The invention concerns the fabrication of at least two semi-containers (or half-capsules) that can be assembled in fluid, liquid and/or gas in such a way that, when the half containers are mated, they form a container (or a capsule) that entraps some amount of the fluidic environment they are floating in. This opens the possibility to release the trapped fluid later on.
More specifically, the invention concerns a fundamentally new method to create liquid-containing smart micro-containers with inherent functionalities that allow for a controlled release of the encapsulated fluid. The objectives can be summarized as follows
The filled containers are relocated to another destination, where the liquid is released upon a trigger signal.
Smart systems are able to gather information from the environment, to process it, and to perform a subsequent action. They are envisioned for applications in a broad variety of fields such as health care, information technology, environmental engineering, etc. In order to obtain such systems it is necessary to fabricate, assemble and package hybrid, multi-functional and multiple length-scale devices. Following the trend of miniaturization of devices, packaging and assembly are becoming key issues in manufacturing such complex systems.
Today's assembly and packaging techniques include robotic pick-and-place methods, wafer-scale bonding and flip-chip methods to construct mechanical and electrical connections between different, individually fabricated sub-systems, or between components and an interface board. However, those techniques are not adequate to deal with the upcoming needs of device assembly. Indeed, future manufacturing approaches will need to be highly parallel, cost-efficient and down-scalable, while remaining flexible and controllable. Alternative techniques address the assembly and packaging challenge by means of fluidic mediated self-assembly (FSA) as illustrated in the publication H. J. J. Yeh et al., Photonics Technology Letters, IEEE (1994) 6, 706-708 and M. Boncheva et al., Pure and Applied Chemistry (2003) 27, 621-630 (the content of which is incorporated by reference in its entirety in the present application).
The state-of-the-art of FSA uses capillary forces between a surface and an assembling unit to position and deploy the parts on the target surface. The FSA technique is appropriate when the individual pieces are either too small or too numerous to be assembled using pick-and-place methods. Remarkable results have already been achieved to build functional integrated systems by FSA, e.g. a sequential 3D self-assembly of microfabricated silicon parts in an aqueous solution using hydrophobic interaction, repulsive double-layer and van der Waals forces, see the publication H. Onoe et al., Small (2007) 3, 1383-1389. A “railed microfluidics” method allowed guiding and assembling microstructures inside fluidic channel, see the publication S. E. Chung et al., Nature Materials (2008) 7, 581-587 (all incorporated by reference in their entirety in the present application). Common to the FSA approaches so far is that the liquid has primarily been used to mediate the forces (mainly capillary) used for the assembly processes.
U.S. Pat. No. 4,483,616 (the content of which is incorporated by reference in its entirety in the present application) discloses containers for small quantities of liquids. More specifically, the container comprises an elongated housing having a fluid receptacle disposed in the upper end thereof. The dimensions of the receptacle are substantially less than the overall dimensions of the housing, thereby facilitating the handling of the container and inhibiting evaporation of the liquid therein.
U.S. Pat. No. 4,931,284 (the content of which is incorporated by reference in its entirety in the present application) discloses a completely novel type of micro-capsules, viz. such capsules where an encapsulated hydrophobic or lipophilic substance is surrounded by polar solid crystals of polar lipids which expose their hydrophilic face outwards and their hydrophobic face turned inwards towards the hydrophobic or lipophilic substance.
Other prior art publications include the following articles, all incorporated by reference in the present application:
The concept of the present invention goes much further than FSA by using the liquid not only for mediating the self-assembly, but also for trapping the liquid inside hollow micro-containers for further remote use.
More specifically, in the present invention, the containers are assembled within a functional liquid such that the said liquid is encapsulated by the self-closing containers. The filled containers are then relocated when used and the encapsulated liquid is released by the use of a trigger means that, for example, opens the assembled containers.
For instance, such containers could be used as smart markers and sensors that highlight contaminated areas in an environment by releasing luminescent nanoparticles. Moreover, they could be deployed as sensor-based environmental regulators: e.g. if the environment becomes too acidic or basic, the devices could release a substance that equilibrates the pH. With this invention, the large number of micro-containers available will allow to design easily heterogeneous systems endowed with, for instance, antagonistic actions. These devices could also capture nanomaterial suspensions in fluid and transport them to a remote location as well, either for analysis (in the context of diagnosis) or destruction (in the context of environmental cleaning or purification). Due to the potentially very large numbers of smart liquid capsules, redundancy and fault tolerance can be optimized for any of the above-mentioned applications. The capsules could also be equipped with a unit (e.g. a RF transceiver, a sensor, an actuator, etc.), which will allow to control the liquid-releasing operation either via a central external unit (e.g., electromagnetic field, light irradiation, radiofrequency signal, etc.) or by an on-board signal generated by a dedicated sensor connected to the liquid-releasing actuator.
To summarize, the present idea is a radically new way of manufacturing and using liquid-filled free-floating smart micro-capsules.
A further innovation is to fabricate hybrid devices that are ‘intelligent’ because of the three following assets:
(i) they are smartly designed in terms of material, shape, geometry, and size in order to achieve complete functionality;
(ii) they are capable of self-assembly (free or template-based), using a parallel, scalable, and cost-effective packaging method in three dimensions;
(iii) they are able to modify their behaviour using either endogenous sensors or a perceived external trigger in combination with some simple logic.
Moreover, the expected outcome will be cost-efficient and flexible for a wide range of applications. Embedding sensors, actuators and logic in a micro-container filled with liquid has never been reported in the literature. Indeed, even though some authors report encapsulation of liquid in self-folding structures1, they do not offer solutions regarding the actuation of these devices. The present invention allows fulfilling this challenge. 1 H. Ye et al., Angew. Chem., Int. Ed (2007) 46, 4991-4994 and C. L. Randall et al., Advanced Drug Delivery Reviews (2007) 59, 1547-1561
The present invention will be better understood by the description of several embodiments and of the drawings which show
a, 1b, 1c illustrate in schematic ways the principle of the invention;
a, 2b and 2c illustrate schematic drawings of possible configurations of the invention;
a, 3b, 3c and 3d illustrate a schematic in fluid bonding process;
a and 4b illustrate schematic self-assembly possibilities;
a to 6f illustrate images of containers produced in accordance with the principle of the present invention.
a to 1c illustrate the principle of the invention, more specifically, schematic views of the containers (or capsules) in different states.
a: each half 1, 2 of the container may have its own shape, color, and material. A functionalized ring 3,3′ is incorporated in order to mediate the assembly between the parts forming the container. Examples of such functionalized ring 3, 3′ are described in the following specification.
b illustrates a container produced with the method of the present invention: performing the assembly of the semi-containers 1, 2 in fluid allows trapping a small amount of the fluid. More specifically,
c: the trapped fluid can be released later in a different environment, on demand, by separation of the parts 1, 2 forming the container. Preferably, this release is triggered by a specific means, this releasing mechanism being described in more detail further in the present application.
The parts 1, 2 forming the containers may be different (in shape, color, material, functionality) or exactly similar and/or symmetrical or not. At least one of them must be able to contain some fluid. They can incorporate a linking material (as for example the ring 3, 3′ shown in
One other feature of the present approach is the possibility to build different types of containers (also named capsules) by combining more pieces or parts. The pieces that can be allocated in between the two parts 1, 2 illustrated in
The trapping of more than one fluid in the containers (for example when one of the parts comprises an additional wall) will involve a first assembly of two parts in a first fluid, in order to trap a first fluid in the two parts being assembled, then a second assembly of the first two assembled parts in a second fluid with a further (i.e. third) part. This process can of course be repeated as often as necessary in successive steps to form the final container with the desired number of fluids contained in it, in accordance with the principles of the present invention.
Although many different shapes may be taken into account to form the container and container parts, there is one particular shape especially convenient for avoiding undesired surface contact between the capsule parts: round surfaces. Hence, cylinders with round end as shown in
Also, the parts of containers (halves and/or auxiliary part) that are assembled may have different shapes and sizes. They can be made of different materials or the same material. This principle also applies to the auxiliary part that could be added to increase the quantity of fluid present in a closed container or capsule, or that may be used to contain another (second) fluid in the container or capsule. In addition, although the notion of capsule has been used in the present specification, this should not be regarded as a limiting concept but meaning a container suitable for a fluid or other similar product.
a to 2c illustrate schematic drawings of some of the possible configurations where the container is made of more than two halves (in this case three parts or more as illustrated).
By fabricating and adding different auxiliary pieces, it is possible to configure different lengths of final capsules allowing the capture of larger amounts of fluid. In addition (alternatively), it is possible by using the principle of the invention to carry out an encapsulation of different fluids in one string.
Proposed Method for the Assembly
The main objective is assembling the two semi-containers in fluid. This is common to both approaches described below. Each of them has its advantages, the first one being superior in terms of yield while the second one in terms of cost-effectiveness.
a. In-Fluid Bonding
b. In-Fluid Self-Assembly
Proposed Methods to Keep the Content in the Capsule
Self-assembly between half containers needs an interacting force that keeps the two parts together. In the same sense, for the in-liquid bonding, a linking material is required that will keep the capsule closed.
Forces that can maintain the capsule assembled include, among others:
The containers can be fabricated using a lot of different materials such as polymers, resist, silicon, etc. Concerning the fabrication of the ring 3,3′, one example can be to use a glue-like material that can be either cross-linked or cured in order to maintain half containers together and allow also to be removed under specific conditions, thus triggering the aperture of the capsule and the release of the captured fluid when certain conditions are met.
Obviously other materials and methods can be used depending on the type of assembly means being used. Different assembly means may also be used in the configurations where there is more than one specific fluid trapped in the containers, such as illustrated in the
Proposed Methods to Release the Content of the Capsules
The method to release the content of the capsules depends directly on the method used for assembling and the interaction used to keep the half containers bonded together.
For example, in the case where the interacting force is the hydrophobic one, a method for releasing the content could be based on the change of the fluid environment, from a polar to a non-polar one. Another method is, in case the interacting force is an electromagnetic one, to induce a change in the electromagnetic field applied to the environment so that, in turn, it can influence on the attraction force between the two semi-containers. A third possible method of releasing the content of the capsules is to use solvents that can act on the capsules, dissolving a part of the capsule (or the capsule itself), such as the functionalized ring described above. Of course, other methods that are not listed here can be applied for releasing the content of the capsules depending on the interaction force and the assembly method used.
Smart Triggering for the Release of the Content of the Capsules
The present approach enables the incorporation of sensors (e.g., chemical sensor, Hall sensor, pressure sensor, etc.) and their actuator counterparts (e.g., RF emitter, LED, piezoelectric actuator, etc.) in the assembled container. The sensors can be used for the detection of chemical substances or specific environmental condition (e.g., pressure, temperature, etc.). Then, upon detection of the target condition, the actuators can trigger the release of the content of the container. This makes the smart container capable of reactive behavior, which can be crucial to certain applications (e.g, drug delivery, fertilization, waste treatment, etc.).
Proof on Principle
In previous experiments, the feasibility of this technique has been demonstrated by achieving the self-assembly of long chains of fabricated hollow cylinders. Volumes that can be contained by these micro containers can range from 20 μl to 0.2 μl. Mostly it will depend on the height and the diameter of the final container.
The process used to fabricate the container parts is illustrated in
In
b illustrates the deposition step of a sacrificial layer 22, for instance an aluminum layer on the wafer 20.
c illustrates the deposition of a thick layer 23 of photostructurable polymer such as SU-8. The viscosity of this polymer will uniformly fill the silicon mold. The shape of the semi-containers is defined by UV exposition.
d illustrates the deposition of a functionalized layer 24 on top of the polymer 23, for example in the shape of a ring that corresponds to the rings 3, 3′ illustrated in
e illustrates the removal of the sacrificial layer etch to release the half containers 1 (or 2) formed by the steps of the method.
f illustrates a three-dimensional drawing of the half containers 1 (or 2) section during its fabrication (for example as in
a demonstrates the possibility to form very long chains of self-assembled cylinders. More specifically,
b is an optical zoom of one self-assembled capsule after being dried, more specifically a 200 um diameter structure assembled in blue tinted DI water, showing some ink trapped. It can be seen from this image how the capsules can capture blue ink from the host liquid where they were self-assembled.
c emphasizes the strength of this interaction that allows one to easily handle the formed capsules with tweezers and to transport them into a new host liquid and illustrates 200 um diameter capsules assembled in blue tinted DI water and held in air by tweezers.
d illustrates 200 um diameter capsules immersed in DI water.
e and 6f demonstrate the feasibility of the release of their content, in this specific case, blue ink. More specifically,
The manufacturing of Micro 3D multi-functional containers is a key technology for future integrated systems that allow unprecedented degree of complexity and miniaturization in the field of information, bio-medical, chemistry and environmental technology. In particular, such integrated systems will enable non-invasive smart drug delivery devices and chemical recognition.
In addition, the proposed invention has two advantages for their commercialization and adaptation to the current market. Firstly, the technology for the fabrication of the semi-containers is well known as cost-effective. Secondly, the procedure used to form the capsule allows reducing the waste of the material trapped in the containers.
Potential applications of the present invention include, among others:
The containers also provide an attractive platform for the integration of additional features such as sensing and actuation capabilities. In principle, the present approach allows the integration of any type of MEMS devices into the half-containers, as well as the functional coupling of these devices after mating of the half-containers. Another crucial advantage of the method is that each half-container may be endowed with MEMS devices that are incompatible with each other in terms of manufacturing process, thus resulting with a hybrid device.
Of course, the examples given are illustrative embodiments not to be considered in a limitative way. It is possible to use equivalent means to achieve the same goal.
The present application claims priority to the previous application U.S. Ser. No. 61/170,673 the content of which is incorporated by reference in its entirety in the present application.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB10/51735 | 4/20/2010 | WO | 00 | 12/29/2011 |
Number | Date | Country | |
---|---|---|---|
61170673 | Apr 2009 | US |