The present invention relates generally to holders for beverage containers, and more particularly to holders for holding multiple beverage cans.
Beverage holders for use in automotive vehicles are well known. Such holders typically just hold a single beverage container.
Particularly in recreational vehicles subject to substantial vibration, such as snowmobiles and motor boats, there is a need for a beverage holder for transporting multiple beverage containers, such as cans containing soda and beer, while keeping the beverage cool and reducing the amount of vibration transmitted to the beverage.
The following presents a simplified summary of the disclosure in order to provide a basic understanding to the reader. This summary is not an extensive overview of the disclosure and it does not necessarily identify key/critical elements of the invention or delineate the scope of the invention. Its sole purpose is to present some concepts disclosed herein in a simplified form as a prelude to the more detailed description that is presented later.
The present disclosure describes a container holder for holding N cylindrical containers, where N is a positive integer. All N containers have the same diameter, D, and the same height, H. The container holder includes a base and a cover. The base has (a) two opposing equal size vertical side walls, (b) two opposing equal size vertical end walls, and (c) a bottom portion connected to lower ends of the side and end walls. The bottom portion of the base has a substantially flat outer surface with a substantially rectangular shape. The side and end walls of the base are connected together so that the outer surfaces of the walls form a substantially rectangular cuboid.
The cover has (a) two opposing vertical side walls, (b) two opposing vertical end walls, and (c) a top portion connected to upper ends of the walls. The side and end walls of the cover are connected together so that the outer surfaces of the walls form a substantially rectangular cuboid.
The base and cover have substantially equal length and width so that the cover can be placed on the base to form an assembled container holder with a substantially rectangular cuboid outer surface. The assembled container holder defines an interior space, or region, having a height approximately equal to H, where the height of the interior space is the vertical distance between the interior surface of the bottom portion of the base and the interior surface of the top portion of the cover. The length and width of the base and cover are selected so that the interior space of the assembled container holder is capable of accommodating N cans with the cans in an upright orientation.
Preferably, N is an even positive integer, and the walls are sized and spaced apart so that N/2 containers are can be placed in an upright orientation in the interior space of the assembled container holder against a first side wall, and the other N/2 containers can then be disposed in an upright orientation in the interior space against the opposing second side wall. The container holder preferably also includes an insert sized to be placed in the interior space between the N/2 containers positioned against the first side wall and the other N/2 containers positioned against the second side wall. The insert has scalloped side walls, so each container is in contact with one of the scalloped portions of the side walls of the insert. The inner surfaces of the walls of the cover and base are preferably scalloped so that when the insert is in the interior space of the assembled container holder the scalloped portions of the walls are configured to form N cylindrical spaces each having a diameter of approximately D.
The insert preferably contains fluid.
The insert may be a refillable fluid container.
N may be equal to 6.
The cover and base are preferably formed from a flexible insulating material. The insulating material may be a polyurethane foam.
The bottom portion of the base, the side walls of the base, and the end walls of the base are preferably integrally formed, and the top portion of the cover, the side walls of the cover, and the end walls of the cover are preferably integrally formed.
D may be approximately 2.5-2.7 inches (63.5-68.6 mm). H may be approximately 4.5-4.75 inches (115-121 mm). H may be approximately 6.2-6.6 inches (157-168 mm). In general embodiments of the container holder are configured with D and H corresponding to the diameter and height of standard beverage cans.
The walls of the base and the cover all may have substantially the same height.
The interior space of the assembled container holder is preferably isolated from the surrounding environment by the base and cover.
The interior surfaces of the bottom portion of the base and the top portion of the cover may be substantially flat.
The depicted container holder 100, 200 is configured to hold 6 cylindrical containers 1200 (see
The base and cover have approximately equal length and width so that the cover can be placed on top of the base, thereby, as shown in
The base 101 and cover 102 both have similarly scalloped inner walls, as can be seen for the base 101 in
The insert 103, 201 has scalloped outer walls. Each insert scallop 105, 203 has a semi-circular horizontal cross-section corresponding to a circle with a diameter of approximately D. The length of the insert is approximately equal to the inner length of the base 101 and cover 102, which are approximately equal, the inner length being the distance between the inner surfaces of the two end walls in the centre of the base 101 and cover 102. The positions of the scallops 105, 203 on the insert 103 are configured to correspond to the base scallops 104 and cover scallops so that when the insert 103, 201 is inserted in the base 101 (as shown in
The base 101 may have a lower landing 106 extending up from the inner surface of the base, and the cover 102 may have an upper landing extending down from the inner surface of the top portion of the cover. As shown in
The height of the insert 103, 201 is less than or equal to H, being less than or equal to approximately H less the sum of the heights of the upper and lower landings, if any.
Preferably the cover 102 has the same horizontal cross-sections as shown for the base 101 in
H is approximately equal to the vertical distance between the inner surface of the bottom of the base 101 and the inner surface of the top of the cover 102. The inner surface of the bottom of the base 101 and the top of the cover 102 refers to the surface at the top and bottom of each of the cylindrical regions formed when the container holder is assembled, with the cover on top of the base, ignoring any landings that may be present.
While it is not preferred, some embodiments may not include an insert and rely on landings on the inner surface of the bottom of the base and the top of the cover to secure the containers inside the container holder. In some embodiments, the lower landing may extend up to the level of the top ends of the walls of the base (e.g. as shown in
Preferred embodiments include an insert filled with, or that is fillable with, a fluid (liquid or gel), such as distilled water or tap water. The insert filled with fluid can be placed in a freezer to reduce the temperature of the fluid to 0 degrees Celsius or less. In the case water is used, it turns into ice when cooled to 0 degrees Celsius or less. Other fluids may or may not freeze. When the insert is removed from the freezer and placed in a container holder base with containers placed in the base and the cover is placed on top of the base, the scalloped sides of the insert are proximate to, and most preferably in contact with, portions of the sides of the cylindrical containers so that heat is efficiently exchanged between the insert and the contents of the containers. Assuming the containers and their contents are warmer than the insert, the temperature of the containers and the liquid they contain are thereby reduced, or the temperature of the containers and the liquid they contain is maintained at a temperature lower than the environment surrounding the container holder.
The insert may be made from any suitable material, such as polypropylene. It may be clear or translucent. The insert may be pre-filled with a fluid before the insert is sold. In such embodiments, a fluid may be used that has a freezing point below 0 degrees Celsius, such as propylene glycol. Alternatively an additive, such as propylene glycol, may be added to water to reduce the freezing point of the water. It is preferred that the fluid be non-toxic.
In some embodiments, the insert 201 is refillable and has an opening with a cap 202 that can be removed to pour out the fluid in the insert 201 and refill the insert 201 with fluid. The cap is then replaced.
The cover and base are preferably formed from a flexible insulating material, for example a thermoplastic foam such as polyurethane foam, which is selected to help vibrationally isolate containers, and their contents, in the interior space of the assembled container holder. This is particularly useful where the container holder is used in vehicles such as snowmobiles, jet skis, off-road vehicles, and motor boats that are subject to substantial vibration and irregular forces. The insulating material dampens the vibrations of the vehicle to reduce the amount of vibration transmitted to the contents of the containers disposed in the container holder, which is particularly useful when the contents of the containers are carbonated beverages such as soda (also known as “soda pop” or just “pop”) or beer. The insulating material also reduces heat exchange between the containers (and the liquid in the containers) and the surrounding environment.
The insert may be a commercially available product such as a Freez Pak™ 6 pack coolant made by Lifoam Industries, a Kleager Can Beer Ice Pack for Lunch, or a 6 Can Long Lasting Ice Pack made by Healthy Packers.
The insert may be alternatively made from an insulating material, such as the same material used to make the cover and base, for example, a thermoplastic foam such as polyurethane foam. Such an insert may be preferable for use in cold conditions, such as below 0 degrees Celsius when snowmobiling, so that the container holder securely holds the containers but helps to prevent the contents of the containers from freezing by limiting heat exchange between the environment and the contents of the containers. A container holder comprising a cover, base and foam insert may be sold to consumers, who can purchase suitable commercial ice packs as inserts for summer use, for example.
While the generally cylindrical insert may be strictly cylindrical, as shown in
As with the other embodiments of inserts discussed above, the generally cylindrical inserts may be filled with, or be fillable with, a fluid (liquid or gel), and generally function as discussed above.
The base and insert are configured so that when the cylindrical insert is disposed in the base, then a portion of the insert is proximate to, or abuts (i.e. is in contact with), each container disposed in the base. Similarly for the cover in embodiments where an insert may also be inserted in the cover.
It is preferred that the bottom portion of the base, including any landing, the side walls of the base, and the end walls of the base are integrally formed, and also that the top portion of the cover, including any landing, the side walls of the cover, and the end walls of the cover are integrally formed. The cover and base may each be formed by injection molding.
While the embodiments of the container holders depicted in the drawings are configured to hold 6 cans, other embodiments may be configured to hold, for example, 2, 4, 8, 10, 12 or more containers. It is preferred that the number of containers be even, but this is not essential.
While the multiple containers that are disposable (i.e. can be placed or disposed) in a container holder are generally assumed to have the same diameter and height, this is not essential. For example one of more of the containers may have a height less that the height of the other containers. Such shorter containers may not be held in place as securely as those having a height approximately equal to the height of the interior space, but they can still be accommodated. However, it is generally the case that the container holder is capable of holding multiple containers that do have the same diameter and height. In some embodiments, the container holder may be configured to hold containers of differing diameters, but this is not preferred.
References to terms such as “vertical”, “horizontal”, “up”, “down”, “upright” as used herein assume that the container holder is assembled, with the cover on top of the base and the bottom surface of the base is parallel to the ground or floor, as depicted in
As used herein “approximately” means +/−5% unless otherwise stated.
The qualifier “substantially” as used in “substantially rectangular cuboid” means that the horizontal and vertical cross-sections of the substantially rectangular cuboid need not be strictly rectangular, but may, for example, have rounded corners, as can be seen in the figures. Where the term “rectangular cuboid” is used herein without this qualifier, the term is to be interpreted to mean a “substantially rectangular cuboid”. A substantially rectangular cuboid, as used herein, may also have protrusions 107, 108 from the base 101 and cover 102.
The qualifier “substantially” as used in “substantially flat” in respect of a surface means that the subject surface need not be strictly flat, but may, for example, have indentations, extensions (“feet”) or landings spanning an aggregate of less than 70%, and preferably less than 50%, of the area of the surface. Where the term “flat” is used herein without this qualifier, the term is to be interpreted to mean “substantially flat”.
The term “cylindrical container” as used herein means that the container has a strictly cylindrical portion, but may also have narrowed portions at the top and bottom of the container, or elsewhere. For example, the cylindrical containers 1200 depicted in
The abbreviation mm as used herein refers to millimetres (or in the US, “millimeters”). The abbreviation cm as used herein refers to centimetres (or in the US, “centimeters”).
Where, in this document, a list of one or more items is prefaced by the expression “such as” or “including”, is followed by the abbreviation “etc.”, or is prefaced or followed by the expression “for example”, or “e.g.”, this is done to expressly convey and emphasize that the list is not exhaustive, irrespective of the length of the list. The absence of such an expression, or another similar expression, is in no way intended to imply that a list is exhaustive. Unless otherwise expressly stated or clearly implied, such lists shall be read to include all comparable or equivalent variations of the listed item(s), and alternatives to the item(s), in the list that a skilled person would understand would be suitable for the purpose that the one or more items are listed.
Unless expressly stated, or otherwise clearly implied herein, the conjunction “or” as used in the specification and claims shall be interpreted as a non-exclusive “or” so that “X or Y” is true when X is true, when Y is true, and when both X and Y are true, and “X or Y” is false only when both X and Y are false.
The words “comprises” and “comprising”, when used in this specification and the claims, are used to specify the presence of stated features, elements, integers, steps or components, and do not preclude, nor imply the necessity for, the presence or addition of one or more other features, elements, integers, steps, components or groups thereof.
It should be understood that the above-described embodiments of the present invention, particularly, any “preferred” embodiments, are only examples of implementations, merely set forth for a clear understanding of the principles of the invention. Many variations and modifications may be made to the above-described embodiment(s) of the invention as will be evident to those skilled in the art. That is, persons skilled in the art will appreciate and understand that such modifications and variations are, or will be, possible to utilize and carry out the teachings of the invention described herein.
The scope of the claims that follow is not limited by the embodiments set forth in the description. The claims should be given the broadest purposive construction consistent with the description and figures as a whole.
Number | Date | Country | Kind |
---|---|---|---|
3128493 | Aug 2021 | CA | national |
Number | Date | Country | |
---|---|---|---|
Parent | 17209797 | Mar 2021 | US |
Child | 17714542 | US |