This application relates generally to filling systems for items and, more specifically, to a continuous motion filling system of a type that may be used in filling machines in which items are being conveyed, checked, counted and grouped for purposes of filling containers or packages with a set number of the items.
In the packaging of bulk items, such as pharmaceutical tablets or capsules, the items must be counted and grouped in order to fill containers, packages or other receptacles with a desired number of the items. Speed of container filling is a critical factor in such machines, as is machine cleanliness or cleanability.
Accordingly, an improved continuous motion filling system for use in filling machines would be desirable.
In one aspect, a filling system includes a conveyor for moving containers to be filled along a conveyance path; at least one drop chute with an outlet above the conveyance path; a drive train operatively connected for moving the drop chute to align the outlet of the drop chute with one container of the moving containers during filling of the one container with items, the drive assembly comprising: a primary drive frame movable along a first axis; a secondary drive frame mounted on the primary drive frame for movement therewith, the secondary drive frame movable relative to the primary drive frame along a second axis, wherein the second axis is transverse to the first axis, wherein the secondary drive frame includes a drive link operatively linked to move the drop chute.
In another aspect, a filling machine includes a housing at least in part defining an internal space, the housing including a rotating disc assembly positioned in an opening of a housing wall; a conveyor for moving containers to be filled along a conveyance path at an external side of the housing; at least one drop chute with an outlet above the conveyance path; a drive assembly operatively connected for moving the drop chute to align the outlet of the drop chute with one container of the moving containers during filling of the one container with items, the drive assembly including a drive link movable both substantially parallel to the conveyance path and runs substantially perpendicular to the conveyance path, at least part of the drive link located within the internal space; wherein the drive link is operatively connected to move the drop chute through the rotating disc assembly.
In yet another aspect, a filling system includes a conveyor for moving containers to be filled along a conveyance path; at least one drop chute with an outlet above the conveyance path; a drive assembly operatively connected for moving the drop chute to align the outlet of the drop chute with one of the moving containers during filling of the one container with items. The drive assembly includes: a primary drive frame laterally movable along a first axis; a secondary drive frame mounted on the primary drive frame for movement therewith, the secondary drive frame movable relative to the primary drive frame along a second axis, wherein the second axis is perpendicular to the first axis, wherein the secondary drive frame includes a drive link operatively linked to move the drop chute; a first motor connected to drive a first pulley or sprocket; a second motor connected to drive a second pulley or sprocket; a common belt or chain traversing a path that runs partially around the first pulley or sprocket and partially around the second pulley or sprocket.
In still another aspect, a filling machine includes a housing at least in part defining a sealed internal space, the housing including a rotating disc assembly positioned in an opening of a housing wall; a conveyor for moving containers to be filled along a conveyance path at an external side of the housing; at least one drop chute with an outlet above the conveyance path; and a drive assembly operatively connected for moving the drop chute to align the outlet of the drop chute with one of the moving containers during filling of the one container with items. The drive assembly includes a drive link movable along both a first path that runs substantially parallel to the conveyance path and a second path the runs substantially perpendicular to the conveyance path, at least part of the drive link located within the internal space. The drive link is operatively connected to move the drop chute through the rotating disc assembly.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, items, and advantages will be apparent from the description and drawings, and from the claims.
Referring now to
The drop chutes 62 are all connected to a common beam 70, such that movement of the beam 70 causes movement of all of the drop chutes 62 in a synchronous manner. The beam 70 can be moved both left and right (laterally or horizontally, substantially parallel with the conveyance path) and up and down (vertically, substantially perpendicular to the conveyance path). This type of controlled movement of a component using a beam may be referred to as a “walking beam” configuration. Although three drop chutes are shown connected to a common beam 70, a given machine could include less drop chutes (e.g., one or two) or more drop chutes (e.g., four, five or more).
Of particular interest in the filling machine or filling system of the present application is the drive arrangement for moving the beam 70. In particular, for cleanability reasons such as those desired in pharmaceutical packaging or similar environments, preventing collection of material (e.g., particulate or fines from pills) on difficult to clean parts of the machine, such as the drive assembly for the beam, is desired. For this reason, a drive assembly, or majority thereof, for the walking beam 70 may be sealingly contained within an internal space of a housing 80 of the machine. Here, the housing 80 includes a plurality of walls, including a front wall or conveyor facing wall 82 and a rotating disc assembly 84 positioned in an opening 86 of the wall 82. A drive assembly operatively (not shown in
The rotating disc assembly includes a primary disc 90 rotatably and sealingly engaged in the opening 86 of the housing wall 82. The primary disc 90 includes an opening 92 therein, and a secondary disc 94 is rotatably and sealingly engaged in the opening 92. The secondary disc 94 includes an opening 96 therein, and an external drive link 98 is rotatably and sealingly engaged in the opening 96. The external drive link 98 includes a free end 100 that is connected (e.g., via a fastener 102) to a mount bracket 104 attached at the bottom of the beam 70. Here, axis 110 is the center axis of the opening 92 and the secondary disc 94, axis 112 is the center axis of the opening 86 and the primary disc 90, and axis 114 is the center axis of the opening 96 and the link 98. Notably, the center axis 110 is offset from the center axis 112, and the center axis 114 is offset from the center axis 112. With this arrangement, by the combined relative rotation of the secondary disc 94 within the opening of the primary disc 90 and the relative rotation of the primary disc 90 within the opening of the housing wall 82, the axis of the link 98 can be positioned anywhere within the area represented by dashed line circle 116, as per
With respect to the drive train that is used to control the vertical and horizontal movement of the drive link 98, such movement is achieved using a unique 2-axis gantry assembly (or T-bot gantry). In particular, referring to
The plate 136 carries non-toothed rotatable pulleys 140A-140D, and the slide bar 138 carries a non-toothed rotatable pulley 142. A toothed drive pulley 144 is driven by a motor 146 (e.g., servomotor) and a toothed drive pulley 148 is driven by a motor 150 (e.g., servomotor). A toothed belt 152 traverses a path that extends partially around each of the pulleys 140B, 144, 140C, 142, 140D, 148 and 140A. The belt 152 is fixed at a lower end of the slide bar 138 (e.g., free ends of the belt may be held in clamp plate assemblies 154A and 154B). The positions of the pulley/motor pairs 144, 146 and 148, 150 are fixed. Here, the pulley/motor pairs are mounted at opposite ends of a support plate 160, and the support plate 160 also supports the slide rail 124 to which the primary frame 120 is slidingly mounted. With this arrangement, the position of the drive link 94 can be moved any of (i) laterally only (by moving the primary frame 120 along the slide rail, (ii) vertically only (by moving the secondary frame along the slide rail 134) or (iii) both laterally and vertically simultaneously. The schematic depictions in
Each motor 146, 150 can be operates to maintain its associated toothed pulley stationary and to rotate its toothed pulley in either rotational direction (counterclockwise or clockwise). Rotation of both the pulleys 144 and 148 in in the counterclockwise direction causes the drive link to move laterally in one direction (here left to right, as viewed in
As mentioned above, the rotating disc assembly provides a sealed housing structure. In this regard,
As seen in the schematic of
As used herein, the term controller is intended to broadly encompass any circuit (e.g., solid state, application specific integrated circuit (ASIC), an electronic circuit, a combinational logic circuit, a field programmable gate array (FPGA)), processor(s) (e.g., shared, dedicated, or group—including hardware or software that executes code), software, firmware and/or other components, or a combination of some or all of the above, that carries out the control functions of the device/machine or the control functions of any component thereof.
It is to be clearly understood that the above description is intended by way of illustration and example only, is not intended to be taken by way of limitation, and that other changes and modifications are possible. For example, while the description above focuses on the use of pulleys and a belt in the drive train, a chain with corresponding sprockets could be used as an alternative to the pulleys and belt. Still other modifications are possible.
Number | Name | Date | Kind |
---|---|---|---|
3045720 | Jungmayr | Jul 1962 | A |
3152622 | Rothermel | Oct 1964 | A |
3217760 | Eisenberg | Nov 1965 | A |
3828918 | Talbat | Aug 1974 | A |
4226073 | Rose | Oct 1980 | A |
4353198 | Koppe | Oct 1982 | A |
4385670 | Braun | May 1983 | A |
4674259 | Hills | Jun 1987 | A |
6079191 | Borkiewicz | Jun 2000 | A |
6185901 | Aylward | Feb 2001 | B1 |
6481180 | Takahashi | Nov 2002 | B1 |
6701973 | Ikemoto | Mar 2004 | B2 |
6755223 | Trebbi | Jun 2004 | B1 |
6799413 | Aylward | Oct 2004 | B2 |
7255247 | Aylward | Aug 2007 | B2 |
7322170 | Tomalesky | Jan 2008 | B2 |
7909158 | Noe | Mar 2011 | B2 |
9199748 | Cremer | Dec 2015 | B2 |
9399532 | Noe | Jul 2016 | B2 |
9493254 | Boira Bonhora | Nov 2016 | B2 |
9862585 | Ramnarain | Jan 2018 | B2 |
10513356 | Monti | Dec 2019 | B2 |
10640288 | Lucas | May 2020 | B2 |
10926901 | Kim | Feb 2021 | B2 |
11155378 | Savoie-Lavigueur | Oct 2021 | B2 |
20060086065 | Tomalesky | Apr 2006 | A1 |
20060163271 | Hatsuno | Jul 2006 | A1 |
20150120039 | Nishibue | Apr 2015 | A1 |
20190322451 | Bastian, II | Oct 2019 | A1 |
20190329921 | Thomas | Oct 2019 | A1 |
20210284366 | Lebel | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
2754274 | Mar 2013 | CA |
798262 | Oct 1997 | EP |
1390261 | Feb 2004 | EP |
1831076 | Sep 2007 | EP |
1942065 | Jul 2008 | EP |
2974970 | Jan 2016 | EP |
3303154 | Apr 2018 | EP |
3434606 | Jan 2019 | EP |
Number | Date | Country | |
---|---|---|---|
20210284373 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
62987555 | Mar 2020 | US |