Continuity maintaining biasing member

Information

  • Patent Grant
  • 8485845
  • Patent Number
    8,485,845
  • Date Filed
    Monday, December 24, 2012
    11 years ago
  • Date Issued
    Tuesday, July 16, 2013
    10 years ago
Abstract
A post having a first end, a second end, and a flange proximate the second end, wherein the post is configured to receive a center conductor surrounded by a dielectric of a coaxial cable, a connector body attached to the post, a coupling element attached to the post, the coupling element having a first end a second end, and a biasing member disposed within a cavity formed between the first end of the coupling element and the connector body to bias the coupling element against the post is provided. Moreover, a connector body having a biasing element, wherein the biasing element biases the coupling element against the post, is further provided. Furthermore, associated methods are also provided.
Description
FIELD OF TECHNOLOGY

The following relates to connectors used in coaxial cable communication applications, and more specifically to embodiments of a connector having a biasing member for maintaining continuity through a connector.


BACKGROUND

Connectors for coaxial cables are typically connected onto complementary interface ports to electrically integrate coaxial cables to various electronic devices. Maintaining continuity through a coaxial cable connector typically involves the continuous contact of conductive connector components which can prevent radio frequency (RF) leakage and ensure a stable ground connection. In some instances, the coaxial cable connectors are present outdoors, exposed to weather and other numerous environmental elements. Weathering and various environmental elements can work to create interference problems when metallic conductive connector components corrode, rust, deteriorate or become galvanically incompatible, thereby resulting in intermittent contact, poor electromagnetic shielding, and degradation of the signal quality. Moreover, some metallic connector components can permanently deform under the torque requirements of the connector mating with an interface port. The permanent deformation of a metallic connector component results in intermittent contact between the conductive components of the connector and a loss of continuity through the connector.


Thus, a need exists for an apparatus and method for ensuring continuous contact between conductive components of a connector.


SUMMARY

A first general aspect relates to a coaxial cable connector comprising a post having a first end, a second end, and a flange proximate the second end, wherein the post is configured to receive a center conductor surrounded by a dielectric of a coaxial cable, a connector body attached to the post, a coupling element attached to the post, the coupling element having a first end and a second end, and a biasing member disposed within a cavity formed between the first end of the coupling element and the connector body to bias the coupling element against the post.


A second general aspect relates to a coaxial cable connector comprising a post having a first end, a second end, and a flange proximate the second end, wherein the post is configured to receive a center conductor surrounded by a dielectric of a coaxial cable, a coupling element attached to the post, the coupling element having a first end and a second end, and a connector body having a biasing element, wherein the biasing element biases the coupling element against the post.


A third general aspect relates to a coaxial cable connector comprising a post having a first end, a second end, and a flange proximate the second end, wherein the post is configured to receive a center conductor surrounded by a dielectric of a coaxial cable, a connector body attached to the post, a coupling element attached to the post, the coupling element having a first end and a second end, and a means for biasing the coupling element against the post, wherein the means does not hinder rotational movement of the coupling element.


A fourth general aspect relates to a method of facilitating continuity through a coaxial cable connector, comprising providing a post having a first end, a second end, and a flange proximate the second end, wherein the post is configured to receive a center conductor surrounded by a dielectric of a coaxial cable, a connector body attached to the post, and a coupling element attached to the post, the coupling element having a first end and a second end, and disposing a biasing member within a cavity formed between the first end of the coupling element and the connector body to bias the coupling element against the post.


A fifth general aspect relates to a method of facilitating continuity through a coaxial cable connector, comprising providing a post having a first end, a second end, and a flange proximate the second end, wherein the post is configured to receive a center conductor surrounded by a dielectric of a coaxial cable, a coupling element attached to the post, the coupling element having a first end and a second end, and a connector body having a first end, a second end, and an annular recess proximate the second end of the connector body, extending the annular recess a radial distance to engage the coupling element, wherein the engagement between the extended annular recess and the coupling element biases the coupling element against the post.


The foregoing and other features of construction and operation will be more readily understood and fully appreciated from the following detailed disclosure, taken in conjunction with accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

Some of the embodiments will be described in detail, with reference to the following figures, wherein like designations denote like members, wherein:



FIG. 1A depicts a cross-sectional view of a first embodiment of a coaxial cable connector;



FIG. 1B depicts a perspective cut-away view of the first embodiment of a coaxial cable connector;



FIG. 2 depicts a perspective view of an embodiment of a coaxial cable;



FIG. 3 depicts a cross-sectional view of an embodiment of a post;



FIG. 4 depicts a cross-sectional view of an embodiment of a coupling element;



FIG. 5 depicts a cross-sectional view of a first embodiment of a connector body;



FIG. 6 depicts a cross-sectional view of an embodiment of a fastener member;



FIG. 7 depicts a cross-sectional view of a second embodiment of a coaxial cable connector;



FIG. 8A depicts a cross-sectional view of a third embodiment of a coaxial cable connector;



FIG. 8B depicts a perspective cut-away of the third embodiment of a coaxial cable connector; and



FIG. 9 depicts a cross-sectional view of a second embodiment of a connector body.





DETAILED DESCRIPTION

A detailed description of the hereinafter described embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures. Although certain embodiments are shown and described in detail, it should be understood that various changes and modifications may be made without departing from the scope of the appended claims. The scope of the present disclosure will in no way be limited to the number of constituting components, the materials thereof, the shapes thereof, the relative arrangement thereof, etc., and are disclosed simply as an example of embodiments of the present disclosure.


As a preface to the detailed description, it should be noted that, as used in this specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents, unless the context clearly dictates otherwise.


Referring to the drawings, FIG. 1 depicts an embodiment of a coaxial cable connector 100. A coaxial cable connector embodiment 100 has a first end 1 and a second end 2, and can be provided to a user in a preassembled configuration to ease handling and installation during use. Coaxial cable connector 100 may be an F connector, or similar coaxial cable connector. Furthermore, the connector 100 includes a post 40 configured for receiving a prepared portion of a coaxial cable 10.


Referring now to FIG. 2, the coaxial cable connector 100 may be operably affixed to a prepared end of a coaxial cable 10 so that the cable 10 is securely attached to the connector 100. The coaxial cable 10 may include a center conductive strand 18, surrounded by an interior dielectric 16; the interior dielectric 16 may possibly be surrounded by a conductive foil layer; the interior dielectric 16 (and the possible conductive foil layer) is surrounded by a conductive strand layer 14; the conductive strand layer 14 is surrounded by a protective outer jacket 12a, wherein the protective outer jacket 12 has dielectric properties and serves as an insulator. The conductive strand layer 14 may extend a grounding path providing an electromagnetic shield about the center conductive strand 18 of the coaxial cable 10. The coaxial cable 10 may be prepared by removing the protective outer jacket 12 and drawing back the conductive strand layer 14 to expose a portion of the interior dielectric 16 (and possibly the conductive foil layer that may tightly surround the interior dielectric 16) and center conductive strand 18. The protective outer jacket 12 can physically protect the various components of the coaxial cable 10 from damage which may result from exposure to dirt or moisture, and from corrosion. Moreover, the protective outer jacket 12 may serve in some measure to secure the various components of the coaxial cable 10 in a contained cable design that protects the cable 10 from damage related to movement during cable installation. However, when the protective outer jacket 12 is exposed to the environment, rain and other environmental pollutants may travel down the protective outer jack 12. The conductive strand layer 14 can be comprised of conductive materials suitable for carrying electromagnetic signals and/or providing an electrical ground connection or electrical path connection. The conductive strand layer 14 may also be a conductive layer, braided layer, and the like. Various embodiments of the conductive strand layer 14 may be employed to screen unwanted noise. For instance, the conductive strand layer 14 may comprise a metal foil (in addition to the possible conductive foil) wrapped around the dielectric 16 and/or several conductive strands formed in a continuous braid around the dielectric 16. Combinations of foil and/or braided strands may be utilized wherein the conductive strand layer 14 may comprise a foil layer, then a braided layer, and then a foil layer. Those in the art will appreciate that various layer combinations may be implemented in order for the conductive strand layer 14 to effectuate an electromagnetic buffer helping to preventingress of environmental noise or unwanted noise that may disrupt broadband communications. In some embodiments, there may be flooding compounds protecting the conductive strand layer 14. The dielectric 16 may be comprised of materials suitable for electrical insulation. The protective outer jacket 12 may also be comprised of materials suitable for electrical insulation. It should be noted that the various materials of which all the various components of the coaxial cable 10 should have some degree of elasticity allowing the cable 10 to flex or bend in accordance with traditional broadband communications standards, installation methods and/or equipment. It should further be recognized that the radial thickness of the coaxial cable 10, protective outer jacket 12, conductive strand layer 14, possible conductive foil layer, interior dielectric 16 and/or center conductive strand 18 may vary based upon generally recognized parameters corresponding to broadband communication standards and/or equipment.


Furthermore, environmental elements that contact conductive components, including metallic components, of a coaxial connector may be important to the longevity and efficiency of the coaxial cable connector (i.e. preventing RF leakage and ensuring stable continuity through the connector 100). Environmental elements may include any environmental pollutant, any contaminant, chemical compound, rainwater, moisture, condensation, stormwater, polychlorinated biphenyl's (PCBs), contaminated soil from runoff, pesticides, herbicides, and the like. Environmental elements, such as water or moisture, may corrode, rust, degrade, etc. connector components exposed to the environmental elements. Thus, metallic conductive O-rings utilized by a coaxial cable connector that may be disposed in a position of exposure to environmental elements may be insufficient over time due to the corrosion, rusting, and overall degradation of the metallic O-ring.


Referring back to FIG. 1, the connector 100 may mate with a coaxial cable interface port 20. The coaxial cable interface port 20 includes a conductive receptacle 22 for receiving a portion of a coaxial cable center conductor 18 sufficient to make adequate electrical contact. The coaxial cable interface port 20 may further comprise a threaded exterior surface 24. However, various embodiments may employ a smooth surface, as opposed to threaded exterior surface. In addition, the coaxial cable interface port 20 may comprise a mating edge 26. It should be recognized that the radial thickness and/or the length of the coaxial cable interface port 20 and/or the conductive receptacle 22 may vary based upon generally recognized parameters corresponding to broadband communication standards and/or equipment. Moreover, the pitch and depth of threads which may be formed upon the threaded exterior surface 24 of the coaxial cable interface port 20 may also vary based upon generally recognized parameters corresponding to broadband communication standards and/or equipment. Furthermore, it should be noted that the interface port 20 may be formed of a single conductive material, multiple conductive materials, or may be configured with both conductive and non-conductive materials corresponding to the port's 20 electrical interface with a coaxial cable connector, such as connector 100. For example, the threaded exterior surface may be fabricated from a conductive material, while the material comprising the mating edge 26 may be non-conductive or vice versa. However, the conductive receptacle 22 should be formed of a conductive material. Further still, it will be understood by those of ordinary skill that the interface port 20 may be embodied by a connective interface component of a communications modifying device such as a signal splitter, a cable line extender, a cable network module and/or the like.


Referring further to FIG. 1, embodiments of a connector 100 may include a post 40, a coupling element 30, a connector body 50, a fastener member 60, and a biasing member 70. Embodiments of connector 100 may also include a post 40 having a first end 41, a second end 42, and a flange 45 proximate the second end 42, wherein the post 40 is configured to receive a center conductor 18 surrounded by a dielectric 16 of a coaxial cable 10, a connector body 50 attached to the post 40, a coupling element 30 attached to the post 40, the coupling element 30 having a first end 31 and a second end 32, and a biasing member 70 disposed within a cavity 38 formed between the first end 31 of the coupling element 30 and the connector body 50 to bias the coupling element 30 against the post 40.


Embodiments of connector 100 may include a post 40, as further shown in FIG. 3. The post 40 comprises a first end 41, a second end 42, an inner surface 43, and an outer surface 44. Furthermore, the post 40 may include a flange 45, such as an externally extending annular protrusion, located proximate or otherwise near the second end 42 of the post 40. The flange 45 may include an outer tapered surface 47 facing the first end 41 of the post 40 (i.e. tapers inward toward the first end 41 from a larger outer diameter proximate or otherwise near the second end 42 to a smaller outer diameter. The outer tapered surface 47 of the flange 45 may correspond to a tapered surface of the lip 36 of the coupling element 30. Further still, an embodiment of the post 40 may include a surface feature 49 such as a lip or protrusion that may engage a portion of a connector body 50 to secure axial movement of the post 40 relative to the connector body 50. However, the post may not include such a surface feature 49, and the coaxial cable connector 100 may rely on press-fitting and friction-fitting forces and/or other component structures to help retain the post 40 in secure location both axially and rotationally relative to the connector body 50. The location proximate or otherwise near where the connector body 50 is secured relative to the post 40 may include surface features, such as ridges, grooves, protrusions, or knurling, which may enhance the secure location of the post 40 with respect to the connector body 50. Additionally, the post 40 includes a mating edge 46, which may be configured to make physical and electrical contact with a corresponding mating edge 26 of an interface port 20. The post 40 should be formed such that portions of a prepared coaxial cable 10 including the dielectric 16 and center conductor 18 can pass axially into the first end 41 and/or through a portion of the tube-like body of the post 40. Moreover, the post 40 should be dimensioned such that the post 40 may be inserted into an end of the prepared coaxial cable 10, around the dielectric 16 and under the protective outer jacket 12 and conductive grounding shield or strand 14. Accordingly, where an embodiment of the post 40 may be inserted into an end of the prepared coaxial cable 10 under the drawn back conductive strand 14, substantial physical and/or electrical contact with the strand layer 14 may be accomplished thereby facilitating grounding through the post 40. The post 40 may be formed of metals or other conductive materials that would facilitate a rigidly formed post body. In addition, the post 40 may be formed of a combination of both conductive and non-conductive materials. For example, a metal coating or layer may be applied to a polymer of other non-conductive material. Manufacture of the post 40 may include casting, extruding, cutting, turning, drilling, knurling, injection molding, spraying, blow molding, component overmolding, or other fabrication methods that may provide efficient production of the component.


With continued reference to FIG. 1, and further reference to FIG. 4, embodiments of connector 100 may include a coupling element 30. The coupling element 30 may be a nut, a threaded nut, port coupling element, rotatable port coupling element, and the like. The coupling element 30 may include a first end 31, second end 32, an inner surface 33, and an outer surface 34. The inner surface 33 of the coupling element 30 may be a threaded configuration, the threads having a pitch and depth corresponding to a threaded port, such as interface port 20. In other embodiments, the inner surface 33 of the coupling element 30 may not include threads, and may be axially inserted over an interface port, such as port 20. The coupling element 30 may be rotatably secured to the post 40 to allow for rotational movement about the post 40. The coupling element 30 may comprise an internal lip 36 located proximate the first end 31 and configured to hinder axial movement of the post 40. Furthermore, the coupling element 30 may comprise a cavity 38 extending axially from the edge of first end 31 and partial defined and bounded by the internal lip 36. The cavity 38 may also be partially defined and bounded by an outer internal wall 39. The coupling element 30 may be formed of conductive materials facilitating grounding through the coupling element 30, or threaded nut. Accordingly the coupling element 30 may be configured to extend an electromagnetic buffer by electrically contacting conductive surfaces of an interface port 20 when a coaxial cable connector, such as connector 100, is advanced onto the port 20. In addition, the coupling element 30 may be formed of non-conductive material and function only to physically secure and advance a connector 100 onto an interface port 20. Moreover, the coupling element 30 may be formed of both conductive and non-conductive materials. For example the internal lip 36 may be formed of a polymer, while the remainder of the coupling element 30 may be comprised of a metal or other conductive material. In addition, the coupling element 30 may be formed of metals or polymers or other materials that would facilitate a rigidly formed body. Manufacture of the coupling element 30 may include casting, extruding, cutting, turning, tapping, drilling, injection molding, blow molding, or other fabrication methods that may provide efficient production of the component. Those in the art should appreciate the various of embodiments of the nut 30 may also comprise a coupler member, or coupling element, having no threads, but being dimensioned for operable connection to a corresponding interface port, such as interface port 20.


Referring still to FIG. 1, and additionally to FIG. 5, embodiments of a coaxial cable connector, such as connector 100, may include a connector body 50. The connector body 50 may include a first end 51, a second end 52, an inner surface 53, and an outer surface 54. Moreover, the connector body may include a post mounting portion 57 proximate or otherwise near the second end 52 of the body 50; the post mounting portion 57 configured to securely locate the body 50 relative to a portion of the outer surface 44 of post 40, so that the connector body 50 is axially secured with respect to the post 40, in a manner that prevents the two components from moving with respect to each other in a direction parallel to the axis of the connector 100. In addition, the connector body 50 may include an outer annular recess 56 located proximate or near the second end 52 of the connector body 50. Furthermore, the connector body 50 may include a semi-rigid, yet compliant outer surface 54, wherein the outer surface 54 may be configured to form an annular seal when the first end 51 is deformably compressed against a received coaxial cable 10 by operation of a fastener member 60. The connector body 50 may include an external annular detent 58 located along the outer surface 54 of the connector body 50. Further still, the connector body 50 may include internal surface features 59, such as annular serrations formed near or proximate the internal surface of the first end 51 of the connector body 50 and configured to enhance frictional restraint and gripping of an inserted and received coaxial cable 10, through tooth-like interaction with the cable. The connector body 50 may be formed of materials such as plastics, polymers, bendable metals or composite materials that facilitate a semi-rigid, yet compliant outer surface 54. Further, the connector body 50 may be formed of conductive or non-conductive materials or a combination thereof. Manufacture of the connector body 50 may include casting, extruding, cutting, turning, drilling, knurling, injection molding, spraying, blow molding, component overmolding, combinations thereof, or other fabrication methods that may provide efficient production of the component.


With further reference to FIG. 1 and FIG. 6, embodiments of a coaxial cable connector 100 may include a fastener member 60. The fastener member 60 may have a first end 61, second end 62, inner surface 63, and outer surface 64. In addition, the fastener member 60 may include an internal annular protrusion 67 located proximate the second end 62 of the fastener member 60 and configured to mate and achieve purchase with the annular detent 58 on the outer surface 54 of connector body 50. Moreover, the fastener member 60 may comprise a central passageway or generally axial opening defined between the first end 61 and second end 62 and extending axially through the fastener member 60. The central passageway may include a ramped surface 66 which may be positioned between a first opening or inner bore having a first inner diameter positioned proximate or otherwise near the first end 61 of the fastener member 60 and a second opening or inner bore having a larger, second inner diameter positioned proximate or otherwise near the second end 62 of the fastener member 60. The ramped surface 66 may act to deformably compress the outer surface 54 of the connector body 50 when the fastener member 60 is operated to secure a coaxial cable 10. For example, the narrowing geometry will compress squeeze against the cable, when the fastener member 60 is compressed into a tight and secured position on the connector body 50. Additionally, the fastener member 60 may comprise an exterior surface feature 69 positioned proximate with or close to the first end 61 of the fastener member 60. The surface feature 69 may facilitate gripping of the fastener member 60 during operation of the connector 100. Although the surface feature 69 is shown as an annular detent, it may have various shapes and sizes such as a ridge, notch, protrusion, knurling, or other friction or gripping type arrangements. The second end 62 of the fastener member 60 may extend an axial distance so that, when the fastener member 60 is compressed into sealing position on the coaxial cable 100, the fastener member 60 touches or resides substantially proximate significantly close to the coupling element 30. It should be recognized, by those skilled in the requisite art, that the fastener member 60 may be formed of rigid materials such as metals, hard plastics, polymers, composites and the like, and/or combinations thereof. Furthermore, the fastener member 60 may be manufactured via casting, extruding, cutting, turning, drilling, knurling, injection molding, spraying, blow molding, component overmolding, combinations thereof, or other fabrication methods that may provide efficient production of the component.


Referring back to FIG. 1, embodiments of a coaxial cable connector 100 can include a biasing member 70. The biasing member 70 may be formed of a non-metallic material to avoid rust, corrosion, deterioration, and the like, caused by environmental elements, such as water. Additional materials the biasing member 70 may be formed of may include, but are not limited to, polymers, plastics, elastomers, elastomeric mixtures, composite materials, rubber, and/or the like and/or any operable combination thereof. The biasing member 70 may be a resilient, rigid, semi-rigid, flexible, or elastic member, component, element, and the like. The resilient nature of the biasing member 70 may help avoid permanent deformation while under the torque requirements when a connector 100 is advanced onto an interface port 20.


Moreover, the biasing member 70 may facilitate constant contact between the coupling element 30 and the post 40. For instance, the biasing member 70 may bias, provide, force, ensure, deliver, etc. the contact between the coupling element 30 and the post 40. The constant contact between the coupling element 30 and the post 40 promotes continuity through the connector 100, reduces/eliminates RF leakage, and ensures a stable ground through the connection of a connector 100 to an interface port 20 in the event the connector 100 is not fully tightened onto the port 20. To establish and maintain solid, constant contact between the coupling element 30 and the post 40, the biasing member 70 may be disposed behind the coupling element 30, proximate or otherwise near the second end 52 of the connector. In other words, the biasing member 70 may be disposed within the cavity 38 formed between the coupling element 30 and the annular recess 56 of the connector body 50. The biasing member 70 can provide a biasing force against the coupling element 30, which may axially displace the coupling element 30 into constant direct contact with the post 40. In particular, the disposition of a biasing member 70 in annular cavity 38 proximate the second end 52 of the connector body 50 may axially displace the coupling element 30 towards the post 40, wherein the lip 36 of the coupling element 30 directly contacts the outer tapered surface 47 of the flange 45 of the post 40. The location and structure of the biasing member 70 may promote continuity between the post 40 and the coupling element 30, but does not impede the rotational movement of the coupling element 30 (e.g. rotational movement about the post 40). The biasing member 70 may also create a barrier against environmental elements, thereby preventing environmental elements from entering the connector 100. Those skilled in the art would appreciate that the biasing member 70 may be fabricated by extruding, coating, molding, injecting, cutting, turning, elastomeric batch processing, vulcanizing, mixing, stamping, casting, and/or the like and/or any combination thereof in order to provide efficient production of the component.


Embodiments of biasing member 70 may include an annular or semi-annular resilient member or component configured to physically and electrically couple the post 40 and the coupling element 30. One embodiment of the biasing member 70 may be a substantially circinate torus or toroid structure, or other ring-like structure having a diameter (or cross-section area) large enough that when disposed within annular cavity 38 proximate the annular recess 56 of the connector body 50, the coupling element 30 is axially displaced against the post 40 and/or biased against the post 40. Moreover, embodiments of the biasing member 70 may be an O-ring configured to cooperate with the annular recess 56 proximate the second end 52 of connector body 50 and the outer internal wall 39 and lip 36 forming cavity 38 such that the biasing member 70 may make contact with and/or bias against the annular recess 56 (or other portions) of connector body 50 and outer internal wall 39 and lip 36 of coupling element 30. The biasing between the outer internal wall 39 and lip 36 of the coupling element 30 and the annular recess 56, and surrounding portions, of the connector body 50 can drive and/or bias the coupling element 30 in a substantially axial or axial direction towards the second end 2 of the connector 100 to make solid and constant contact with the post 40. For instance, the biasing member 70 should be sized and dimensioned large enough (e.g. oversized O-ring) such that when disposed in cavity 38, the biasing member 70 exerts enough force against both the coupling element 30 and the connector body 50 to axial displace the coupling element 30 a distance towards the post 40. Thus, the biasing member 70 may facilitate grounding of the connector 100, and attached coaxial cable 10 (shown in FIG. 2), by extending the electrical connection between the post 40 and the coupling element 30. Because the biasing member 70 may not be metallic and/or conductive, it may resist degradation, rust, corrosion, etc., to environmental elements when the connector 100 is exposed to such environmental elements. Furthermore, the resiliency of the biasing member 70 may deform under torque requirements, as opposed to permanently deforming in a manner similar to metallic or rigid components under similar torque requirements. Axial displacement of the connector body 50 may also occur, but the surface 49 of the post 40 may prevent axial displacement of the connector body 50, or friction fitting between the connector body 50 and the post 40 may prevent axial displacement of the connector body 50.


With continued reference to the drawings, FIG. 7 depicts an embodiment of connector 101. Connector 101 may include post 40, coupling element 30, connector body 50, fastener member 60, biasing member 70, but may also include a mating edge conductive member 80 formed of a conductive material. Such materials may include, but are not limited to conductive polymers, conductive plastics, conductive elastomers, conductive elastomeric mixtures, composite materials having conductive properties, soft metals, conductive rubber, and/or the like and/or any operable combination thereof. The mating edge conductive member 80 may comprise a substantially circinate torus or toroid structure, and may be disposed within the internal portion of coupling element 30 such that the mating edge conductive member 80 may make contact with and/or reside continuous with a mating edge 46 of a post 40 when connector 101 is operably configured (e.g. assembled for communication with interface port 20). For example, one embodiment of the mating edge conductive member 80 may be an O-ring. The mating edge conductive member 80 may facilitate an annular seal between the coupling element 30 and post 40 thereby providing a physical barrier to unwanted ingress of moisture and/or other environmental contaminates. Moreover, the mating edge conductive member 80 may facilitate electrical coupling of the post 40 and coupling element 30 by extending therebetween an unbroken electrical circuit. In addition, the mating edge conductive member 80 may facilitate grounding of the connector 100, and attached coaxial cable (shown in FIG. 2), by extending the electrical connection between the post 40 and the coupling element 30. Furthermore, the mating edge conductive member 80 may effectuate a buffer preventing ingress of electromagnetic noise between the coupling element 30 and the post 40. The mating edge conductive member or O-ring 80 may be provided to users in an assembled position proximate the second end 42 of post 40, or users may themselves insert the mating edge conductive O-ring 80 into position prior to installation on an interface port 20. Those skilled in the art would appreciate that the mating edge conductive member 80 may be fabricated by extruding, coating, molding, injecting, cutting, turning, elastomeric batch processing, vulcanizing, mixing, stamping, casting, and/or the like and/or any combination thereof in order to provide efficient production of the component.


Referring now to FIGS. 8A and 8B, an embodiment of connector 200 is described. Embodiments of connector 200 may include a post 40, a coupling element 30, a fastener member 60, a connector body 250 having biasing element 255, and a connector body member 90. Embodiments of the post 40, coupling element 30, and fastener member 60 described in association with connector 200 may share the same structural and functional aspects as described above in association with connectors 100, 101. Embodiments of connector 200 may also include a post 40 having a first end 41, a second end 42, and a flange 45 proximate the second end 42, wherein the post 40 is configured to receive a center conductor surrounded 18 by a dielectric 16 of a coaxial cable 10, a coupling element 30 attached to the post 40, the coupling element 30 having a first end 31 and a second end 32, and a connector body 250 having biasing element 255, wherein the engagement biasing element 255 biases the coupling element 30 against the post 40.


With reference now to FIG. 9, and continued reference to FIGS. 8A and 8B, embodiments of connector 200 may include a connector body 250 having a biasing element 255. The connector body 250 may include a first end 251, a second end 252, an inner surface 253, and an outer surface 254. Moreover, the connector body 250 may include a post mounting portion 257 proximate or otherwise near the second end 252 of the body 250; the post mounting portion 257 configured to securely locate the body 250 relative to a portion of the outer surface 44 of post 40, so that the connector body 250 is axially secured with respect to the post 40, in a manner that prevents the two components from moving with respect to each other in a direction parallel to the axis of the connector 200. In addition, the connector body 250 may include an extended, resilient outer annular surface 256 located proximate or near the second end 252 of the connector body 250. The extended, resilient annular surface 256 may extend a radial distance with respect to a general axis 5 of the connector 200 to facilitate biasing engagement with the coupling element 30. For instance, the extended annular surface 256 may radially extend past the internal wall 39 of the coupling element 30. In one embodiment, the extended, resilient annular surface 256 may be a resilient extension of annular recess 56 of connector body 50. In other embodiments, the extended, resilient annular surface 256, or shoulder, may function as a biasing element 255 proximate the second end 252. The biasing element 255 may be structurally integral with the connector body 250, such that the biasing element 255 is a portion of the connector body 250. In other embodiments, the biasing element 255 may be a separate component fitted or configured to be coupled with (e.g. adhered, snapped on, interference fit, and the like) an existing connector body, such as connector body 50. Moreover, the biasing element 255 of connector body 250 may be defined as a portion of the connector body 255, proximate the second end 252, that extends radially and potentially axially (slightly) from the body to bias the coupling element 30, proximate the first end 31, into contact with the post 40. The biasing element 255 may include a notch 258 to permit the necessary deflection to provide a biasing force to effectuate constant physical contact between the lip 36 of the coupling element 30 and the outer tapered surface 47 of the flange 45 of the post 40. The notch 258 may be a notch, groove, channel, or similar annular void that results in an annular portion of the connector body 50 that is removed to permit deflection in an axial direction with respect to the general axis 5 of connector 200.


Accordingly, a portion of the extended, resilient annular surface 256, or the biasing element 255, may engage the coupling element 30 to bias the coupling element 30 into contact with the post 40. Contact between the coupling element 30 and the post 40 may promote continuity through the connector 200, reduce/eliminate RF leakage, and ensure a stable ground through the connection of the connector 200 to an interface port 20 in the event the connector 200 is not fully tightened onto the port 20. In most embodiments, the extended annular surface 256 or the biasing element 255 of the connector body 250 may provide a constant biasing force behind the coupling element 30. The biasing force provided by the extended annular surface 256, or biasing element 255, behind the coupling element 30 may result in constant contact between the lip 36 of the coupling element 30 and the outward tapered surface 47 of the post 40. However, the biasing force of the extending annular surface 256, or biasing element 255, should not (significantly) hinder or prevent the rotational movement of the coupling element 30 (i.e. rotation of the coupling element 30 about the post 40). Because connector 200 may include connector body 250 having an extended, resilient annular surface 256 to improve continuity, there may be no need for an additional component such as a metallic conductive continuity member that is subject to corrosion and permanent deformation during operable advancement and disengagement with an interface port 20, which may ultimately adversely affect the signal quality (e.g. corrosion or deformation of conductive member may degrade the signal quality)


Furthermore, the connector body 250 may include a semi-rigid, yet compliant outer surface 254, wherein the outer surface 254 may be configured to form an annular seal when the first end 251 is deformably compressed against a received coaxial cable 10 by operation of a fastener member 60. Further still, the connector body 250 may include internal surface features 259, such as annular serrations formed near or proximate the internal surface of the first end 251 of the connector body 250 and configured to enhance frictional restraint and gripping of an inserted and received coaxial cable 10, through tooth-like interaction with the cable. The connector body 250 may be formed of materials such as plastics, polymers, bendable metals or composite materials that facilitate a semi-rigid, yet compliant outer surface 254. Further, the connector body 250 may be formed of conductive or non-conductive materials or a combination thereof. Manufacture of the connector body 250 may include casting, extruding, cutting, turning, drilling, knurling, injection molding, spraying, blow molding, component overmolding, combinations thereof, or other fabrication methods that may provide efficient production of the component.


Further embodiments of connector 200 may include a connector body member 90 formed of a conductive or non-conductive material. Such materials may include, but are not limited to conductive polymers, plastics, elastomeric mixtures, composite materials having conductive properties, soft metals, conductive rubber, rubber, and/or the like and/or any workable combination thereof. The connector body member 90 may comprise a substantially circinate torus or toroid structure, or other ring-like structure. For example, an embodiment of the connector body member 90 may be an O-ring disposed proximate the second end 252 of connector body 250 and the cavity 38 extending axially from the edge of first end 31 and partially defined and bounded by an outer internal wall 39 of coupling element 30 (see FIG. 4) such that the connector body O-ring 90 may make contact with and/or reside contiguous with the extended annular surface 256 of connector body 250 and outer internal wall 39 of coupling element 30 when operably attached to post 40 of connector 200. The connector body member 90 may facilitate an annular seal between the coupling element 30 and connector body 250 thereby providing a physical barrier to unwanted ingress of moisture and/or other environmental elements. Moreover, the connector body member 90 may facilitate further electrical coupling of the connector body 250 and coupling element 30 by extending therebetween an unbroken electrical circuit if connector body member 90 is conductive (i.e. formed of conductive materials). In addition, the connector body member 90 may further facilitate grounding of the connector 200, and attached coaxial cable 10 by extending the electrical connection between the connector body 250 and the coupling element 30. Furthermore, the connector body member 90 may effectuate a buffer preventing ingress of electromagnetic noise between the coupling element 30 and the connector body 250. It should be recognized by those skilled in the relevant art that the connector body member 90 may be manufactured by extruding, coating, molding, injecting, cutting, turning, elastomeric batch processing, vulcanizing, mixing, stamping, casting, and/or the like and/or any combination thereof in order to provide efficient production of the component.


Referring to FIGS. 1-9, a method of facilitating continuity through a coaxial cable connector 100 may include the steps of providing a post 40 having a first end 41, a second end 42, and a flange 45 proximate the second end 42, wherein the post 40 is configured to receive a center conductor 18 surrounded by a dielectric 16 of a coaxial cable 10, a connector body 50 attached to the post 40, and a coupling element 30 attached to the post 40, the coupling element 30 having a first end 31 and a second end 32, and disposing a biasing member 70 within a cavity 38 formed between the first end 31 of the coupling element 30 and the connector body 50 to bias the coupling element 30 against the post 40. Furthermore, a method of facilitating continuity through a coaxial cable connector 200 may include the steps of providing a post 40 having a first end 41, a second end 42, and a flange 45 proximate the second end 42, wherein the post 40 is configured to receive a center conductor 18 surrounded by a dielectric 16 of a coaxial cable 10, a coupling element 30 attached to the post 40, the coupling element 30 having a first end 31 and a second end 32, and a connector body 250 having a first end 251, a second end 252, and an annular surface 256 proximate the second end of the connector body, and extending the annular surface 256 a radial distance to engage the coupling element 30, wherein the engagement between the extended annular surface 256 and the coupling element 30 biases the coupling element 30 against the post 40.


While this disclosure has been described in conjunction with the specific embodiments outlined above, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the preferred embodiments of the present disclosure as set forth above are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the invention, as required by the following claims. The claims provide the scope of the coverage of the invention and should not be limited to the specific examples provided herein.

Claims
  • 1. A coaxial cable connector comprising: a post having a first end, a second end, and a flange, wherein the first end of the post is configured to receive a center conductor surrounded by a dielectric of a coaxial cable;a connector body, having a first end, a second end, and a body contact surface, the first end configured to receive a portion of the coaxial cable and the second end configured to be engaged with the post, when the connector is in an assembled state;a coupling element configured to engage the post and axially move between a first position, where the coupling element is partially tightened on an interface port, and a second position, where the coupling element is fully tightened on the interface port, the second position being axially spaced from the first position, the coupling element having a first end, a second end, an internal lip having a lip contact surface extending along a radial direction and facing a rearward direction, and an outer internal wall surface extending along an axial direction substantially perpendicular to the radial direction so as to form a substantially orthogonal shaped cavity between the coupling element and the connector body when the connector is in the assembled state, the cavity being configured to allow the coupling element to move toward the connector body and away from the flange of the post when the connector is in the assembled state and permit electrical continuity to be interrupted when the coupling element and the post move away from one another; anda biasing member configured to fit within the cavity between the coupling element and the connector body and exert a biasing force between the lip contact surface of the coupling element and the body contact surface of the body, the biasing force being sufficient to axially bias the coupling element towards the flange of the post and help prevent the cavity from interrupting electrical continuity by keeping the coupling element urged the post when the coupling element rotates relative to the post, as the coupling element moves between the first position, where the coupling element is partially tightened on the interface port, and the second position, where the coupling element is fully tightened on the interface port and electrically contacts the post;wherein the biasing force exerted by the biasing member helps improve electrical grounding reliability between the coupling element, the post, and the interface port, even when the post is not fully tightened relative to the interface port by helping to prevent the cavity from allowing electrical continuity to be interrupted;wherein the biasing member is configured to provide a physical seal between the coupling element and the connector body when the connector is in the assembled state; andwherein the biasing member is made of substantially non-metallic and non-conductive material.
  • 2. The coaxial cable connector of claim 1, wherein the biasing member simultaneously contacts the outer internal wall of the coupling element and a contact surface of the connector body, and urges the coupling element toward to post to close an axial gap between the internal lip of the coupling element and the flange of the post while substantially preventing movement of the coupling element toward the connector body, when the connector is in the assembled state.
  • 3. The coaxial cable connector of claim 2, wherein the axial gap between the internal lip of the coupling element and the flange of the post is void of any physical structure.
  • 4. The coaxial cable connector of claim 1, wherein the biasing member is configured to exert the biasing force against the coupling element along a direction opposite an interface port engagement force resultant upon the coupling element by the interface port as the coupling element is advanced onto the interface port, and wherein the biasing force exerted by the biasing member is greater than the interface port engagement force, so that the coupling element does not substantially move toward the connector body, and further wherein the biasing member promotes electrical continuity between the post and the coupling element, but does not substantially impede the rotational movement of the coupling element with respect to the post and the connector body, as the coupling element is advanced onto the interface port.
  • 5. The coaxial cable connector of claim 1, wherein the biasing member biases the internal lip of the coupling element against a surface of the flange of the post.
  • 6. The coaxial cable connector of claim 1, wherein the biasing member is configured to exert a constant biasing force against the coupling element when the coupling element moves between the first and second positions.
  • 7. The coaxial cable connector of claim 1, wherein the biasing member is resilient and is configured to exert a constant biasing force against the coupling element when the connector is in the assembled state and when the coupling element moves between the partially tightened position and the fully tightened position.
  • 8. The coaxial cable connector of claim 1, wherein the biasing member is an over-sized O-ring having an axial dimension larger than the axial depth of the cavity between the body contact surface of the connector body and the internal lip of the coupling element.
  • 9. The coaxial cable connector of claim 1, wherein the biasing member resists degradation and rust.
  • 10. The connector of claim 1, wherein the biasing force is exerted against the coupling element along the axial direction and toward a forward direction.
  • 11. The connector of claim 10, wherein the biasing member is configured to improve electrical grounding reliability between the coupling element and the post only when the biasing force is greater than a counter force exerted against the coupling element along the axial direction and toward a rearward direction opposite from the forward direction.
  • 12. The connector of claim 1, wherein the biasing force is exerted against the connector body along the axial direction and toward a rearward direction.
  • 13. The connector of claim 12, wherein the biasing member is configured to improve electrical grounding reliability between the coupling element and the post only when the biasing force is greater than a counter force exerted against the connector body along the axial direction and toward a forward direction opposite from the rearward direction.
  • 14. A coaxial cable connector for coupling an end of a coaxial cable and facilitating electrical connection with a coaxial cable interface port having a conductive surface, the coaxial cable having a center conductor surrounded by a dielectric, the dielectric being surrounded by a conductive grounding shield, the conductive grounding shield being surrounded by a protective outer jacket, the connector comprising: a post having a first end, a second end, and a flange proximate the second end, wherein the post is configured to receive the center conductor and the dielectric of the coaxial cable;a connector body having a first end and a second end, the first end configured to receive a prepared portion of the coaxial cable and the second end configured to engage the post, the second end including a body contact surface;a coupling element rotatably attached to the post, the coupling element having a first end including a cavity and a second end configured to mate with an interface port, wherein the cavity of the coupling element is bounded by: an internal lip extending along a radial direction and facing a rearward direction, the internal lip having a lip contact surface, andan internal wall extending in an axial direction and facing a forward direction;wherein the internal wall has an axial length that is greater than the radial length of the lip contact surface of the internal lip;wherein the radially extending lip contact surface of the internal lip of the coupling element is spaced away from the body contact surface of the second end of the connector body so as to form a gap between the connector body and the internal lip of the coupling element when the connector is in the assembled state, the gap being shaped to allow the coupling element and the connector body to move axially toward and away from one another and disrupt electrical continuity between the coupling element and the post when the connector is in the assembled state; anda biasing structure located within the cavity bounded by the internal lip and the internal wall and axially disposed within the gap formed between the connector body and the internal lip of the coupling element, the biasing member configured to extend between the coupling element and the connector body and exert a biasing force on the lip contact surface of the internal lip of the coupling element and axially bias the coupling element towards the flange of the post, the biasing force being sufficient to prevent the gap from allowing the coupling element and the post from moving away from one another and disrupting electrical continuity between the coupling element and the post when the connector is in the assembled state;wherein the biasing structure is non-metallic and non-conductive and is configured to form a physical seal against the body contact surface of the connector body; andwherein the gap between the connector body and the internal lip of the coupling element is bounded by an axial depth and the biasing structure member comprises an over-sized O-ring having an axial dimension larger than the axial depth of the gap.
  • 15. The coaxial cable connector of claim 14, wherein the biasing structure is resilient and is configured to exert a constant biasing force against the coupling element when the connector is in the assembled state.
  • 16. The coaxial cable connector of claim 14, wherein the biasing member biases the internal lip of the coupling element against a surface of the flange of the post.
  • 17. The coaxial cable connector of claim 14, wherein the biasing member resists degradation and rust.
  • 18. The coaxial cable connector of claim 14, wherein the biasing member simultaneously contacts the outer internal wall of the coupling element, the lip contact surface of the internal lip of the coupling element, and the body contact surface of the connector body, so as to substantially prevent axial movement of the coupling element toward the connector body, when the connector is in the assembled state.
  • 19. The connector of claim 14, wherein the biasing force is exerted against the coupling element along the axial direction and toward a forward direction.
  • 20. The connector of claim 19, wherein the biasing member is configured to improve electrical grounding reliability between the coupling element and the post only when the biasing force is greater than a counter force exerted against the coupling element along the axial direction and toward a rearward direction opposite from the forward direction.
  • 21. The connector of claim 14, wherein the biasing force is exerted against the connector body along the axial direction and toward a rearward direction.
  • 22. The connector of claim 21, wherein the biasing member is configured to improve electrical grounding reliability between the coupling element and the post only when the biasing force is greater than a counter force exerted against the connector body along the axial direction and toward a forward direction opposite from the rearward direction.
  • 23. A method of facilitating electrical continuity through a coaxial cable connector, comprising: providing a coaxial cable connector including: a post having a first end, a second end, and a flange, wherein the first end of the post is configured to receive a center conductor surrounded by a dielectric of a coaxial cable;a connector body, having a first end, a second end, and a body contact surface, the first end configured to receive a portion of the coaxial cable and the second end configured to be engaged with the post, when the connector is in an assembled state;a coupling element configured to engage the post and axially move between a first position, where the coupling element is partially tightened on an interface port and engaged with the interface port by an initial threaded section of the coupling element, and a second position, where the coupling element is fully tightened on the interface port, the second position being axially spaced from the first position, the coupling element having a first end, a second end, an internal lip having a lip contact surface extending along a radial direction and facing a rearward direction, and an outer internal wall surface extending along an axial direction substantially perpendicular to the radial direction, the lip contact surface and the outer internal wall surface forming a non-circular cavity between the coupling element and the connector body, when the connector is in the assembled state, the cavity forming an axial gap extending between the coupling element and the connector body that allows the coupling element and the connector body to move relative to one another and allow an electrical grounding path extending between the coupling element and the post to be interrupted when the coupling element and the connector body move relative to one another;disposing a non-conductive and non-metallic biasing member within the cavity between the coupling element and the connector body, wherein the biasing member is configured to exert a biasing force between the lip contact surface of the coupling element and the body contact surface of the body, the biasing force being sufficient to axially move the coupling element towards the flange of the post when the coupling element axially moves relative to the post between the first position, where the coupling element is partially tightened on the interface port, and the second position, where the coupling element is fully tightened on the interface port and to help prevent the gap between the coupling element and the connector body from allowing the electrical grounding path extending between the coupling element and the post to be interrupted;providing an electrically conductive path through the coupling element and the post of the connector, when the coupling element is biased toward the post by the non-metallic and non-conductive biasing member, even when the coupling element is only partially tightened onto the interface port; and wherein the axial gap between the connector body and the internal lip of the coupling element is bounded by an axial depth and the biasing structure member comprises an over-sized O-ring having an axial dimension larger than the axial depth of the axial gap.
  • 24. The method of claim 23, wherein the non-metallic and non-conductive biasing member provides a physical seal between the coupling element and the connector body when the connector is in the assembled state.
  • 25. The method of claim 23, wherein the coupling element includes a plurality of threads and the initial threaded section of the coupling elements comprises two threads.
  • 26. The method of claim 23, wherein the coupling element includes a plurality of threads and the initial threaded section of the coupling elements comprises one thread.
  • 27. The method of claim 23, wherein the biasing force is exerted against the coupling element along the axial direction and toward a forward direction.
  • 28. The method of claim 27, wherein the biasing member is configured to improve electrical grounding reliability between the coupling element and the post only when the biasing force is greater than a counter force exerted against the coupling element along the axial direction and toward a rearward direction opposite from the forward direction.
  • 29. The method of claim 22, wherein the biasing force is exerted against the connector body along the axial direction and toward a rearward direction.
  • 30. The method of claim 29, wherein the biasing member is configured to improve electrical grounding reliability between the coupling element and the post only when the biasing force is greater than a counter force exerted against the connector body along the axial direction and toward a forward direction opposite from the rearward direction.
  • 31. The method of claim 23, wherein the biasing member simultaneously contacts the outer internal wall of the coupling element and the contact surface of the connector body, so as to fill the axial gap between the coupling element and the connector body and substantially prevent movement of the coupling element toward the connector body, when the connector is in the assembled state.
  • 32. A coaxial cable connector comprising: a threaded nut configured to engage an interface port and move between a first position, where the nut is partially threaded on the interface port, and a second position, where the nut is fully threaded on the interface port, the nut including an inward lip and also including a radial contact surface facing away from the interface port, when the nut is engaged with the interface port;a post rotatably attached to the threaded nut, the post having a flange; anda connector body configured to engage the post, when the connector is in the assembled state, the connector body including: an integral biasing structure having a surface extending a radial distance with respect to a general axis of the connector, wherein the integral biasing structure is configured to facilitate biasing engagement with the biasing surface of the nut, when the connector is in the assembled state; anda groove located axially rearward of the integral biasing structure and configured to permit axial deflection of the integral biasing structure to provide a biasing force against the radial contact surface of the nut sufficient to move the inward lip of the nut toward the flange of the post until the nut is fully threaded onto the interface port and the post makes constant physical and electrical contact with the interface port.
  • 33. The coaxial cable connector of claim 32, wherein the surface of the integral biasing structure extends along an axial distance to engage the nut.
  • 34. The connector of claim 33, wherein the nut includes an internal wall extending along an axial direction and toward a rearward direction, and wherein the radial contact surface of the nut is substantially perpendicular to the internal wall of the nut.
  • 35. The connector of claim 34, wherein the radial contact surface of the nut is located axially rearward from the internal wall of the nut.
  • 36. The connector of claim 33, wherein the integral biasing structure is configured to exert a constant biasing force against the nut.
  • 37. The connector of claim 33, wherein the integral biasing structure is made of substantially non-metallic and non-conductive material.
  • 38. The connector of claim 33, wherein the integral biasing structure is configured to exert a constant biasing force against the radial contact surface of the nut when the connector is in the assembled state and when the nut moves between the first position and the second position.
  • 39. The connector of claim 38, wherein the biasing force is axially exerted against the nut toward a forward axial direction.
  • 40. The connector of claim 39, wherein the integral biasing structure is configured to improve electrical grounding reliability between the nut and the post only when the biasing force is greater than a counter force exerted against the nut toward a rearward axial direction opposite from the forward axial direction.
  • 41. The connector of claim 38, wherein the biasing force is exerted against the connector body toward a rearward axial direction.
  • 42. The connector of claim 41, wherein the integral biasing structure is configured to improve electrical grounding reliability between the nut and the post only when the biasing force is greater than a counter force exerted against the connector body toward a forward axial direction opposite from the rearward axial direction.
  • 43. The connector of claim 32, wherein the post does not engage the interface port when the nut is in the first position, and wherein the post engages the interface port when the nut is in the second position.
  • 44. The connector of claim 32, wherein nut and the post are configured to move relative to one another when the connector is in the assembled state, the gap is formed between the nut and the connector body when the connector is in an assembled state so as to allow electrical grounding continuity to be interrupted when the nut and the post move out of contact relative to one another, and wherein the integral biasing structure is configured to axially extend within the gap between the nut and the connector body and exert the biasing force against the radial contact surface when the nut moves between the first position and the second position.
CROSS-REFERENCE TO RELATED APPLICATION

This continuation application claims the priority benefit of United States Non-Provisional patent application Ser. No. 13/075,406 filed Mar. 30, 2011, and entitled CONTINUITY MAINTAINING BIASING MEMBER

US Referenced Citations (573)
Number Name Date Kind
331169 Thomas Nov 1885 A
1371742 Dringman Mar 1921 A
1667485 MacDonald Apr 1928 A
1766869 Austin Jun 1930 A
1801999 Bowman Apr 1931 A
1885761 Peirce, Jr. Nov 1932 A
2102495 England Dec 1937 A
2258737 Browne Oct 1941 A
2325549 Ryzowitz Jul 1943 A
2480963 Quinn Sep 1949 A
2544654 Brown Mar 1951 A
2549647 Turenne Apr 1951 A
2694187 Nash Nov 1954 A
2754487 Carr et al. Jul 1956 A
2755331 Melcher Jul 1956 A
2757351 Klostermann Jul 1956 A
2762025 Melcher Sep 1956 A
2805399 Leeper Sep 1957 A
2870420 Malek Jan 1959 A
3001169 Blonder Sep 1961 A
3015794 Kishbaugh Jan 1962 A
3091748 Takes et al. May 1963 A
3094364 Lingg Jun 1963 A
3184706 Atkins May 1965 A
3194292 Borowsky Jul 1965 A
3196382 Morello, Jr. Jul 1965 A
3245027 Ziegler, Jr. Apr 1966 A
3275913 Blanchard et al. Sep 1966 A
3278890 Cooney Oct 1966 A
3281757 Bonhomme Oct 1966 A
3292136 Somerset Dec 1966 A
3320575 Brown et al. May 1967 A
3321732 Forney, Jr. May 1967 A
3336563 Hyslop Aug 1967 A
3348186 Rosen Oct 1967 A
3350677 Daum Oct 1967 A
3355698 Keller Nov 1967 A
3373243 Janowiak et al. Mar 1968 A
3390374 Forney, Jr. Jun 1968 A
3406373 Forney, Jr. Oct 1968 A
3430184 Acord Feb 1969 A
3448430 Kelly Jun 1969 A
3453376 Ziegler, Jr. et al. Jul 1969 A
3465281 Florer Sep 1969 A
3475545 Stark et al. Oct 1969 A
3494400 McCoy et al. Feb 1970 A
3498647 Schroder Mar 1970 A
3501737 Harris et al. Mar 1970 A
3517373 Jamon Jun 1970 A
3526871 Hobart Sep 1970 A
3533051 Ziegler, Jr. Oct 1970 A
3537065 Winston Oct 1970 A
3544705 Winston Dec 1970 A
3551882 O'Keefe Dec 1970 A
3564487 Upstone et al. Feb 1971 A
3587033 Brorein et al. Jun 1971 A
3601776 Curl Aug 1971 A
3629792 Dorrell Dec 1971 A
3633150 Swartz Jan 1972 A
3646502 Hutter et al. Feb 1972 A
3663926 Brandt May 1972 A
3665371 Cripps May 1972 A
3668612 Nepovim Jun 1972 A
3669472 Nadsady Jun 1972 A
3671922 Zerlin et al. Jun 1972 A
3678444 Stevens et al. Jul 1972 A
3678445 Brancaleone Jul 1972 A
3680034 Chow et al. Jul 1972 A
3681739 Kornick Aug 1972 A
3683320 Woods et al. Aug 1972 A
3686623 Nijman Aug 1972 A
3694792 Wallo Sep 1972 A
3706958 Blanchenot Dec 1972 A
3710005 French Jan 1973 A
3739076 Schwartz Jun 1973 A
3744007 Horak Jul 1973 A
3744011 Blanchenot Jul 1973 A
3778535 Forney, Jr. Dec 1973 A
3781762 Quackenbush Dec 1973 A
3781898 Holloway Dec 1973 A
3793610 Brishka Feb 1974 A
3798589 Deardurff Mar 1974 A
3808580 Johnson Apr 1974 A
3810076 Hutter May 1974 A
3835443 Arnold et al. Sep 1974 A
3836700 Niemeyer Sep 1974 A
3845453 Hemmer Oct 1974 A
3846738 Nepovim Nov 1974 A
3854003 Duret Dec 1974 A
3858156 Zarro Dec 1974 A
3879102 Horak Apr 1975 A
3886301 Cronin et al. May 1975 A
3907399 Spinner Sep 1975 A
3910673 Stokes Oct 1975 A
3915539 Collins Oct 1975 A
3936132 Hutter Feb 1976 A
3953097 Graham Apr 1976 A
3963320 Spinner Jun 1976 A
3963321 Burger et al. Jun 1976 A
3970355 Pitschi Jul 1976 A
3972013 Shapiro Jul 1976 A
3976352 Spinner Aug 1976 A
3980805 Lipari Sep 1976 A
3985418 Spinner Oct 1976 A
4017139 Nelson Apr 1977 A
4022966 Gajajiva May 1977 A
4030798 Paoli Jun 1977 A
4046451 Juds et al. Sep 1977 A
4053200 Pugner Oct 1977 A
4059330 Shirey Nov 1977 A
4079343 Nijman Mar 1978 A
4082404 Flatt Apr 1978 A
4090028 Vontobel May 1978 A
4093335 Schwartz et al. Jun 1978 A
4106839 Cooper Aug 1978 A
4125308 Schilling Nov 1978 A
4126372 Hashimoto et al. Nov 1978 A
4131332 Hogendobler et al. Dec 1978 A
4150250 Lundeberg Apr 1979 A
4153320 Townshend May 1979 A
4156554 Aujla May 1979 A
4165911 Laudig Aug 1979 A
4168921 Blanchard Sep 1979 A
4173385 Fenn et al. Nov 1979 A
4174875 Wilson et al. Nov 1979 A
4187481 Boutros Feb 1980 A
4225162 Dola Sep 1980 A
4227765 Neumann et al. Oct 1980 A
4229714 Yu Oct 1980 A
4250348 Kitagawa Feb 1981 A
4280749 Hemmer Jul 1981 A
4285564 Spinner Aug 1981 A
4290663 Fowler et al. Sep 1981 A
4296986 Herrmann et al. Oct 1981 A
4307926 Smith Dec 1981 A
4322121 Riches et al. Mar 1982 A
4326769 Dorsey et al. Apr 1982 A
4339166 Dayton Jul 1982 A
4346958 Blanchard Aug 1982 A
4354721 Luzzi Oct 1982 A
4358174 Dreyer Nov 1982 A
4373767 Cairns Feb 1983 A
4389081 Gallusser et al. Jun 1983 A
4400050 Hayward Aug 1983 A
4407529 Holman Oct 1983 A
4408821 Forney, Jr. Oct 1983 A
4408822 Nikitas Oct 1983 A
4412717 Monroe Nov 1983 A
4421377 Spinner Dec 1983 A
4426127 Kubota Jan 1984 A
4444453 Kirby et al. Apr 1984 A
4452503 Forney, Jr. Jun 1984 A
4456323 Pitcher et al. Jun 1984 A
4462653 Flederbach et al. Jul 1984 A
4464000 Werth et al. Aug 1984 A
4464001 Collins Aug 1984 A
4469386 Ackerman Sep 1984 A
4470657 Deacon Sep 1984 A
4484792 Tengler et al. Nov 1984 A
4484796 Sato et al. Nov 1984 A
4490576 Bolante et al. Dec 1984 A
4506943 Drogo Mar 1985 A
4515427 Smit May 1985 A
4525017 Schildkraut et al. Jun 1985 A
4531790 Selvin Jul 1985 A
4531805 Werth Jul 1985 A
4533191 Blackwood Aug 1985 A
4540231 Forney, Jr. Sep 1985 A
RE31995 Ball Oct 1985 E
4545637 Bosshard et al. Oct 1985 A
4575274 Hayward Mar 1986 A
4580862 Johnson Apr 1986 A
4580865 Fryberger Apr 1986 A
4583811 McMills Apr 1986 A
4585289 Bocher Apr 1986 A
4588246 Schildkraut et al. May 1986 A
4593964 Forney, Jr. et al. Jun 1986 A
4596434 Saba et al. Jun 1986 A
4596435 Bickford Jun 1986 A
4598961 Cohen Jul 1986 A
4600263 DeChamp et al. Jul 1986 A
4613199 McGeary Sep 1986 A
4614390 Baker Sep 1986 A
4616900 Cairns Oct 1986 A
4632487 Wargula Dec 1986 A
4634213 Larsson et al. Jan 1987 A
4640572 Conlon Feb 1987 A
4645281 Burger Feb 1987 A
4650228 McMills et al. Mar 1987 A
4655159 McMills Apr 1987 A
4655534 Stursa Apr 1987 A
4660921 Hauver Apr 1987 A
4668043 Saba et al. May 1987 A
4673236 Musolff et al. Jun 1987 A
4674818 McMills et al. Jun 1987 A
4676577 Szegda Jun 1987 A
4682832 Punako et al. Jul 1987 A
4684201 Hutter Aug 1987 A
4688876 Morelli Aug 1987 A
4688878 Cohen et al. Aug 1987 A
4690482 Chamberland et al. Sep 1987 A
4691976 Cowen Sep 1987 A
4703987 Gallusser et al. Nov 1987 A
4703988 Raux et al. Nov 1987 A
4717355 Mattis Jan 1988 A
4720155 Schildkraut et al. Jan 1988 A
4734050 Negre et al. Mar 1988 A
4734666 Ohya et al. Mar 1988 A
4737123 Paler et al. Apr 1988 A
4738009 Down et al. Apr 1988 A
4738628 Rees Apr 1988 A
4746305 Nomura May 1988 A
4747786 Hayashi et al. May 1988 A
4749821 Linton et al. Jun 1988 A
4755152 Elliot et al. Jul 1988 A
4757297 Frawley Jul 1988 A
4759729 Kemppainen et al. Jul 1988 A
4761146 Sohoel Aug 1988 A
4772222 Laudig et al. Sep 1988 A
4789355 Lee Dec 1988 A
4797120 Ulery Jan 1989 A
4806116 Ackerman Feb 1989 A
4807891 Neher Feb 1989 A
4808128 Werth Feb 1989 A
4813886 Roos et al. Mar 1989 A
4820185 Moulin Apr 1989 A
4834675 Samchisen May 1989 A
4835342 Guginsky May 1989 A
4836801 Ramirez Jun 1989 A
4838813 Pauza et al. Jun 1989 A
4854893 Morris Aug 1989 A
4857014 Alf et al. Aug 1989 A
4867706 Tang Sep 1989 A
4869679 Szegda Sep 1989 A
4874331 Iverson Oct 1989 A
4892275 Szegda Jan 1990 A
4902246 Samchisen Feb 1990 A
4906207 Banning et al. Mar 1990 A
4915651 Bout Apr 1990 A
4921447 Capp et al. May 1990 A
4923412 Morris May 1990 A
4925403 Zorzy May 1990 A
4927385 Cheng May 1990 A
4929188 Lionetto et al. May 1990 A
4934960 Capp et al. Jun 1990 A
4938718 Guendel Jul 1990 A
4941846 Guimond et al. Jul 1990 A
4952174 Sucht et al. Aug 1990 A
4957456 Olson et al. Sep 1990 A
4973265 Heeren Nov 1990 A
4979911 Spencer Dec 1990 A
4990104 Schieferly Feb 1991 A
4990105 Karlovich Feb 1991 A
4990106 Szegda Feb 1991 A
4992061 Brush, Jr. et al. Feb 1991 A
5002503 Campbell et al. Mar 1991 A
5007861 Stirling Apr 1991 A
5011422 Yeh Apr 1991 A
5011432 Sucht et al. Apr 1991 A
5021010 Wright Jun 1991 A
5024606 Ming-Hwa Jun 1991 A
5030126 Hanlon Jul 1991 A
5037328 Karlovich Aug 1991 A
5046964 Welsh et al. Sep 1991 A
5052947 Brodie et al. Oct 1991 A
5055060 Down et al. Oct 1991 A
5059747 Bawa et al. Oct 1991 A
5062804 Jamet et al. Nov 1991 A
5066248 Gaver, Jr. et al. Nov 1991 A
5073129 Szegda Dec 1991 A
5080600 Baker et al. Jan 1992 A
5083943 Tarrant Jan 1992 A
5120260 Jackson Jun 1992 A
5127853 McMills et al. Jul 1992 A
5131862 Gershfeld Jul 1992 A
5137470 Doles Aug 1992 A
5137471 Verespej et al. Aug 1992 A
5141448 Mattingly et al. Aug 1992 A
5141451 Down Aug 1992 A
5149274 Gallusser et al. Sep 1992 A
5154636 Vaccaro et al. Oct 1992 A
5161993 Leibfried, Jr. Nov 1992 A
5166477 Perin, Jr. et al. Nov 1992 A
5169323 Kawai et al. Dec 1992 A
5181161 Hirose et al. Jan 1993 A
5183417 Bools Feb 1993 A
5186501 Mano Feb 1993 A
5186655 Glenday et al. Feb 1993 A
5195905 Pesci Mar 1993 A
5195906 Szegda Mar 1993 A
5205547 Mattingly Apr 1993 A
5205761 Nilsson Apr 1993 A
5207602 McMills et al. May 1993 A
5215477 Weber et al. Jun 1993 A
5217391 Fisher, Jr. Jun 1993 A
5217393 Del Negro et al. Jun 1993 A
5221216 Gabany et al. Jun 1993 A
5227587 Paterek Jul 1993 A
5247424 Harris et al. Sep 1993 A
5269701 Leibfried, Jr. Dec 1993 A
5283853 Szegda Feb 1994 A
5284449 Vaccaro Feb 1994 A
5294864 Do Mar 1994 A
5295864 Birch et al. Mar 1994 A
5316494 Flanagan et al. May 1994 A
5318459 Shields Jun 1994 A
5334032 Myers et al. Aug 1994 A
5334051 Devine et al. Aug 1994 A
5338225 Jacobsen et al. Aug 1994 A
5342218 McMills et al. Aug 1994 A
5354217 Gabel et al. Oct 1994 A
5362250 McMills et al. Nov 1994 A
5371819 Szegda Dec 1994 A
5371821 Szegda Dec 1994 A
5371827 Szegda Dec 1994 A
5380211 Kawaguchi et al. Jan 1995 A
5389005 Kodama Feb 1995 A
5393244 Szegda Feb 1995 A
5397252 Wang Mar 1995 A
5413504 Kloecker et al. May 1995 A
5431583 Szegda Jul 1995 A
5435745 Booth Jul 1995 A
5439386 Ellis et al. Aug 1995 A
5444810 Szegda Aug 1995 A
5455548 Grandchamp et al. Oct 1995 A
5456611 Henry et al. Oct 1995 A
5456614 Szegda Oct 1995 A
5466173 Down Nov 1995 A
5470257 Szegda Nov 1995 A
5474478 Ballog Dec 1995 A
5490033 Cronin Feb 1996 A
5490801 Fisher, Jr. et al. Feb 1996 A
5494454 Johnsen Feb 1996 A
5499934 Jacobsen et al. Mar 1996 A
5501616 Holliday Mar 1996 A
5516303 Yohn et al. May 1996 A
5525076 Down Jun 1996 A
5542861 Anhalt et al. Aug 1996 A
5548088 Gray et al. Aug 1996 A
5550521 Bernaud et al. Aug 1996 A
5564938 Shenkal et al. Oct 1996 A
5571028 Szegda Nov 1996 A
5586910 Del Negro et al. Dec 1996 A
5595499 Zander et al. Jan 1997 A
5598132 Stabile Jan 1997 A
5607325 Toma Mar 1997 A
5620339 Gray et al. Apr 1997 A
5632637 Diener May 1997 A
5632651 Szegda May 1997 A
5644104 Porter et al. Jul 1997 A
5651698 Locati et al. Jul 1997 A
5651699 Holliday Jul 1997 A
5653605 Woehl et al. Aug 1997 A
5667405 Holliday Sep 1997 A
5681172 Moldenhauer Oct 1997 A
5683263 Hsu Nov 1997 A
5702263 Baumann et al. Dec 1997 A
5722856 Fuchs et al. Mar 1998 A
5735704 Anthony Apr 1998 A
5746617 Porter, Jr. et al. May 1998 A
5746619 Harting et al. May 1998 A
5769652 Wider Jun 1998 A
5775927 Wider Jul 1998 A
5863220 Holliday Jan 1999 A
5877452 McConnell Mar 1999 A
5879191 Burris Mar 1999 A
5882226 Bell et al. Mar 1999 A
5921793 Phillips Jul 1999 A
5938465 Fox, Sr. Aug 1999 A
5944548 Saito Aug 1999 A
5957716 Buckley et al. Sep 1999 A
5967852 Follingstad et al. Oct 1999 A
5975949 Holliday et al. Nov 1999 A
5975951 Burris et al. Nov 1999 A
5977841 Lee et al. Nov 1999 A
5997350 Burris et al. Dec 1999 A
6010349 Porter, Jr. Jan 2000 A
6019635 Nelson Feb 2000 A
6022237 Esh Feb 2000 A
6032358 Wild Mar 2000 A
6042422 Youtsey Mar 2000 A
6048229 Lazaro, Jr. Apr 2000 A
6053769 Kubota et al. Apr 2000 A
6053777 Boyle Apr 2000 A
6083053 Anderson, Jr. et al. Jul 2000 A
6089903 Stafford Gray et al. Jul 2000 A
6089912 Tallis et al. Jul 2000 A
6089913 Holliday Jul 2000 A
6123567 McCarthy Sep 2000 A
6146197 Holliday et al. Nov 2000 A
6152753 Johnson et al. Nov 2000 A
6153830 Montena Nov 2000 A
6210216 Tso-Chin et al. Apr 2001 B1
6210222 Langham et al. Apr 2001 B1
6217383 Holland et al. Apr 2001 B1
6239359 Lilienthal, II et al. May 2001 B1
6241553 Hsia Jun 2001 B1
6261126 Stirling Jul 2001 B1
6267612 Arcykiewicz et al. Jul 2001 B1
6271464 Cunningham Aug 2001 B1
6331123 Rodrigues Dec 2001 B1
6332815 Bruce Dec 2001 B1
6358077 Young Mar 2002 B1
D458904 Montena Jun 2002 S
6406330 Bruce Jun 2002 B2
D460739 Fox Jul 2002 S
D460740 Montena Jul 2002 S
D460946 Montena Jul 2002 S
D460947 Montena Jul 2002 S
D460948 Montena Jul 2002 S
6422900 Hogan Jul 2002 B1
6425782 Holland Jul 2002 B1
D461166 Montena Aug 2002 S
D461167 Montena Aug 2002 S
D461778 Fox Aug 2002 S
D462058 Montena Aug 2002 S
D462060 Fox Aug 2002 S
6439899 Muzslay et al. Aug 2002 B1
D462327 Montena Sep 2002 S
6468100 Meyer et al. Oct 2002 B1
6491546 Perry Dec 2002 B1
D468696 Montena Jan 2003 S
6506083 Bickford et al. Jan 2003 B1
6530807 Rodrigues et al. Mar 2003 B2
6540531 Syed et al. Apr 2003 B2
6558194 Montena May 2003 B2
6572419 Feye-Homann Jun 2003 B2
6576833 Covaro et al. Jun 2003 B2
6619876 Vaitkus et al. Sep 2003 B2
6634906 Yeh Oct 2003 B1
6676446 Montena Jan 2004 B2
6683253 Lee Jan 2004 B1
6692285 Islam Feb 2004 B2
6692286 De Cet Feb 2004 B1
6712631 Youtsey Mar 2004 B1
6716041 Ferderer et al. Apr 2004 B2
6716062 Palinkas et al. Apr 2004 B1
6733336 Montena et al. May 2004 B1
6733337 Kodaira May 2004 B2
6767248 Hung Jul 2004 B1
6769926 Montena Aug 2004 B1
6780068 Bartholoma et al. Aug 2004 B2
6786767 Fuks et al. Sep 2004 B1
6790081 Burris et al. Sep 2004 B2
6805584 Chen Oct 2004 B1
6817896 Derenthal Nov 2004 B2
6848939 Stirling Feb 2005 B2
6848940 Montena Feb 2005 B2
6884113 Montena Apr 2005 B1
6884115 Malloy Apr 2005 B2
6929508 Holland Aug 2005 B1
6939169 Islam et al. Sep 2005 B2
6971912 Montena et al. Dec 2005 B2
7029326 Montena Apr 2006 B2
7070447 Montena Jul 2006 B1
7086897 Montena Aug 2006 B2
7097499 Purdy Aug 2006 B1
7102868 Montena Sep 2006 B2
7114990 Bence et al. Oct 2006 B2
7118416 Montena et al. Oct 2006 B2
7125283 Lin Oct 2006 B1
7131868 Montena Nov 2006 B2
7144271 Burris et al. Dec 2006 B1
7147509 Burris et al. Dec 2006 B1
7156696 Montena Jan 2007 B1
7161785 Chawgo Jan 2007 B2
7229303 Vermoesen et al. Jun 2007 B2
7252546 Holland Aug 2007 B1
7255598 Montena et al. Aug 2007 B2
7299550 Montena Nov 2007 B2
7375533 Gale May 2008 B2
7393245 Palinkas et al. Jul 2008 B2
7404737 Youtsey Jul 2008 B1
7452239 Montena Nov 2008 B2
7455550 Sykes Nov 2008 B1
7462068 Amidon Dec 2008 B2
7476127 Wei Jan 2009 B1
7479035 Bence et al. Jan 2009 B2
7488210 Burris et al. Feb 2009 B1
7494355 Hughes et al. Feb 2009 B2
7497729 Wei Mar 2009 B1
7507117 Amidon Mar 2009 B2
7544094 Paglia et al. Jun 2009 B1
7566236 Malloy et al. Jul 2009 B2
7607942 Van Swearingen Oct 2009 B1
7674132 Chen Mar 2010 B1
7682177 Berthet Mar 2010 B2
7727011 Montena et al. Jun 2010 B2
7753705 Montena Jul 2010 B2
7753727 Islam et al. Jul 2010 B1
7794275 Rodrigues Sep 2010 B2
7806714 Williams et al. Oct 2010 B2
7806725 Chen Oct 2010 B1
7811133 Gray Oct 2010 B2
7824216 Purdy Nov 2010 B2
7828595 Mathews Nov 2010 B2
7830154 Gale Nov 2010 B2
7833053 Mathews Nov 2010 B2
7845976 Mathews Dec 2010 B2
7845978 Chen Dec 2010 B1
7850487 Wei Dec 2010 B1
7857661 Islam Dec 2010 B1
7887354 Holliday Feb 2011 B2
7892004 Hertzler et al. Feb 2011 B2
7892005 Haube Feb 2011 B2
7892024 Chen Feb 2011 B1
7927135 Wlos Apr 2011 B1
7950958 Mathews May 2011 B2
7955126 Bence et al. Jun 2011 B2
7972158 Wild et al. Jul 2011 B2
8029315 Purdy et al. Oct 2011 B2
8062044 Montena et al. Nov 2011 B2
8075338 Montena Dec 2011 B1
8079860 Zraik Dec 2011 B1
8152551 Zraik Apr 2012 B2
8157588 Rodrigues et al. Apr 2012 B1
8167635 Mathews May 2012 B1
8167636 Montena May 2012 B1
8167646 Mathews May 2012 B1
8172612 Bence et al. May 2012 B2
8192237 Purdy et al. Jun 2012 B2
20020013088 Rodrigues et al. Jan 2002 A1
20020038720 Kai et al. Apr 2002 A1
20030214370 Allison et al. Nov 2003 A1
20030224657 Malloy Dec 2003 A1
20040077215 Palinkas et al. Apr 2004 A1
20040102089 Chee May 2004 A1
20040209516 Burris et al. Oct 2004 A1
20040219833 Burris et al. Nov 2004 A1
20040229504 Liu Nov 2004 A1
20050042919 Montena Feb 2005 A1
20050208827 Burris et al. Sep 2005 A1
20050233636 Rodrigues et al. Oct 2005 A1
20060099853 Sattele et al. May 2006 A1
20060110977 Mathews May 2006 A1
20060154519 Montena Jul 2006 A1
20070026734 Bence et al. Feb 2007 A1
20070049113 Rodrigues et al. Mar 2007 A1
20070123101 Palinkas May 2007 A1
20070155232 Burris et al. Jul 2007 A1
20070175027 Khemakhem et al. Aug 2007 A1
20070243759 Rodrigues et al. Oct 2007 A1
20070243762 Burke et al. Oct 2007 A1
20080102696 Montena May 2008 A1
20080289470 Aston Nov 2008 A1
20090029590 Sykes et al. Jan 2009 A1
20090098770 Bence et al. Apr 2009 A1
20100055978 Montena Mar 2010 A1
20100081321 Malloy et al. Apr 2010 A1
20100081322 Malloy et al. Apr 2010 A1
20100105246 Burris et al. Apr 2010 A1
20100233901 Wild et al. Sep 2010 A1
20100233902 Youtsey Sep 2010 A1
20100255720 Radzik et al. Oct 2010 A1
20100255721 Purdy et al. Oct 2010 A1
20100279548 Montena et al. Nov 2010 A1
20100297871 Haube Nov 2010 A1
20100297875 Purdy Nov 2010 A1
20110021072 Purdy Jan 2011 A1
20110027039 Blair Feb 2011 A1
20110053413 Mathews Mar 2011 A1
20110117774 Malloy et al. May 2011 A1
20110143567 Purdy et al. Jun 2011 A1
20110230089 Amidon et al. Sep 2011 A1
20110230091 Krenceski et al. Sep 2011 A1
20120021642 Zraik Jan 2012 A1
20120094532 Montena Apr 2012 A1
20120122329 Montena et al. May 2012 A1
20120145454 Montena Jun 2012 A1
20120196476 Haberek et al. Aug 2012 A1
20120202378 Krenceski et al. Aug 2012 A1
20120214342 Mathews Aug 2012 A1
20120252263 Ehret et al. Oct 2012 A1
Foreign Referenced Citations (52)
Number Date Country
2096710 Nov 1994 CA
201149936 Nov 2008 CN
201149937 Nov 2008 CN
201178228 Jan 2009 CN
102289 Apr 1899 DE
1117687 Nov 1961 DE
1191880 Apr 1965 DE
1515398 Apr 1970 DE
2225764 Dec 1972 DE
2221936 Nov 1973 DE
2261973 Jun 1974 DE
3211008 Oct 1983 DE
47931 Oct 1988 DE
9001608.4 Apr 1990 DE
4439852 May 1996 DE
19957518 Sep 2001 DE
116157 Aug 1984 EP
167738 Jan 1986 EP
0072104 Feb 1986 EP
0265276 Apr 1988 EP
0428424 May 1991 EP
1191268 Mar 2002 EP
1501159 Jan 2005 EP
1548898 Jun 2005 EP
1701410 Sep 2006 EP
2232846 Jan 1975 FR
2234680 Jan 1975 FR
2312918 Dec 1976 FR
2462798 Feb 1981 FR
2494508 May 1982 FR
589697 Jun 1947 GB
1087228 Oct 1967 GB
1270846 Apr 1972 GB
1401373 Jul 1975 GB
2019665 Oct 1979 GB
2079549 Jan 1982 GB
2252677 Aug 1992 GB
2264201 Aug 1993 GB
2331634 May 1999 GB
4503793 Jan 2002 JP
2002075556 Mar 2002 JP
3280369 May 2002 JP
2006100622526 Sep 2006 KR
427044 Mar 2001 TW
8700351 Jan 1987 WO
0186756 Nov 2001 WO
02069457 Sep 2002 WO
2004013883 Feb 2004 WO
2006081141 Aug 2006 WO
2011128665 Oct 2011 WO
2011128666 Oct 2011 WO
2012061379 May 2012 WO
Non-Patent Literature Citations (10)
Entry
Digicon AVL Connector. ARRIS Group Inc. [online]. 3 pages. [retrieved on Apr. 22, 2010]. Retrieved from the Internet:< URL: http://www.arrisi.com/special/digiconAVL.asp>.
U.S. Appl. No. 13/726,347, filed Dec. 24, 2012.
U.S. Appl. No. 13/726,330, filed Dec. 24, 2012.
U.S. Appl. No. 13/726,349, filed Dec. 24, 2012.
U.S. Appl. No. 13/726,339, filed Dec. 24, 2012.
Office Action (Mail Date Mar. 6, 2013) for U.S. Appl. No. 13/726,330, filed Dec. 24, 2012.
Office Action (Mail Date Feb. 20, 2013) for U.S. Appl. No. 13/726,349, filed Dec. 24, 2012.
Office Action (Mail Date Feb. 20, 2013) for U.S. Appl. No. 13/726,339, filed Dec. 24, 2012.
Office Action (Mail Date Mar. 11, 2013) for U.S. Appl. No. 13/726,347, filed Dec. 24, 2012.
U.S. Appl. No. 13/758,586, filed Feb. 4, 2013.
Related Publications (1)
Number Date Country
20130115813 A1 May 2013 US
Continuations (1)
Number Date Country
Parent 13075406 Mar 2011 US
Child 13726356 US