Continuous Magnetic Motion Position Indicator

Abstract
A continuous magnetic motion position indicator detects the position of a clapper valve. The clapper valve comprises a valve body and, disposed within the valve body, a clapper and a valve stem. The continuous magnetic motion position indicator comprises: (a) a magnetic joint assembly comprising a first set of magnets disposed inside the valve body and a second set of magnets located outside the valve body that operatively interface with the first set of magnets, and (b) a remote position transmitter and/or a local visual indicator. In operation, the magnetic joint assembly transmits rotary movement of the clapper from the valve stem to the remote position transmitter and/or local visual indicator, without the presence of a dynamic seal interface.
Description
FIELD OF THE INVENTION

The present invention relates to subsea and top side check valves. In particular, the present invention relates a continuous magnetic motion position indicator device capable of providing a continuous indication of a valve clapper's instantaneous position.


BACKGROUND OF THE INVENTION

In designs of conventional, prior art check valves, the position of the clapper is generally not detectable without introducing a leak path in the valve body. The only position that can be detected is the locked open position, as this is usually detectable by means of an external device located on the operator located outside the valve body. The operator is the mechanical or hydraulic equipment used to actuate the valve. When the clapper in conventional check valves is in free swinging motion, however, the actual position of the clapper is not detectable.


Knowing the actual position of the clapper can be of crucial importance to ensure correct functioning of the check valve itself and the plant. The plant is the production system, which includes but is not limited to the pipeline assembly. Moreover, monitoring the position of the clapper can permit the anticipation and correction of potential failures associated with the valve, thereby preventing or reducing the adverse consequences of such failures on the entire plant.


The present, improved Continuous Magnetic Motion Position Indicator (CMMPI) comprises a magnetic joint assembly and a remote position transmitter and/or local visual indicator which can be in single or multiple forms. The magnetic joint transmits rotary movement of the clapper from the valve's clapper stem (inside the valve body) to the position indicator stem (outside the valve body), without the presence of dynamic seal interface(s).


The rotation of the valve stem is transferred to the remote rotary position transmitter, which converts the rotary movement of the clapper to a current signal for remote monitoring. A visual local position indicator can also be included in the design.


In the present, improved CMMPI, the magnetic joint comprises a set of magnets inside the valve body that interfaces with another set of magnets located outside the valve body. Proper orientation of the magnetic fields and the location of the magnets, as well as the selection of materials for the components involved, provide for reliable and durable operation of the joint assembly.


One type of magnet that can be employed in the present CMMPI is a permanent magnet. Orientation of the magnets is alternatively North-South-North-South. The external set is opposite in polarity to the internal set.


Components for the present CMMPI can be selected to be resistant to the process fluid and to sea water. In addition, material selection should account for the ferromagnetic properties of the materials employed to alleviate potential interference with the magnetic fields.


The present CMMPI system can be fitted with various types of remote rotary transmitters, and the number of transmitters can vary depending on the level of redundancy required or desired.


SUMMARY OF THE INVENTION

In one embodiment, a continuous magnetic motion position indicator detects the position of a clapper valve comprising a valve body and, disposed within the valve body, a clapper and a valve stem. The indicator comprises:

    • (a) a magnetic joint assembly comprising a first set of magnets disposed inside the valve body and a second set of magnets located outside the valve body that operatively interface with the first set of magnets; and
    • (b) at least one remote position transmitter.


In operation, the magnetic joint assembly transmits rotary movement of the clapper from the valve stem to remote position transmitter without the presence of a dynamic seal interface.


The foregoing continuous magnetic motion position indicator can further comprise a gear assembly for transmitting rotary motion from the second set of magnets to the remote position transmitter. The at least one remote position transmitter can include a plurality of remote position transmitters.


In another embodiment, a continuous magnetic motion position indicator that detects the position of a clapper valve comprising a valve body and, disposed within the valve body, a clapper and a valve stem, comprises:

    • (a) a magnetic joint assembly comprising a first set of magnets disposed inside the valve body and a second set of magnets located outside the valve body that operatively interface with the first set of magnets; and
    • (b) at least one local visual indicator.


In operation, the magnetic joint assembly transmits rotary movement of the clapper from the valve stem to the at least one local visual indicator, without the presence of a dynamic seal interface.


The foregoing continuous magnetic motion position indicator can further comprises a gear assembly for transmitting rotary motion from the second set of magnets to the local visual indicator. The at least one local visual indicator can include a plurality of local visual indicators.


A first embodiment of a method of detecting the position of a clapper valve comprises a valve body and, disposed within the valve body, a clapper and a valve stem. The first method embodiment comprises:

    • (a) disposing a first set of magnets inside the valve body and a second set of magnets outside the valve body that operatively interface with the first set of magnets to form a magnetic joint assembly; and
    • (b) transmitting rotary movement of the clapper from the valve stem to at least one remote position transmitter operatively connected to the second set of magnets.


In performing the first method embodiment, the clapper rotary movement is transmitted to the at least one remote position transmitter without the presence of dynamic seal interface.


In a second embodiment, a method of detecting the position of a clapper valve comprising a valve body and, disposed within the valve body, a clapper and a valve stem, the method comprising:

    • (a) disposing a first set of magnets inside the valve body and a second set of magnets outside the valve body that operatively interface with the first set of magnets to form a magnetic joint assembly; and
    • (b) transmitting rotary movement of the clapper from the valve stem to at least one local visual indicator operatively connected to the second set of magnets.


In performing the second method embodiment, rotary movement of the clapper is transmitted to the local visual indicator without the presence of dynamic seal interface.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective cutaway sectional view of the present Continuous Magnetic Motion Position Indicator (CMMPI).



FIG. 2 is a top view of the CMMPI illustrated in FIG. 1.



FIG. 3 is cross-sectional view of the present CMMPI, taken in the direction of arrows A-A in FIG. 2.



FIG. 4. is cross-sectional view of the present CMMPI, taken in the direction of arrows B-B in FIG. 2.



FIG. 5 is a cross-sectional view of the present CMMPI, taken in the direction of arrows C-C in FIG. 3.



FIG. 6 is a perspective view of the present CMMPI.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENT(S)


FIG. 1 shows a continuous magnetic motion position indicator (CMMPI) 1 for subsea and topside applications. CMMPI 1 enables the monitoring of the instantaneous position of the clapper through valve shaft 2, including free-swinging motion.


As further shown in FIG. 1, CMMPI 1 includes a housing 10 connected to pressure-containing cap 28 and valve body 4 using fixing bolts 8 and nuts 40. External magnet set 26 is contained in an external magnet housing 24 and internal magnet set 30 is contained in an internal magnet housing 32. External and internal magnet sets 26 and 30, respectively, transfer the rotation of the clapper through valve shaft 2 to a remote position transmitter and/or a local visual indicator outside the pressure-containing parts 18 and contained in cover 16. The position of the clapper can thereby be detected without introducing additional dynamic seal interfaces in valve body 4 and instead allows valve body 4 to utilize a static seal 6. The transfer of motion from the magnetic sets 26 and 30 to a remote position transmitter and/or local visual indicator 18 is accomplished by way of gear sets 22, which are located in gear sets housing 14.



FIG. 2 is a top view of CMMPI 1 showing cover 16, as well as remote position transmitter and/or local visual indicator 18. Arrows A-A identify the bisecting line for the cross-sectional view illustrated in FIG. 3. Arrows B-B identify the bisecting line for the cross-sectional illustrated in FIG. 4.



FIG. 3 shows a cross-sectional views of CMMPI 1, taken in the direction of arrows A-A in FIG. 2. FIG. 4 shows a cross-sectional views of CMMPI 1, taken in the direction of arrows B-B in FIG. 2. FIGS. 3 and 4 specifically illustrate the connections among the various components of CMMPI 1. Roller bearings 12 are utilized throughout the CMMPI 1 to facilitate movement, while pins 34 facilitate the attachment of cover 16 to gear set housing 14. Pins 34 also facilitate the attachment of gear set housing 14 to housing 10, as well as the attachment of pressure-containing cap 28 to valve body 4 (see FIG. 1). Bolts 8 and nuts 40 facilitate the attachment of housing 10 to pressure-containing cap 28 and valve body 4. FIG. 3 also shows flange 36 and hexagonal screw 38.



FIG. 5 is a cross-sectional view of the present CMMPI, taken in the direction of arrows C-C in FIG. 3. FIG. 5 illustrates the placement of internal magnet set 30 and external magnet set 26. The eight internal magnets 30 are arranged alternatingly, with an internal magnet with the positive pole facing down depicted in FIG. 5 as internal magnet 30a and an internal magnet with the negative pole facing down depicted as internal magnet 30b. Similarly, the eight external magnets 26 are arranged alternatingly, with an external magnet with the positive pole facing down depicted in FIG. 5 as external magnet 26a and an external magnet with the negative pole facing down depicted as external magnet 26b.



FIG. 6 is a perspective view of the CMMPI 1 showing position transmitter and/or local visual indicator 18, gear set housing 14, housing 10, and pressure-containing cap 28.


The present continuous position indicator has the following advantageous features:

    • (a) the present CMMPI allows the monitoring of the instantaneous position of the clapper in various positions, including the free swinging motion;
    • (b) the present CMMPI can be implemented in top side and subsea valve applications;
    • (c) the present CMMPI does not include dynamic sealing interface(s), which could introduce potential leakage paths through the valve body;
    • (d) in the present CMMPI, the position transmitters and the external set of magnets can be readily removed and replaced from the outside of the valve body without detrimentally affecting the functioning of the valve.


While particular elements, embodiments and applications of the present invention have been shown and described, it will be understood, that the invention is not limited thereto since modifications can be made by those skilled in the art without departing from the scope of the present disclosure, particularly in light of the foregoing teachings.

Claims
  • 1. A continuous magnetic motion position indicator for detecting the position of a clapper valve comprising a valve body and, disposed within said valve body, a clapper and a valve stem, said indicator comprising: (a) a magnetic joint assembly comprising a first set of magnets disposed inside said valve body and a second set of magnets located outside said valve body that operatively interface with said first set of magnets; and(b) at least one remote position transmitter;
  • 2. The continuous magnetic motion position indicator of claim 1, further comprising a gear assembly for transmitting rotary motion from said second set of magnets to said remote position transmitter.
  • 3. The continuous magnetic motion position indicator of claim 1, wherein said at least one remote position transmitter comprises a plurality of remote position transmitters.
  • 4. A continuous magnetic motion position indicator (CMMPI) for detecting the position of a clapper valve comprising a valve body and, disposed within said valve body, a clapper and a valve stem, said indicator comprising: (a) a magnetic joint assembly comprising a first set of magnets disposed inside said valve body that operatively interface with said first set of magnets; and(b) at least one local visual indicator;
  • 5. The continuous magnetic motion position indicator of claim 1, further comprising a gear assembly for transmitting rotary motion from said second set of magnets to said local visual indicator.
  • 6. The continuous magnetic motion position indicator of claim 1 wherein said at least one local visual indicator comprises a plurality of local visual indicators.
  • 7. A method of detecting the position of a clapper valve comprising a valve body and, disposed within said valve body, a clapper and a valve stem, said method comprising: (a) disposing a first set of magnets inside said valve body and a second set of magnets outside said valve body that operatively interface with said first set of magnets to form a magnetic joint assembly; and(b) transmitting rotary movement of said clapper from said valve stem to at least one remote position transmitter operatively connected to said second set of magnets, whereby said clapper rotary movement is transmitted to said at least one remote position transmitter without the presence of dynamic seal interface.
  • 8. A method of detecting the position of a clapper valve comprising a valve body and, disposed within said valve body, a clapper and a valve stem, said method comprising: (a) disposing a first set of magnets inside said valve body and a second set of magnets outside said valve body that operatively interface with said first set of magnets to form a magnetic joint assembly; and(b) transmitting rotary movement of said clapper from said valve stem to at least one local visual indicator operatively connected to said second set of magnets,
CROSS-REFERENCE TO RELATED APPLICATION

This application is related to and claims priority benefits from U.S. Provisional Patent Application Ser. No. 61/732,230 filed on Nov. 30, 2012, entitled “Continuous Magnetic Motion Position Indicator”. The '230 provisional application is hereby incorporated by reference herein in its entirety.

Provisional Applications (1)
Number Date Country
61732230 Nov 2012 US