep 2014 B1
8861733 Benteo et al. Oct 2014 B2
8880027 Darringer Nov 2014 B1
8888002 Marshall Chesney et al. Nov 2014 B2
8898088 Springer et al. Nov 2014 B2
8934837 Zhu et al. Jan 2015 B2
8977569 Rao Mar 2015 B2
8994498 Agrafioti et al. Mar 2015 B2
9004365 Bona et al. Apr 2015 B2
9038894 Khalid May 2015 B2
9042814 Royston et al. May 2015 B2
9047531 Showering et al. Jun 2015 B2
9069976 Toole et al. Jun 2015 B2
9081948 Magne Jul 2015 B2
9104853 Venkataramani et al. Aug 2015 B2
9118663 Bailey et al. Aug 2015 B1
9122964 Krawczewicz Sep 2015 B2
9129280 Bona et al. Sep 2015 B2
9152832 Royston et al. Oct 2015 B2
9203800 Izu et al. Dec 2015 B2
9209867 Royston Dec 2015 B2
9251330 Boivie et al. Feb 2016 B2
9251518 Levin et al. Feb 2016 B2
9258715 Borghei Feb 2016 B2
9270337 Zhu et al. Feb 2016 B2
9306626 Hall et al. Apr 2016 B2
9306942 Bailey et al. Apr 2016 B1
9324066 Archer et al. Apr 2016 B2
9324067 Van Os et al. Apr 2016 B2
9332587 Salahshoor May 2016 B2
9338622 Bjontegard May 2016 B2
9373141 Shakkarwar Jun 2016 B1
9379841 Fine et al. Jun 2016 B2
9413430 Royston et al. Aug 2016 B2
9413768 Gregg et al. Aug 2016 B1
9420496 Indurkar Aug 2016 B1
9426132 Alikhani Aug 2016 B1
9432339 Bowness Aug 2016 B1
9455968 Machani et al. Sep 2016 B1
9473509 Arsanjani et al. Oct 2016 B2
9491626 Sharma et al. Nov 2016 B2
9553637 Yang et al. Jan 2017 B2
9619952 Zhao et al. Apr 2017 B1
9635000 Muftic Apr 2017 B1
9665858 Kumar May 2017 B1
9674705 Rose et al. Jun 2017 B2
9679286 Colnot et al. Jun 2017 B2
9680942 Dimmick Jun 2017 B2
9710804 Zhou et al. Jul 2017 B2
9740342 Paulsen et al. Aug 2017 B2
9740988 Levin et al. Aug 2017 B1
9763097 Robinson et al. Sep 2017 B2
9767329 Forster Sep 2017 B2
9769662 Queru Sep 2017 B1
9773151 Mil'shtein et al. Sep 2017 B2
9780953 Gaddam et al. Oct 2017 B2
9891823 Feng et al. Feb 2018 B2
9940571 Herrington Apr 2018 B1
9953323 Candelore et al. Apr 2018 B2
9961194 Wiechman et al. May 2018 B1
9965756 Davis et al. May 2018 B2
9965911 Wishne May 2018 B2
9978058 Wurmfeld et al. May 2018 B2
10043164 Dogin et al. Aug 2018 B2
10075437 Costigan et al. Sep 2018 B1
10129648 Hernandez et al. Nov 2018 B1
10133979 Eidam et al. Nov 2018 B1
10217105 Sangi et al. Feb 2019 B1
10354175 Vittimberga Jul 2019 B1
20010010723 Pinkas Aug 2001 A1
20010029485 Brody et al. Oct 2001 A1
20010034702 Mockett et al. Oct 2001 A1
20010054003 Chien et al. Dec 2001 A1
20020078345 Sandhu et al. Jun 2002 A1
20020093530 Krothapalli et al. Jul 2002 A1
20020100808 Norwood et al. Aug 2002 A1
20020120583 Keresman, III et al. Aug 2002 A1
20020152116 Yan et al. Oct 2002 A1
20020153424 Li Oct 2002 A1
20020165827 Gien et al. Nov 2002 A1
20030023554 Yap et al. Jan 2003 A1
20030034873 Chase et al. Feb 2003 A1
20030055727 Walker et al. Mar 2003 A1
20030078882 Sukeda et al. Apr 2003 A1
20030167350 Davis et al. Sep 2003 A1
20030208449 Diao Nov 2003 A1
20040015958 Veil et al. Jan 2004 A1
20040039919 Takayama et al. Feb 2004 A1
20040127256 Goldthwaite et al. Jul 2004 A1
20040215674 Odinak et al. Oct 2004 A1
20040230799 Davis Nov 2004 A1
20050044367 Gasparini et al. Feb 2005 A1
20050075985 Cartmell Apr 2005 A1
20050081038 Arditti Modiano et al. Apr 2005 A1
20050138387 Lam et al. Jun 2005 A1
20050156026 Ghosh et al. Jul 2005 A1
20050160049 Lundholm Jul 2005 A1
20050195975 Kawakita Sep 2005 A1
20050247797 Ramachandran Nov 2005 A1
20060006230 Bear et al. Jan 2006 A1
20060040726 Szrek et al. Feb 2006 A1
20060041402 Baker Feb 2006 A1
20060044153 Dawidowsky Mar 2006 A1
20060047954 Sachdeva et al. Mar 2006 A1
20060085848 Aissi et al. Apr 2006 A1
20060136334 Atkinson et al. Jun 2006 A1
20060173985 Moore Aug 2006 A1
20060174331 Schuetz Aug 2006 A1
20060242698 Inskeep et al. Oct 2006 A1
20060280338 Rabb Dec 2006 A1
20070033642 Ganesan et al. Feb 2007 A1
20070055630 Gauthier et al. Mar 2007 A1
20070061266 Moore et al. Mar 2007 A1
20070061487 Moore et al. Mar 2007 A1
20070116292 Kurita et al. May 2007 A1
20070118745 Buer May 2007 A1
20070197261 Humbel Aug 2007 A1
20070224969 Rao Sep 2007 A1
20070241182 Buer Oct 2007 A1
20070256134 Lehtonen et al. Nov 2007 A1
20070258594 Sandhu et al. Nov 2007 A1
20070278291 Rans et al. Dec 2007 A1
20080008315 Fontana et al. Jan 2008 A1
20080011831 Bonalle et al. Jan 2008 A1
20080014867 Finn Jan 2008 A1
20080035738 Mullen Feb 2008 A1
20080071681 Khalid Mar 2008 A1
20080072303 Syed Mar 2008 A1
20080086767 Kulkarni et al. Apr 2008 A1
20080103968 Bies et al. May 2008 A1
20080109309 Landau et al. May 2008 A1
20080110983 Ashfield May 2008 A1
20080120711 Dispensa May 2008 A1
20080156873 Wilhelm et al. Jul 2008 A1
20080162312 Sklovsky et al. Jul 2008 A1
20080164308 Aaron et al. Jul 2008 A1
20080207307 Cunningham, II et al. Aug 2008 A1
20080209543 Aaron Aug 2008 A1
20080223918 Williams et al. Sep 2008 A1
20080285746 Landrock et al. Nov 2008 A1
20080308641 Finn Dec 2008 A1
20090037275 Pollio Feb 2009 A1
20090048026 French Feb 2009 A1
20090132417 Scipioni et al. May 2009 A1
20090143104 Loh et al. Jun 2009 A1
20090171682 Dixon et al. Jul 2009 A1
20090210308 Toomer et al. Aug 2009 A1
20090213027 Finn Aug 2009 A1
20090235339 Mennes et al. Sep 2009 A1
20090249077 Gargaro et al. Oct 2009 A1
20090282264 Ameil et al. Nov 2009 A1
20100023449 Skowronek et al. Jan 2010 A1
20100023455 Dispensa et al. Jan 2010 A1
20100029202 Jolivet et al. Feb 2010 A1
20100033310 Narendra et al. Feb 2010 A1
20100036769 Winters et al. Feb 2010 A1
20100078471 Lin et al. Apr 2010 A1
20100082491 Rosenblatt et al. Apr 2010 A1
20100094754 Bertran et al. Apr 2010 A1
20100095130 Bertran et al. Apr 2010 A1
20100100480 Altman et al. Apr 2010 A1
20100114731 Kingston et al. May 2010 A1
20100192230 Steeves et al. Jul 2010 A1
20100207742 Buhot et al. Aug 2010 A1
20100211797 Westerveld et al. Aug 2010 A1
20100240413 He et al. Sep 2010 A1
20100257357 McClain Oct 2010 A1
20100312634 Cervenka Dec 2010 A1
20100312635 Cervenka Dec 2010 A1
20110028160 Roeding et al. Feb 2011 A1
20110035604 Habraken Feb 2011 A1
20110060631 Grossman et al. Mar 2011 A1
20110068170 Lehman Mar 2011 A1
20110084132 Tofighbakhsh Apr 2011 A1
20110101093 Ehrensvard May 2011 A1
20110113245 Varadarajan May 2011 A1
20110125638 Davis et al. May 2011 A1
20110131415 Schneider Jun 2011 A1
20110153437 Archer et al. Jun 2011 A1
20110153496 Royyuru Jun 2011 A1
20110208658 Makhotin Aug 2011 A1
20110208965 Machani Aug 2011 A1
20110211219 Bradley et al. Sep 2011 A1
20110218911 Spodak Sep 2011 A1
20110238564 Lim et al. Sep 2011 A1
20110246780 Yeap et al. Oct 2011 A1
20110258452 Coulier et al. Oct 2011 A1
20110280406 Ma et al. Nov 2011 A1
20110282785 Chin Nov 2011 A1
20110294418 Chen Dec 2011 A1
20110312271 Ma et al. Dec 2011 A1
20120024947 Naelon Feb 2012 A1
20120030047 Fuentes et al. Feb 2012 A1
20120030121 Grellier Feb 2012 A1
20120047071 Mullen et al. Feb 2012 A1
20120079281 Lowenstein et al. Mar 2012 A1
20120109735 Krawczewicz et al. May 2012 A1
20120109764 Martin et al. May 2012 A1
20120143754 Patel Jun 2012 A1
20120150737 Rottink et al. Jun 2012 A1
20120178366 Levy et al. Jul 2012 A1
20120196583 Kindo Aug 2012 A1
20120207305 Gallo et al. Aug 2012 A1
20120209773 Ranganathan Aug 2012 A1
20120238206 Singh et al. Sep 2012 A1
20120239560 Pourfallah et al. Sep 2012 A1
20120252350 Steinmetz et al. Oct 2012 A1
20120254394 Barras Oct 2012 A1
20120284194 Liu et al. Nov 2012 A1
20120290472 Mullen et al. Nov 2012 A1
20120296818 Nuzzi et al. Nov 2012 A1
20120316992 Oborne Dec 2012 A1
20120317035 Royyuru et al. Dec 2012 A1
20120317628 Yeager Dec 2012 A1
20130005245 Royston Jan 2013 A1
20130008956 Ashfield Jan 2013 A1
20130026229 Jarman et al. Jan 2013 A1
20130048713 Pan Feb 2013 A1
20130054474 Yeager Feb 2013 A1
20130065564 Conner et al. Mar 2013 A1
20130080228 Fisher Mar 2013 A1
20130080229 Fisher Mar 2013 A1
20130099587 Lou et al. Apr 2013 A1
20130104251 Moore et al. Apr 2013 A1
20130106576 Hinman et al. May 2013 A1
20130119130 Braams May 2013 A1
20130130614 Busch-Sorensen May 2013 A1
20130144793 Royston Jun 2013 A1
20130171929 Adams et al. Jul 2013 A1
20130179351 Wallner Jul 2013 A1
20130185772 Jaudon et al. Jul 2013 A1
20130191279 Calman et al. Jul 2013 A1
20130200999 Spodak et al. Aug 2013 A1
20130216108 Hwang et al. Aug 2013 A1
20130226791 Springer et al. Aug 2013 A1
20130226796 Jiang et al. Aug 2013 A1
20130232082 Krawczewicz et al. Sep 2013 A1
20130238894 Ferg et al. Sep 2013 A1
20130282360 Shimota et al. Oct 2013 A1
20130303085 Boucher et al. Nov 2013 A1
20130304651 Smith Nov 2013 A1
20130312082 Izu et al. Nov 2013 A1
20130314593 Reznik et al. Nov 2013 A1
20130344857 Berionne et al. Dec 2013 A1
20140002238 Taveau et al. Jan 2014 A1
20140019352 Shrivastava Jan 2014 A1
20140027506 Heo et al. Jan 2014 A1
20140032409 Rosano Jan 2014 A1
20140032410 Georgiev et al. Jan 2014 A1
20140040120 Cho et al. Feb 2014 A1
20140040139 Brudnicki et al. Feb 2014 A1
20140040147 Varadarakan et al. Feb 2014 A1
20140047235 Lessiak et al. Feb 2014 A1
20140067690 Pitroda et al. Mar 2014 A1
20140074637 Hammad Mar 2014 A1
20140074655 Lim et al. Mar 2014 A1
20140081720 Wu Mar 2014 A1
20140138435 Khalid May 2014 A1
20140171034 Aleksin et al. Jun 2014 A1
20140171039 Bjontegard Jun 2014 A1
20140172700 Teuwen et al. Jun 2014 A1
20140180851 Fisher Jun 2014 A1
20140208112 McDonald et al. Jul 2014 A1
20140214674 Narula Jul 2014 A1
20140229375 Zaytzsev et al. Aug 2014 A1
20140245391 Adenuga Aug 2014 A1
20140256251 Caceres et al. Sep 2014 A1
20140258099 Rosano Sep 2014 A1
20140258113 Gauthier et al. Sep 2014 A1
20140258125 Gerber et al. Sep 2014 A1
20140274179 Zhu et al. Sep 2014 A1
20140279479 Maniar et al. Sep 2014 A1
20140337235 Van Heerden et al. Nov 2014 A1
20140339315 Ko Nov 2014 A1
20140346860 Aubry et al. Nov 2014 A1
20140365780 Movassaghi Dec 2014 A1
20140379361 Mahadkar et al. Dec 2014 A1
20150012444 Brown et al. Jan 2015 A1
20150032635 Guise Jan 2015 A1
20150071486 Rhoads et al. Mar 2015 A1
20150088757 Zhou et al. Mar 2015 A1
20150089586 Ballesteros Mar 2015 A1
20150134452 Williams May 2015 A1
20150140960 Powell et al. May 2015 A1
20150154595 Collinge et al. Jun 2015 A1
20150170138 Rao Jun 2015 A1
20150178724 Ngo et al. Jun 2015 A1
20150186871 Laracey Jul 2015 A1
20150205379 Mag et al. Jul 2015 A1
20150302409 Malek et al. Oct 2015 A1
20150317626 Ran et al. Nov 2015 A1
20150332266 Friedlander et al. Nov 2015 A1
20150339474 Paz et al. Nov 2015 A1
20150371234 Huang et al. Dec 2015 A1
20160012465 Sharp Jan 2016 A1
20160026997 Tsui et al. Jan 2016 A1
20160048913 Rausaria et al. Feb 2016 A1
20160055480 Shah Feb 2016 A1
20160057619 Lopez Feb 2016 A1
20160065370 Le Saint et al. Mar 2016 A1
20160087957 Shah et al. Mar 2016 A1
20160092696 Guglani et al. Mar 2016 A1
20160148193 Kelley et al. May 2016 A1
20160232523 Venot et al. Aug 2016 A1
20160239672 Khan et al. Aug 2016 A1
20160253651 Park et al. Sep 2016 A1
20160255072 Liu Sep 2016 A1
20160267486 Mitra et al. Sep 2016 A1
20160277383 Guyomarc'h et al. Sep 2016 A1
20160277388 Lowe et al. Sep 2016 A1
20160307187 Guo et al. Oct 2016 A1
20160307189 Zarakas et al. Oct 2016 A1
20160314472 Ashfield Oct 2016 A1
20160330027 Ebrahimi Nov 2016 A1
20160335531 Mullen et al. Nov 2016 A1
20160379217 Hammad Dec 2016 A1
20170004502 Quentin et al. Jan 2017 A1
20170011395 Pillai et al. Jan 2017 A1
20170011406 Tunnell et al. Jan 2017 A1
20170017957 Radu Jan 2017 A1
20170017964 Janefalkar et al. Jan 2017 A1
20170024716 Jiam et al. Jan 2017 A1
20170039566 Schipperheijn Feb 2017 A1
20170041759 Gantert et al. Feb 2017 A1
20170068950 Kwon Mar 2017 A1
20170103388 Pillai et al. Apr 2017 A1
20170104739 Lansler et al. Apr 2017 A1
20170109509 Baghdasaryan Apr 2017 A1
20170109730 Locke et al. Apr 2017 A1
20170116447 Cimino et al. Apr 2017 A1
20170124568 Moghadam May 2017 A1
20170140379 Deck May 2017 A1
20170154328 Zarakas et al. Jun 2017 A1
20170154333 Gleeson et al. Jun 2017 A1
20170180134 King Jun 2017 A1
20170230189 Toll et al. Aug 2017 A1
20170237301 Elad et al. Aug 2017 A1
20170289127 Hendrick Oct 2017 A1
20170295013 Claes Oct 2017 A1
20170316696 Bartel Nov 2017 A1
20170317834 Smith et al. Nov 2017 A1
20170330173 Woo et al. Nov 2017 A1
20170374070 Shah et al. Dec 2017 A1
20180034507 Wobak et al. Feb 2018 A1
20180039986 Essebag et al. Feb 2018 A1
20180068316 Essebag et al. Mar 2018 A1
20180129945 Saxena et al. May 2018 A1
20180160255 Park Jun 2018 A1
20180191501 Lindemann Jul 2018 A1
20180205712 Versteeg et al. Jul 2018 A1
20180240106 Garrett et al. Aug 2018 A1
20180254909 Hancock Sep 2018 A1
20180268132 Buer et al. Sep 2018 A1
20180270214 Caterino et al. Sep 2018 A1
20180294959 Traynor et al. Oct 2018 A1
20180300716 Carlson Oct 2018 A1
20180302396 Camenisch et al. Oct 2018 A1
20180315050 Hammad Nov 2018 A1
20180316666 Koved et al. Nov 2018 A1
20180322486 Deliwala et al. Nov 2018 A1
20180359100 Gaddam et al. Dec 2018 A1
20190014107 George Jan 2019 A1
20190019375 Foley Jan 2019 A1
20190036678 Ahmed Jan 2019 A1
20190238517 D'Agostino et al. Aug 2019 A1
Foreign Referenced Citations (39)
Number Date Country
3010336 Jul 2017 CA
101192295 Jun 2008 CN
103023643 Apr 2013 CN
103417202 Dec 2013 CN
1085424 Mar 2001 EP
1223565 Jul 2002 EP
1265186 Dec 2002 EP
0862134 Jan 2005 EP
1783919 May 2007 EP
2139196 Dec 2009 EP
1469419 Aug 2012 EP
2852070 Mar 2015 EP
2457221 Aug 2009 GB
2516861 Feb 2015 GB
2551907 Jan 2018 GB
101508320 Apr 2015 KR
0049586 Aug 2000 WO
2006070189 Jul 2006 WO
2008055170 May 2008 WO
2009025605 Feb 2009 WO
2010049252 May 2010 WO
2011112158 Sep 2011 WO
2012001624 Jan 2012 WO
2013039395 Mar 2013 WO
2013155562 Oct 2013 WO
2013192358 Dec 2013 WO
2014043278 Mar 2014 WO
2014170741 Oct 2014 WO
2015179649 Nov 2015 WO
2015183818 Dec 2015 WO
2016097718 Jun 2016 WO
2016160816 Oct 2016 WO
2016168394 Oct 2016 WO
2017042375 Mar 2017 WO
2017042400 Mar 2017 WO
2017157859 Sep 2017 WO
2017208063 Dec 2017 WO
2018063809 Apr 2018 WO
2018137888 Aug 2018 WO
Non-Patent Literature Citations (41)
Entry
Batina, L. and Poll, E., “SmartCards and RFID”, Course PowerPoint Presentation for IPA Security Course, Digital Security at University of Nijmegen, Netherlands (date unknown) 75 pages.
Haykin, M. And Warnar, R., “Smart Card Technology: New Methods for Computer Access Control”, Computer Science and Technology NIST Special Publication 500-157:1-60 (1988).
Lehpamer, H., “Component of the RFID System”, RFID Design Principles, 2nd edition pp. 133-201 (2012).
Author Unknown, “CardrefresherSM from American Express®”, [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://merchant-channel.americanexpress.com/merchant/en_US/cardrefresher, 2 pages.
Author Unknown, “Add Account Updater to your recurring payment tool”, [online] 2018-19 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.authorize.net/our-features/account-updater/, 5 pages.
Author Unknown, “Visa® Account Updater for Merchants”, [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://usa.visa.com/dam/VCOM/download/merchants/visa-account-updater-product-information-fact-sheet-for-merchants.pdf, 2 pages.
Author Unknown, “Manage the cards that you use with Apple Pay”, Apple Support [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.apple.com/en-us/HT205583, 5 pages.
Author Unknown, “Contactless Specifications for Payment Systems”, EMV Book B—Entry Point Specification [online] 2016 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.emvco.com/wp-content/uploads/2017/05/BookB_Entry_Point_Specification_v2_6_20160809023257319.pdf, 52 pages.
Author Unknown, “EMV Integrated Circuit Card Specifcations for Payment Systems, Book 2, Security and Key Management,” Version 3.4, [online] 2011 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_2_Security_and_Key_Management_20120607061923900.pdf, 174 pages.
Author Unknown, “NFC Guide: All You Need to Know About Near Field Communication”, Square Guide [online] 2018 [retrieved on Nov. 13, 2018]. Retrieved from Internet URL: https://squareup.com/guides/nfc, 8 pages.
Profis, S., “Everything you need to know about NFC and mobile payments” CNET Directory [online], 2014 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.cnet.com/how-to/how-nfc-works-and-mobile-payments/, 6 pages.
Cozma, N., “Copy data from other devices in Android 5.0 Lollipop setup”, CNET Directory [online] 2014 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.cnet.com/how-to/copy-data-from-other-devices-in-android-5-0-lollipop-setup/, 5 pages.
Kevin, Android Enthusiast, “How to copy text string from nfc tag”, StackExchange [online] 2013 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://android.stackexchange.com/questions/55689/how-to-copy-text-string-from-nfc-tag, 11 pages.
Author Unknown, “Tap & Go Device Setup”, Samsung [online] date unknown [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.samsung.com/us/switch-me/switch-to-the-galaxy-s-5/app/partial/setup-device/tap-go.html, 1 page.
Author Unknown, “Multiple encryption”, Wikipedia [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://en.wikipedia.org/wiki/Multiple_encryption, 4 pages.
Krawczyk, et al., “HMAC: Keyed-Hashing for Message Authentication”, Network Working Group RFC:2104 memo [online] 1997 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://tools.ietf.org/html/rfc2104, 12 pages.
Song, et al., “The AES-CMAC Algorithm”, Network Working Group RFC: 4493 memo [online] 2006 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://tools.ietf.org/html/rfc4493, 21 pages.
Katz, J. and Lindell, Y., “Aggregate Message Authentication Codes”, Topics in Cryptology [online] 2008 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.cs.umd.edu/˜jkatz/papers/aggregateMAC.pdf, 11 pages.
Adams, D., and Maier, A-K., “Goldbug Big Seven open source crypto-messengers to be compared—or: Comprehensive Confidentiality Review & Audit of GoldBug Encrypting E-Mail-Client & Secure Instant Messenger”, Big Seven Study 2016 [online] [retrieved on Mar. 25, 2018]. Retrieved from Internet URL: https://sf.net/projects/goldbug/files/bigseven-crypto-audit.pdf, 309 pages.
Author Unknown, “Triple DES”, Wikipedia [online] 2018 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://simple.wikipedia.org/wiki/Triple_DES, 2 pages.
Song F., and Yun, A.I., “Quantum Security of NMAC and Related Constructions—PRF domain extension against quantum attacks”, IACR Cryptology ePrint Archive [online] 2017 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://eprintiacr.org/2017/509.pdf, 41 pages.
Saxena, N., “Lecture 10: NMAC, HMAC and Number Theory”, CS 6903 Modern Cryptography [online] 2008 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: http://isis.poly.edu/courses/cs6903/Lectures/lecture10.pdf, 8 pages.
Berg, G., “Fundamentals of EMV”, Smart Card Alliance [online] date unknown [retrieved on Mar. 27, 2019]. Retrieveed from Internet URL: https://www.securetechalliance.org/resources/media/scap13_preconference/02.pdf, 37 pages.
Pierce, K., “Is the amazon echo nfc compatible?”, Amazon.com Customer Q&A [online] 2016 [retrieved on Mar. 26, 2019]. Retrieved from Internet URL: https://www.amazon.com/ask/questions/Tx1RJXYSPE6XLJD?_encodi . . . , 2 pages.
Author Unknown, “Multi-Factor Authentication”, idaptive [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.centrify.com/products/application-services/adaptive-multi-factor-authentication/risk-based-mfa/, 10 pages.
Author Unknown, “Adaptive Authentication”, SecureAuth [online] 2019 [retrieved on Mar. 25, 2019} Retrieved from Internet URL: https://www.secureauth.com/products/access-management/adaptive-authentication, 7 pages.
Van den Breekel, J., et al., “EMV in a nutshell”, Technical Report, 2016 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.cs.ru.nl/E.Poll/papers/EMVtechreport.pdf, 37 pages.
Author Unknown, “Autofill”, Computer Hope [online] 2018 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.computerhope.com/jargon/a/autofill.htm, 2 pages.
Author Unknown, “Fill out forms automatically”, Google Chrome Help [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.google.com/chrome/answer/142893?co=GENIE.Platform%3DDesktop&hl=en, 3 pages.
Author Unknown, “Autofill credit cards, contacts, and passwords in Safari on Mac”, Apple Safari User Guide [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.apple.com/guide/safari/use-autofill-ibrw1103/mac, 3 pages.
Menghin, M.J., “Power Optimization Techniques for Near Field Communication Systems”, 2014 Dissertation at Technical University of Graz [online]. Retrieved from Internet URL: https://diglib.tugraz.at/download.php?id=576a7b910d2d6&location=browse, 135 pages.
Mareli, M., et al., “Experimental evaluation of NFC reliability between an RFID tag and a smartphone”, Conference paper (2013) IEEE AFRICON At Mauritius [online] [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://core.ac.uk/download/pdf/54204839.pdf, 5 pages.
Davison, A., et al., “MonoSLAM: Real-Time Single Camera SLAM”, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6): 1052-1067 (2007).
Barba, R., “Sharing your location with your bank sounds creepy, but it's also useful”, Bankrate, LLC [online] 2017 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.bankrate.com/banking/banking-app-location-sharing/, 6 pages.
Author Unknown: “onetappayment™”, [online] Jan. 24, 2019, [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.payubiz.in/onetap, 4 pages.
Vu, et al., “Distinguishing users with capacitive touch communication”, Proceedings of the Annual International Conference on Mobile Computing and Networking, 2012, MOBICOM. 101145/2348543.2348569.
Pourghomi, P., et al., “A Proposed NFC Payment Application,” International Journal of Advanced Computer Science and Applications, 4(8):173-181 (2013).
Author unknown, “EMV Card Personalization Specification”, EMVCo., LLC., specification version 1.0, (2003) 81 pages.
Ullmann et al., “On-Card” User Authentication for Contactless Smart Cards based on Gesture Recognition, paper presentation LNI proceedings, (2012) 12 pages.
Faraj, S.T., et al., “Investigation of Java Smart Card Technology for Multi-Task Applications”, J of Al-Anbar University for Pure Science, 2(1):23 pages (2008).
Dhamdhere, P., “Key Benefits of a Unified Platform for Loyalty, Referral Marketing, and UGC” Annex Cloud [online] May 19, 2017 [retrieved on Jul. 3, 2019]. Retrieved from Internet URL: https://www.annexcloude.com/blog/benefits-unified-platform/, 13 pages.