CONTINUOUS GLUCOSE MONITORING ON-BODY SENSOR HAVING A VISUAL DISPLAY

Abstract
An on-body sensor (OBS) (10) having a continuous monitoring (CGM) device is disclosed for use in identifying an analyte, such as glucose in blood or interstitial fluid (ISF), using a biomaterial, such as glucose binding protein (GBP), that is brought into contact with the analyte. The on-body sensor (10) incorporating the CGM device includes a cover (25) which provides protection to the CGM device and includes an integrated output display (27). The output display (27) can visually provide data received from the CGM device, to the user without the need for a separate data receiving device.
Description
FIELD OF THE INVENTION

The present invention relates generally to continuous glucose monitoring (CGM) devices used to continuously monitor subcutaneous glucose using optical interrogation of a glucose binding protein (GBP) to determine the concentration of glucose in a user. More particularly, the present invention relates to on-body sensors (OBS) incorporating CGM devices and having covers with integrated output displays.


BACKGROUND OF THE INVENTION

In patients with diabetes, glucose levels need to be monitored to maintain a healthy balance of glucose in the body. Glucose levels can be monitored by GBP coated sensors such as on-body CGM devices. CGM devices can have a needle or probe that is inserted into the tissue of a user to measure the glucose levels in the surrounding tissue fluid.


Conventionally, on-body CGM devices are usually small and configured to be secured to the skin of a user's abdomen during each sensor wear period. A transmitter is incorporated into the CGM device and communicates with a handheld receiver. The data collected by the CGM device is transferred to the receiver at intervals throughout the wear period.


Without a display incorporated into the OBS, a user must carry a separate device to inspect the information obtained by and/or processed by the CGM device. Therefore, a patient often does not have the benefit of knowing current glucose levels or trends due to not having a data receiving device to receive, process and display the data from the CGM device.


It is also important to maintain a low profile CGM device in order to reduce interference with the activities of the user and reduce possible skin irritation. Without a low profile CGM device normal body movement of a user can cause unwanted micro-motion of the needle or probe which can compromise the data collected by the CGM device. Additionally, the shape and exterior configuration of the on-body CGM device can catch on a user's clothing causing additional irritation to the user and even malfunction of the device itself.


SUMMARY OF THE INVENTION

An object of illustrative embodiments of the present invention is to substantially address the above and other concerns, and provide improved structure to OBS devices.


Another object of illustrative embodiments of the present invention is to provide an OBS device that will provide an on-body output display.


Another object of illustrative embodiments of the present invention is to provide an on-body display that can be conveniently inspected by a user in multiple positions.


Another object of illustrative embodiments of the present invention is to provide an on-body display that maintains an overall low profile of the OBS such that interference with the movements of a user is minimized.


Another object of illustrative embodiments of the present invention is to allow a patient to move freely while maintaining the proper positioning of the OBS device.


Another object of illustrative embodiments of the present invention is to enable the OBS device to flex and move with the user, but reduce micro-motions of the needle that can cause malfunction of the OBS and injure the user.


These and other objects are substantially achieved by providing an illustrative OBS cover for a CGM device wherein the cover includes an integrated on-body output display having a reduced profile while maintaining structural and positional integrity, thereby improving the effectiveness, comfort, durability and securement of the OBS device.





BRIEF DESCRIPTION OF THE DRAWINGS

The various objects, advantages and novel features of illustrative embodiments of the present invention will be more readily appreciated from the following detailed description when read in conjunction with the appended drawings, in which:



FIG. 1 is a cross-sectional view of a CGM device in accordance with an illustrative embodiment of the present invention;



FIG. 2 is a schematic diagram of the CGM device of FIG. 1 including ray traces through an optical coupler, from a light-emitting diode (LED) to a fiber face;



FIG. 3 is a schematic diagram of the CGM device of FIG. 1 including ray traces through the optical coupler, from the fiber face to a photodiode;



FIG. 4 is an illustrative embodiment of an on-body cover and display for a CGM device;



FIG. 5 is another illustrative embodiment of an on-body cover and display for a CGM device;



FIGS. 6 and 7 illustrate a user visually inspecting an illustrative on-body display of a CGM device; and



FIG. 8 is an illustrative embodiment of an on-body cover and display for a CGM device.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

As will be appreciated by one skilled in the art, there are numerous ways of carrying out the examples, improvements and arrangements of CGM devices disclosed herein. Although reference will be made to the illustrative embodiments depicted in the drawings and the following descriptions, the embodiments disclosed herein are not meant to be exhaustive of the various alternative designs and embodiments that are encompassed by the disclosed invention.



FIGS. 1-3 illustrate an illustrative embodiment of an on-body CGM sensor 10 utilizing an optical coupler 12 in accordance with the present invention. The CGM sensor 10 includes a base 14 with a top surface 16 that supports the various components of the CGM sensor 10. A bottom surface 18 of the base 14 is used to support and adhere the CGM sensor to the skin of a user. For example, the bottom surface 18 of the base 14 can include an adhesive to adhere the CGM sensor to the skin of a user. A printed circuit board 20 is fixed to the top surface 16 of the base 14 and enables communication between a microcontroller 21, a photodiode 22 and LED 24, and an output display 27. A cover 25 substantially encloses the components of the CGM sensor 10 and is fixed to the base 14.


The LED 24 emits light that is selectively filtered by a filter 26 fixed to a top surface of the LED 24. The optical coupler 12 is positioned above the LED 24 and photodiode 22 and directs the light emitted from the LED 24 into a fiber 28 positioned adjacent to the LED 24. The fiber 28 runs through the length of a needle 30. The needle 30 is used to insert the fiber 28 into a user to provide contact between the fiber 28 and biomaterial, such as GBP, beneath the skin of the user. The GBP coats or is deposited on the end of the needle 30 and contacts blood or interstitial fluid (ISF) after insertion into the user.


The optical coupler 12 includes a plastic connector 33 having three integral lenses, an LED lens 32, a fiber lens 34 and a detector lens 36. The plastic connector also includes a pair of inclined glass mounting surfaces 37 and a mirrored surface 39 that reflects light emitted from the LED 24 through the fiber lens 34 and into the fiber 28 to transmit light to the GBP. The glass mounting surfaces 37 are configured to support and fix filters at a predetermined angle with respect to the photodiode 22, the LED 24 and the fiber 28. The plastic connector 31 can be manufactured as a single injection molded component, reducing the number of individual parts of the optical coupler 12 that need to be manufactured and assembled. The plastic connector 31 can also be formed by other desired manufacturing processes capable of forming a single unitary component.


The optical coupler 12 includes a first glass filter 38 and a second glass filter 40. The first glass filter 38 is fixed to the second glass filter 40 via gluing or another desired securing mechanism. The glued first and second glass filters 38 and 40 are also fixed or glued to the inclined glass mounting surfaces 37. After the first and second glass filters 38 and 40 are fixed together, only two components need to be positioned during assembly, the fixed glass filters 38 and 40 and the inclined surfaces of the 37 of the optical coupler 12. This simplified assembly reduces possible misalignment of components and potential failure of the CGM sensor 10. Additionally, by fixing the first and second glass filters 38 and 40 together and then directly fixing them to the inclined surfaces of the optical coupler 12, less light is lost and/or diffused during operation, thereby improving the efficiency of the optical coupler 12, as opposed to other known optical couplers that require the light to travel in and out of more open air spaces which cause increased inefficiency in light transfer.


The first glass filter 38 includes a first dichroic filter coating 42 on the surface of the glass filter 38 mounted to the glass mounting surfaces 37. The first dichroic filter coating 42 reflects the light wavelengths emitted by the LED and transmits emission light wavelengths emitted from the GBP via the fiber 28.


The second glass filter 40 includes a second dichroic filter coating 44 on the same surface that is mounted to the first glass filter 38. The second dichroic filter coating 44 reflects shorter emission wavelengths representing a signal band and transmits longer wavelengths representing a reference band. A mirror surface 46 is formed on the surface of the second glass filter 40 opposite to the surface mounted to the first glass filter 38. The mirrored surface 46 reflects all wavelengths, but is particularly used to reflect the long wavelengths transmitted by the second dichroic filter coating 44.


Microcontroller 21 is provided at least for operating and controlling the photodiode 22, LED 24 and output display 27. Microcontroller 21 is preferably fully programmable prior to installation within the CGM device to precisely control the operation of the photodiode 22 and data transmitted to the output display 27 via hard-wired connection 23. The microcontroller 21 can also be programmable to manipulate and modify the type of data displayed on the output display 27. For example, the microcontroller 21 can transmit data to the output display 27 relating to a user's current glucose levels, glucose trends, CGM device malfunction notifications, when the output display 27 is illuminated or shut down, and glucose measurement intervals. Additional data processing and transmission can also be provided by the microcontroller 21.



FIG. 2 illustrates a schematic diagram of the CGM sensor 10 in accordance with an illustrative embodiment of the present invention, including ray traces representing the light path from the LED 24 through the optical coupler 12 to the fiber 28 for illuminating the GBP in contact with an end of the fiber 28. Light 45 is first emitted from the LED 24 and filtered by the filter 26. The light 45 then travels through the LED lens 32 which focuses and directs the light 45 toward the first dichroic coating 42 which reflects the light 45 toward the mirrored surface 39 of the optical coupler 12. The mirrored surface 39 then reflects the light 45 toward the fiber lens 34 which focuses and transmits the light 45 toward the fiber 28 which illuminates the GBP (not shown).



FIG. 3 illustrates a schematic diagram of the CGM sensor 10 in accordance with an illustrative embodiment of the present invention, including ray traces representing the light path from the fiber 28 through the optical coupler 12 to the photodiode 22 for capturing the reference band and the signal band wavelengths. Light 47 is emitted from the GBP through the fiber 28 and transmitted toward the fiber lens 34. The light 47 then travels through the fiber lens 34 which focuses the light 47 and directs it toward the mirrored surface 39 which reflects the light 47 toward the first dichroic coating 42 which transmits the light 47 toward the second dichroic coating 44.


The above defined fiber optic CGM device 10 can be housed within a cover 25, as described previously, or modified to utilize the illustrative OBS covers described below. Additionally, alternative optical CGM devices known in the art can also be modified to include the illustrative OBS covers described below.


An OBS cover encloses and protects the CGM device 10 from environmental conditions that may adversely affect and/or damage the components of the CGM device 10.



FIG. 4 illustrates a top and perspective view of an illustrative embodiment of a CGM sensor 410 in accordance with the present invention. The CGM sensor 410 has profile shape that is lower than that of the CGM sensor 10, but can operate in substantially the same way. The CGM sensor 410 includes an output display 427 integral with and does not extend substantially higher than the cover 425. The output display 427 is adapted to provide a user with visual confirmation of a user's current glucose levels, glucose trends, CGM device malfunction notifications, glucose measurement intervals, and any other desired notifications. The device 410 may also include a gyroscope 429 such that it will recognize its orientation and output correctly oriented information on display 427 so that a user can correctly view the output information. Providing a gyroscope 429 to the device 410 can be a significant benefit when the CGM device is placed in alternative locations on the user's body. The output display 427 can display, for example, digital representation of data or more analog representation of data where small LEDs or lights illuminate a pattern representing the output data, similar to the illustrative embodiment shown in FIG. 5. Alternative displays can also include a liquid-crystal display (LCD), a thermometer graph or a speedometer graph.


In an illustrative embodiment in accordance with the present invention, as shown in FIG. 4, integrating the output display 427 into the cover 425 can be accomplished without significantly increasing the profile of the CGM device 410. Keeping a reduced profile is important because a CGM with a lower profile is less likely to irritate or interfere with a user's everyday activities.



FIG. 5 illustrates an illustrative embodiment of an on-body CGM device 510 in accordance with the present invention, which includes a cover 525 with an integrated output display 527. The output display 527 includes a digital readout and illustrates an example of a numerical reading 529 and a current trend indication (upward arrow) 531. As shown in FIG. 5 the output display does not significantly add to the profile of the CGM device, thus minimizing interference with a user during use.


Other illustrative embodiments of output displays can include pop-up type displays, mirrored surface displays, tethered displays having a coiled connection with the CGM device and displays oriented on a side surface of the cover as opposed to a top surface as previously disclosed. Other illustrative embodiments of displays can also include modular displays that are removable from the CGM device cover. Modular displays, for example, can be magnetically secured to the cover or mechanically secured using a snap fit engagement, rail locking mechanism, disconnectable tether or adhesive. For example, the display can include an e-ink paper display with adhesive backing.



FIGS. 6 and 7 illustrate how on-body displays for CGM devices 610 and 710 can be inspected by a user in an everyday-type situation, as well as, illustrating the convenience of having a visual on-body display for the CGM devices 610 and 710.



FIG. 8 illustrates a further illustrative embodiment of an on-body CGM device 810, which includes a cover 75 having a recess 829 for receiving an output display 827. The recess 829 in the cover 825 aids in maintaining a low profile when the display is secured to the cover 825. The output display 827 is preferably formed using a thin e-paper material. The microcontroller can include, but is not limited to, microcontroller 21 of the illustrative embodiment of the CGM sensor 10.


In an alternative illustrative embodiment in accordance with the present invention, microcontroller 21 can include a transceiver compatible with a transceiver integral with the e-paper display 77. Thus the microcontroller 21 can transmit data to be displayed by the e-paper display 77. Other alternative transmission systems can also be used to transmit data from the microcontroller to the e-paper display 77. Medical devices currently use radio frequency (RF) wireless communications such as Bluetooth®, Zigbee®, 802.11, or other conventional solutions. Some medical devices even communicate via a line-of-sight using infrared (IR) technology. Wireless communication systems, since they do not require a line of sight, are preferred over IR technology.


Conventional wireless technology is a driving contributor in the cost of medical devices that use their respective technologies. Advantageously, in an alternative illustrative embodiment in accordance with the present invention, the illustrative embodiment shown in FIG. 8 may also be configured to use a capacitively coupled personal area network (PAN) to transceive data between microcontroller 21 and the e-paper display 827 through the user's skin, without the use of antennas. A personal area network, can be created with simple, low-cost microcontrollers and analog components, requires less power to operate than RF systems and are at least as secure as RF systems. The use of a personal area network can enable extended use duration due to the reduced component cost and lower power requirements.


In an illustrative embodiment in accordance with the present invention, a PAN transceiver can be integrated with the microcontroller 21 to establish a personal area network to communicate with the output display 827 via a “near field” electric field that transmits data using the human body as a transport medium. The microcontroller 21 and the output display each need PAN transceivers, respectively, in order to communicate to each other through the body.


In an illustrative embodiment in accordance with the present invention, a PAN communication system ensures that only people in direct contact with a user are capable of detecting the signals propagating across the user's body. Alternatively, in conventional wireless technologies, a transmitted signal can be detected by anyone with a receiver in the respective range of the wireless technology. The necessary transceiver components for realizing the functionality of the illustrative personal area network discussed above, are widely available and relatively low in cost.


In an illustrative embodiment in accordance with the present invention, utilizing the PAN communication system can enable a user to secure the e-paper display 827 on an alternative area on a user's body, separate from the CGM device. E-paper displays 827 can also be relatively inexpensive and thus, disposable after short term use, enabling a user to replace the e-paper displays after exercising, for example.


Although only a few illustrative embodiments of the present invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the illustrative embodiments, and various combinations of the illustrative embodiments are possible, without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention.

Claims
  • 1. An on-body system for sensing an analyte in a living body, comprising: a cover at least partially containing a continuous glucose monitoring sensor having a microcontroller;a bottom surface adapted to be adhered to a first area of skin;a gyroscope adapted to recognize an orientation of the gyroscope, wherein the microcontroller is adapted to control the display to display information in accordance with the recognized orientation of the gyroscope;a first transceiver capacitively coupled to the skin and adapted to transmit a signal capacitively transmitted via said skin; andan e-paper display adapted to display data received from the first transceiver and adhered to a second area of skin, the e-paper display comprising a second transceiver capacitively coupled to the skin and adapted to receive the signal capacitively transmitted by the first transceiver.
  • 2. The on-body device of claim 1, wherein the data comprises data relating to at least one selected from the set consisting of: a user's current glucose levels;glucose trends;CGM device malfunction notifications; andglucose measurement intervals.
  • 3. The on-body device of claim 1, wherein the e-paper display displays at least one selected from the set consisting of: a digital representation of data; andan analog representation of data.
  • 4. The on-body device of claim 1, wherein the e-paper display comprises at least one display element selected from the set consisting of: a thermometer graph; anda speedometer graph.
  • 5. The on-body device of claim 1, wherein the e-paper display is adapted to display a trend indication.
  • 6. The on-body device of claim 5, wherein the trend indication comprises an arrow.
  • 7. The on-body device of claim 1, wherein the display is replaceable.
  • 8. The on-body device of claim 1, wherein the display is removable.
  • 9. An on-body device for sensing an analyte in a living body, comprising: a cover at least partially containing a continuous glucose monitoring sensor having a microcontroller;a first bottom surface adapted to be adhered to a first area of a user's body; anda display adapted to be coupled to a second area of a user's body and adapted to display data transmitted by the microcontroller.
  • 10. The on-body device of claim 9, wherein the microcontroller is adapted to communicate with the display using at least one selected from the set consisting of: radio frequency radio communication;line-of-sight communication;a personal area network; and
  • 11. An on-body device for sensing an analyte in a living body, comprising: a means for at least partially containing a continuous glucose monitoring sensor having a microcontroller;a first bottom surface adapted to be adhered to a first area of a user's body; anda means for displaying data transmitted by the microcontroller, the means for displaying data transmitted by the microcontroller adapted to be coupled to a second area of a user's body.
  • 12. The on-body device of claim 11, wherein the microcontroller is adapted to communicate with the means for displaying data transmitted by the microcontroller using at least one selected from the set consisting of: radio frequency radio communication;line-of-sight communication;a personal area network; andnear field communication.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 14/775,692, filed Sep. 12, 2015, which is a National Stage Entry of PCT Patent Application No. PCT/US14/22613, filed Mar. 10, 2014, which claims the benefit under 35 U.S.C. § 119 (e) of U.S. Provisional Application No. 61/782,019, filed on Mar. 14, 2013, in the U.S. Patent and Trademark Office, the entire disclosure of which is incorporated herein by reference.

Provisional Applications (1)
Number Date Country
61782019 Mar 2013 US
Continuations (1)
Number Date Country
Parent 14775692 Sep 2015 US
Child 16571960 US