Claims
- 1. An automatic continuous pouring line for transferring predetermined amounts of molten metal from a stationary source of molten metal to a moving conveyor line of molds adapted to receive said predetermined amounts, comprising: a track defining a closed path between a ladle filling station at the source, a mold pouring station along a section of the track parallel to the conveyor line and back to the source; a plurality of ladle carriages adapted to sequentially, unidirectionally and independently traverse said track; a ladle supported on each of said carriages and rotatable between a first position for receiving and carrying said predetermined amount of molten metal and a second position for pouring said predetermined amount of molten metal into one of said molds while moving through said pouring station; separate drive means for each carriage for driving said carriage independently of the other carriages from said pouring station to said source for filling the ladle and thereafter back to said pouring station for pouring the molds; means for deactivating said separate drive means at said source during said filling and reactivating it after said filling to drive said carriage and filled ladle to said mold pouring station; means for locating said carriage with a mold at the pouring station, and locating means registering said carriage with said mold and synchronizing the movement of said carriage with the conveyor line during pouring; means on each carriage for rotating its ladle from said first position to said second position when the carriage has engaged a preceding carriage in the pouring station and is moving in unison with the conveyor line so as to pour molten metal from the ladle into the mold registered therewith, said rotating means returning said ladle to the first position when the ladle is empty; and an automatic control system for initially sensing the presence of a preceding carriage in the pouring station and effecting said locating and rotating and for thereafter sensing the presence of a succeeding carriage in the pouring station and effecting said driving from said pouring station after the ladle is emptied.
- 2. A pouring machine for transferring molten metal from a source of molten metal to molds traveling along a conveyor line, comprising: a track defining a closed-loop between a filling station adjacent the source and a pouring station adjacent the conveyor line; a plurality of self-driven and self-controlled carriages each movable along said track independently of the other carriages; a ladle rotatably supported on each of said carriages, eac of said ladles adapted to receive molten metal from the source at the filling station and to dispense the molten metal at the pouring station; separate drive means for each of said carriages for unidirectionally moving its associated carriage between said stations along said track; means for automatically stopping said carriage at said source with the carriage's ladle in registry with the source for receiving metal therefrom; means for locating said carriage at a mold in the pouring station, said locating means coupling the carriage to said line for registering the ladle with the mold to be poured and for synchronizing the movement of the carriage with said line in the pouring station; means for rotating said ladle to dispense its contents into a mold registered therewith in the pouring station, and returning the ladle to its metal receiving position when it is emptied; means adapted to sense the presence of a preceding carriage in the pouring station to effect said coupling and said rotation; and means adapted to sense the presence of a following carriage in the pouring station to effect uncoupling of said locating means and said moving of said carriage from the pouring station to the filling station.
- 3. A continuous pouring line for transferring molten metal from a stationary source of molten metal to a moving conveyor line of molds, comprising: a track defining a closed path between a ladle filling station at the source, a mold pouring station along a section of the track parallel to the conveyor line and back to the source; a plurality of ladle carriages adapted to transverse said track; a ladle supported on each of said carriages and rotatable about an axis substantially perpendicular to said track between a first filling and carrying position and a second pouring position; separate motor means for each carriage for driving said carriage independently of the other carriages to said source for filling the ladle and thereafter to said pouring station for pouring the molds; means for stopping said motor at said source during said filling; means for locating said carriage with a mold at the pouring station, said locating means coupling said carriage to said line to register the carriage's ladle with said mold and to synchronize the movement of said carriage and said mold through the pouring station; motor means on each carriage for rotating each ladle from said first position to said second position when its associated carriage has engaged a preceding carriage in the pouring station, its ladle is registered with a mold to be poured, and both carriage and mold are moving in unison through the pouring station, said motor returning said ladle to the first position when the ladle is empty; means for automatically sensing engagement between a carriage entering the pouring station with a carriage already therein for effecting said locating and rotation; and means for automatically sensing engagement of a succeeding carriage in the pouring station for effecting an uncoupling of said carriage and its removal from the pouring station after its ladle is emptied.
- 4. A continuous pouring line for transferring molten metal from a stationary source of molten metal to a moving conveyor line of molds, comprising: a track defining a closed path between a ladle filling station at the source, a mold pouring station along a section of the track parallel to the conveyor line and back to the source; a plurality of ladle carriages adapted to traverse said track; a ladle supported on each of said carriages and rotatable about an axis substantially perpendicular to said track between a first filling and carrying position and a second pouring position; separate motor means for each carriage for driving said carriage independently of the other carriages to said source for filling the ladle and thereafter to said pouring station for pouring the molds; means for braking said carriage at said source to stall said motor while the ladle is filled and thereafter release said carriage and unstall said motor for driving the carriage to the pouring station; means for locating said carriage with a mold at the pouring station, said locating means coupling said carriage to said line to register the carriage's ladle with said mold and to synchronize the movement of said carriage and said mold through the pouring station; motor means on each carriage for rotating each ladle from said first position to said second position when its associated carriage has engaged a preceding carriage in the pouring station, its ladle is registered with a mold to be poured, and both carriage and mold are moving in unison through the pouring station, said motor returning said ladle to the first position when the ladle is empty; means for automatically sensing engagement between a carriage entering the pouring station with a carriage already therein for effecting said locating and rotation; and means for automatically sensing engagement of a succeeding carriage in the pouring station for effecting an uncoupling of said carriage and its removal from the pouring station after its ladle is emptied.
- 5. A continuous pouring line for tranferring molten metal from a stationary source of molten metal to a moving conveyor line of molds, comprising: a track defining a closed path between a ladle filling station at the source, a mold pouring station along a section of the track parallel to the conveyor line and back to the source; a plurality of ladle carriages adapted to traverse said track; a ladle supported on each of said carriages and rotatable about an axis substantially perpendicular to said track between a first filling and carrying position and a second pouring position; separate motor means for each carriage for driving said carriage independently of the other carriages to said source for filling the ladle and thereafter to and through said pouring station for pouring the molds; means for stopping said motor at said source during said filling; means for locating said carriage with a mold at the pouring station, said locating means coupling said carriage to said line to register the carriage's ladle with said mold and to brake the carriage's movement with the mold line through the pouring station; motor means on each carriage for rotating each ladle from said first position to said second position when its associated carriage has engaged a preceding carriage in the pouring station, its ladle is registered with a mold to be poured, and both carriage and mold are moving in unison through the pouring station, said motor returning said ladle to the first position when the ladle is empty; means for automatically sensing engagement between a carriage entering the pouring station with a carriage already therein for effecting said locating and rotation; and means for automatically sensing engagement of a succeeding carriage in the pouring station for effecting an uncoupling of said carriage and its removal from the pouring station after its ladle is emptied.
- 6. A continuous pouring line for transferring molten metal from a stationary source of molten metal to a moving conveyor line of successive molds wherein said conveyor line includes an arcuate pouring section, comprising: a horizontal support base; a support post extending on the base and defining a vertical axis coaxial with the arcuate section; a circular track on said base coaxial with said post and the arcuate section, said track having a filling section adjacent the source and a pouring section parallel to the conveyor line; a plurality of independent carriages pivotally connected at said post for rotation thereabout and supported on for movement along said circular track; a ladle supported on each of said carriages for rotation about a horizontal axis, said ladle being rotatable between a first position for receiving and carrying molten metal from the source and a second position for pouring molten metal therefrom; independently controlled drive means on each carriage engageable with the track for independently unidirectionally driving said carriages and associated ladle therearound; means for locating the carriage and ladle at said source and for disengaging the drive means thereat while said ladle is in said first position and being filled with molten metal; means for engaging said drive means after said ladle is filled with molten metal to drive said carriage and associated filled ladle to said pouring section; means for locating the carriage and the associated filled ladle at the mold in the pouring section; means for disengaging said drive means when a preceding ladle is engaged and said last mentioned means for locating is operative thereby synchronizing movement of said carriage with movement of the line so as to maintain said ladle in registry with the mold; means for rotating said ladle from said first position to said second position when said carriage movement is synchronized with the movement of the line and said carriage has engaged a preceding carriage so as to deliver molten metal to said mold when said ladle is in registry therewith; means for returning the ladle to the first position when the pouring is completed; and means engaging said drive means when a following ladle has engaged the carriage and the pouring is completed thereby returning said carriage to the source for refilling.
- 7. A continuous mechanical iron pourer for sequentially delivering a metered supply of molted iron sufficient for a single mold from a filling station to a series of molds traveling along a conveyor line, said line having a circular sector defining a pouring station comprising: a horizontal support base; a vertically upwardly extending support post defining a vertical axis coaxial with the circular sector; a circular track defining a continuous path between said filling station and said pouring station, said track being coaxial with the pouring station; a plurality of power-and-free carriages pivotally connected to said support post and supported on the track for independent rotational movement about said vertical axis; a ladle supported on each of said carriages for rotation about a radially extending horizontal axis, said ladle having a holding cavity adapted to receive said metered supply of molten iron at said filling station when in a filling position and positioned in registry with the filling station, said ladle having a pouring nozzle for delivering molten iron from the cavity in a pouring position when positioned in registry with the molds at said pouring station; a first motor operative to rotate the ladle between said positions; drive means including a motor on said carriage operative to drive said carriage around said circular track; control means for engaging said second motor to drive said carriage after said ladle has been filled with molten iron at said filling station to thereby advance the filled ladle and carriage from the filling station; an extendable locating mechanism engageable with the filling station and the individual molds to fixedly position the carriage and ladle thereat; means for extending said mechanism at said pouring station to engage the carriage with an associated mold; control means for disengaging said second motor when the ladle is in registry with the mold such that the ladle is driven by and in synchronization with the conveyor line; means for actuating the first motor to rotate said ladle at said pouring station from said filling position to said pouring position to convey molten iron into said mold and to return said ladle to said filling position after pouring is completed; means for retracting said mechanism after completion of said pouring; and control means for engaging said second motor to drive said carriage to said filling station and for disengaging said drive means and for engaging locating means at the filling station to lock said carriage thereat until said ladle is filled with molten iron.
- 8. An air operated continuous mechanical iron pourer for sequentially delivering a metered supply of molten iron sufficient for a single mold from a filling station to a series of molds traveling along a conveyor line, said line having a circular sector defining a pouring station comprising: a horizontal support base; a vertically upwardly extending support post defining a vertical axis coaxial with the circular sector; a circular track defining a continuous path between said filling station and said pouring station, said track being coaxial with the circular sector; a plurality of power-and-free carriages pivotally connected to said support post and supported on the track for independent rotational movement about said vertical axis; a ladle supported on each of said carriages for rotation about a radially extending horizontal axis, said ladle having a holding cavity adapted to receive said metered supply of molten iron at said filling station when in a filling position and positioned in registry with the filling station, said ladle having a pouring nozzle for delivering molten iron from the cavity while in a pouring position when positioned in registry with the molds at said pouring station; a first air motor connected to an air supply operative to rotate the ladle between said positions; variable speed drive means on said carriage including a second air motor connected to said air supply operative to drive said carriage around said circular track; control means for engaging said second air motor (a) to drive said carriage at a slow speed after said ladle has been filled with molten iron at said filling station to thereby advance the filled ladle and carriage from the filling station, (b) to drive said filled ladle and carriage at a faster speed at a first predetermined location along said path, and thereafter (c) return to said slow speed at a second predetermined location along said path to drive said filled ladle and carriage to said pouring station; an extendable locating mechanism engageable with the filling station and the individual molds to fixedly position the carriage and ladle thereat; means for extending said mechanism at said pouring station to engage the carriage with an associated mold; control means disengaging said second air motor at the mold when the pouring nozzle and ladle are in registry with the mold such that the ladle is driven by and in synchronization with the conveyor line; means for actuating the first air motor to rotate said ladle at said pouring station from said filling position to said pouring position to convey molten iron through said pouring nozzle into said mold and to return said ladle to said filling position after pouring is completed; means for retracting said mechanism after completion of said pouring; control means engaging said second air motor to drive said carriage at said slow speed until a third predetermined location along said path, and thereafter at said faster speed to a fourth predetermined location along said path before said filling station, said means slowing said second air motor to said slow speed at said fourth predetermined location preparatory to filling; and control means for disengaging said drive means for engaging said locating mechanism at said filling station to lock said carriage thereat until said ladle is filled with molten iron.
- 9. A continuous pouring line of transferring molten metal from a stationary source of molten metal to a moving conveyor line of molds, comprising: a track defining a closed path between a ladle filling station at the source, a mold pouring station along a section of the track parallel to the conveyor line and back to the source; a plurality of ladle carriages adapted to traverse said track; a ladle supported on each of said carriages and rotatable between a first position for receiving and carrying molten metal and a second position for pouring molten metal; separate drive means for each carriage for driving said carriage independently of the other carriages to said source for filling the ladle and thereafter to said pouring station for pouring the molds; means for disengaging said drive means at said source during said filling; means for engaging said drive means after said filling to drive said carriage and filled ladle to said mold pouring station; means for locating said carriage with a mold at the pouring station, said locating means locking said carriage in registry with said mold and synchronizing the movement of said carriage with the conveyor line; means for automatically disengaging the drive means of the carriage entering the pouring station when that carriage engages a preceding carriage at the pouring station and said locating means is engaged such that the entering carriage is driven by the conveyor line; means for automatically rotating each ladle from said first position to said second position when its associated carriage has engaged a preceding carriage in the pouring station and is moving in unison with the conveyor line so as to pour molten metal from the ladle into the mold registered therewith, said rotating means returning said ladle to the first position when the ladle is empty; and means for automatically engaging said drive means to remove said carriage from the pouring station after (a) the ladle is emptied and (b) a following carriage has engaged the carriage bearing the empty ladle.
- 10. An automatic continuous pouring line for transferring predetermined amounts of molten metal from a stationary source of molten metal to a moving conveyor line of molds adapted to receive said predetermined amounts, comprising: a track defining a closed path between a ladle filling station at the source, a mold pouring station along a section of the track parallel to the conveyor line, and back to the source; a plurality of self-powered and self-controlled ladle carriages adapted to sequentially and unidirectionally traverse said track; a ladle supported on each of said carriages and rotatable between a first position for receiving and carrying said predetermined amount of molten metal and a second position for pouring said predetermined amount of molten metal into one of said molds while moving through said pouring station; separate motor means carried by each said carriage for rotating said ladle between said first and second positions; separate drive means for each carriage for driving said carriage independently of the other carriages to said source for filling the ladle and thereafter to said pouring station for pouring the molds; means for automatically effecting a stopping of said drive means and a locating of said ladle with respect to said source at the ladle filling station, and a starting of said drive means following filling for transporting the filled ladle to said mold pouring station; means on each carriage responsive to engagement with a preceding carriage in the pouring station for locating said carriage with a mold at the pouring station while both said carriage and mold are moving together therein, said locating means coupling said carriage to said conveyor line for maintaining the located carriage's ladle in precise pouring registry with the mold to be poured and for synchronizing the movement of said carriage with the conveyor line while moving through said pouring station; means on each carriage adapted to engage a preceding carriage for automatically engaging said mold locating means when engagement with the preceding carriage at the pouring station occurs; means for automatically effecting the rotation of each ladle from said first position to said second position when the ladle's carriage is in engagement with a preceding carriage in the pouring station and is coupled and moving in unison with the conveyor line so as to pour molten metal from the ladle into the mold registered therewith, and from said second position to said first position when the ladle is empty; and means on each carriage adapted to be engaged by a following carriage in the pouring station for automatically disengaging said mold locating means to uncouple the carriage from the conveyor line for its return to the source after (a) the ladle is emptied and (b) a following carriage has engaged the carriage bearing the empty ladle.
Parent Case Info
This is a continuation-in-part of U.S. Pat. Application Ser. No. 372,337 (now abandoned) filed June 21, 1973 in the names of Kenneth J. Pol et al and assigned to the assignee of the present invention.
US Referenced Citations (2)
Number |
Name |
Date |
Kind |
3095620 |
Peras |
Jul 1963 |
|
3495720 |
Mann et al. |
Feb 1970 |
|
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
372337 |
Jun 1973 |
|