The present invention relates to a method of optimising the clarified phase outflowing from a continuous self-cleaning centrifuge and also to a continuous self-cleaning centrifuge assembly.
A centrifugal separator is used for separating solids suspended in a liquid to create a clarified phase. One type of centrifugal separator is known as a continuous self-cleaning centrifuge. In this type, solids suspended in a liquid are fed into the inlet line, the solids build up at the outer central perimeter of the centrifuge's double cone bowl and are automatically periodically discharged in response to either a threshold upper turbidity reading of the clarified phase in the outflow line or a loss of flow in a detection line running from the solids holding space to the inlet line. The solids build up in the holding space and up into the detection line where a loss of flow detector is activated.
For optimum results, an operator must regularly adjust the flow rate in and the flow rate out to achieve the required clarity in the clarified phase. In practice, these machines are operated well below optimum because of a conservative approach to avoid a block-up condition, which requires the machine to be dismantled and be off-line for at least a day. Some plants, e.g. wineries, use a single centrifuge for several, up to eight, separate operations in a process. Having a centrifuge off-line for a day can create significant delays in production times. Operating below optimum means, primarily, that too much valuable fluid is lost in the solids or that the quality of the clarified phase is inadequate.
It is therefore an object of the present invention to provide a method and assembly for optimising the clarified phase outflowing from a continuous self-cleaning centrifuge. In one embodiment of the invention, it is an object to optimise the clarified phase in regards to both the quality and quantity with respect to the liquid fed into the inflow line.
According to a first aspect, the present invention provides a continuous self-cleaning centrifuge assembly, having a feed inlet to the centrifuge for unclarified liquid and an outlet for clarified liquid, further including means to discharge solids out of a solids holding space in the centrifuge in response to a monitored turbidity parameter of liquid in a detection line in communication with the centrifuge separately from said outlet so that said turbidity is affected by the degree of build up of solids in the centrifuge.
Preferably a detection line communicates to a feed line for unclarified liquid connected to said feed inlet whereby the small proportion of liquid bled to the detection line is fed back or recycled to the feed line upstream of said feed inlet. There may be provided means to monitor the turbidity of the liquid and solids in the detection line. Preferably, the means to discharge solids out of the holding space includes gate means, and a controller to activate the gate means in respect to a predetermined variation in a turbidity parameter monitored at the turbidity monitoring means. The means to discharge is preferably a sliding piston that opens a path to allow the flow of solids out of the holding space. The controller may be a central computer.
Advantageously, when the means for monitoring the turbidity of the solids in the detection line measures turbidity greater than predetermined value, the means to discharge is activated to discharge solids out of the solids holding space in the bowl.
There may be provided means to control the flow rate of liquid into the centrifuge in response to the turbidity of the clarified phase flowing out of the centrifuge.
According to a second aspect, the present invention provides a continuous self-cleaning centrifuge assembly having a feed inlet to the centrifuge for unclarified liquid and an outlet for clarified liquid, further including means to control the flow rate of liquid into the centrifuge at said feed inlet in response to a measure of turbidity of the clarified phase flowing out of said outlet, and including means to discharge solids out of a solids holding space in the centrifuge in response to a monitored turbidity parameter of liquid in a detection line in communication with the centrifuge separately from said outlet so that said turbidity is affected by the degree of build up of solids in the centrifuge.
Additionally, according to the first or second aspect there may further be provided means to monitor the flow rate of the liquid and solids in the detection line. When the means for monitoring the flow rate measures a flow rate less than a predetermined value, the means to discharge is activated to discharge solids out of the solids holding space.
The assembly may include a feed line for flow of liquid into the bowl and means to control the flow rate in the feed line. Preferably, an outlet line for flow of clarified phase out of the bowl and means for monitoring the turbidity of the clarified phase in the outlet line is provided. When the means for monitoring the turbidity of the clarified phase in the outlet line measures turbidity greater than a first predetermined value or less than a second predetermined value, the means to control flow in the feed line decreases or increases the flow rate of liquid accordingly.
Preferably, the means to control flow rate in the feed line is a positive displacement pump controlled by a frequency inverter. The means to monitor the turbidity is a turbidity sensor. The turbidity predetermined values, which can be entered manually by the operator prior to operation, are determined depending on the type of properties required in the clarified phase. The means for monitoring the flow rate is preferably a flowmeter.
According to a third aspect, the present invention provides a method of optimising the clarified phase outflowing from a continuous self-cleaning centrifuge having a feed inlet to the centrifuge for unclarified liquid and an outlet for clarified liquid, wherein solids are discharged out of a solids holding space in the centrifuge in response to a turbidity parameter measurement of liquid in a detection line in communication with the centrifuge separately from said outlet so that said turbidity is affected by the degree of build up of solids in the centrifuge.
Preferably, when the turbidity of the solids in the detection line is measured greater than a predetermined value the solids are discharged from the solids holding space.
According to a fourth aspect, the present invention provides a method of optimising the clarified phase outflowing from a continuous self-cleaning centrifuge having a feed inlet to the centrifuge for unclarified liquid and an outlet for clarified liquid, wherein the flow rate of unclarified liquid into the centrifuge is controlled in response to the turbidity of the clarified phase flowing out of the centrifuge, and wherein solids are discharged out of a solids holding space in the centrifuge in response to a turbidity parameter measurement of liquid in a detection line in communication with the centrifuge separately from said outlet so that said turbidity is affected by the degree of build up of solids in the centrifuge.
Advantageously, when the turbidity of the clarified phase is measured as being greater than a first predetermined value, the flow rate of liquid in the feed line is decreased, and, when the turbidity of the clarified phase is measured lower than second predetermined value, the flow rate of liquid in the feed line is increased.
Advantageously, the flow rate of the clarified phase in the outflow line is monitored. A back pressure set point for controlling the clarified phase back pressure may be set automatically according to a measured flow rate.
In a fifth aspect of the invention, there is provided a continuous self-cleaning centrifuge assembly having a feed inlet to the centrifuge for unclarified liquid and an outlet for clarified liquid, further including means to discharge solids out of a solids holding space in the centrifuge in response to a monitored turbidity parameter of liquid in an outflow line connected to said outlet, wherein said turbidity parameter is the rate of rate of turbidity increase, or second derivative, of the monitored turbidity.
The invention also provides, in its fifth aspect, a method of optimising the clarified phase outflowing from a continuous self-cleaning centrifuge having a feed inlet to the centrifuge for unclarified liquid and an outlet for clarified liquid, wherein solids are discharged out of a solids holding space in the centrifuge in response to a turbidity parameter measurement of liquid in an outflow line connected to said outlet, wherein said turbidity parameter is the rate of rate of turbidity increase, or second derivative, of the monitored turbidity.
The invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
As can be seen from
The chamber 20 includes a plurality of conical discs 24. During operation, as the bowl 12 rotates, the solids are spun out by centrifugal force to a solids holding space 26 at the perimeter of the bowl 12. The solids in the holding space 26 are periodically discharged from the bowl 12. Discharge is achieved by the release of a gate including a sliding piston 38, which is activated by a signal via control line 38a from a main controller 39 to open up a gap 40 for discharging the solids out of the bowl 12 in the direction of arrows B (shown in
As can be seen in more detail from
As shown in the drawings, there is provided a means for monitoring the turbidity of the clarified phase in the form of turbidity sensor 34 on outlet line 28. A turbidity set point band of the clarified phase is input at an operating panel by an operator. When the measured turbidity is lower than the set point band, a signal is sent by controller 39 to the frequency inverter 32, which speeds up the pump 30 until the turbidity in outlet line 28 is within a set point band. When the measured turbidity is higher than the set point band, a signal is similarly sent to the frequency inverter 32, which decreases the speed of the pump 30 until the turbidity is within the set point band. Increasing the flow rate reduces the retention time of the liquid under centrifugal force, which means more solids particles are carried with the liquid flow into the clarified phase, measuring a higher turbidity reading. By decreasing the flow rate, the retention time is increased. More fine particles get carried under centrifugal force to the solids holding space 26, resulting in a lower turbidity of the clarified phase.
A small stream of the liquid is bled from the bowl 12 into a thin conical gap 13 defined by a separating disc 31. Gap 13 is thereby at the periphery of the bowl and communicates at its outer end with solids holding space 26. Detection line 35 opens for conical gap 13 and communicates back to the feed line 22. The small proportion of liquid bled to line 35 is thereby fed back or recycled into feed line 22 upstream of inlet 23. The flow is shown by arrows D in
In a conventional approach, turbidity itself is monitored and the controller 39 automatically sets the turbidity value as a set percentage of the stable turbidity value. Alternatively, in accordance with the fifth aspect of the invention, the turbidity is monitored but the controlling parameter is the rate of rate of turbidity increase, or the second derivative, of the turbidity T with respect to time t,
It has been observed that the turbidity tends to increase steadily (i.e.
is constant) and then sharply increase at an observable break-away point so that there is a change to a positive value in the second derivative
Additionally, when certain heavy compactable solids fill up the holding space 26, the turbidity in the detection line 35 may not necessarily increase, or reach the trigger condition for discharging the solids, however the liquid flowing through the detection line 35 may be interrupted by these heavy solids as the conical gap 13 is blocked. A bobbin 37 is located in a vertical portion 35a atop a post 35b of the detection line 35, and is normally held in an elevated position (illustrated in
The aforementioned technique of determining the second derivative of the measured turbidity with respect to time may also be optionally employed at turbidity sensor 34 on outlet line 28, for controlling pump 30 and therefore the flow rate in feed line 22. One or more suitable responses to detection of a change to a positive value or other feature of the determined rate of rate of turbidity increase, i.e. the
function, would be programmed into computer 39.
In a still further alternative embodiment of the fifth aspect of the invention, discharge of solids from holding space 26 may be triggered in response to determination of
at turbidity sensor 34, either as a control loop additional to those already described, or in an otherwise conventional centrifuge assembly not embodying the first to fourth aspects of the invention. This latter embodiment is depicted diagrammatically in
function, would be programmed into a controller 139 of the assembly.
In current systems, if release of the solids holding space is triggered too early, any liquid in the solids holding space would also be discharged. By waiting too long to discharge, the system can become blocked as the solids have been compressed by the centrifugal force such that they cannot be ejected through the gap 40. According to the present invention, by ensuring that the solids holding space 26 is accurately monitored and the discharge of solids is controlled, the discharged solids concentration is maintained at a high level with minimum liquid discharged (and therefore lost) with the solids.
A magnetic flowmeter 44 is installed in the clarified phase outlet line 28 to measure the flow rate of the clarified phase. A pressure transmitter 46 is provided and the back pressure set point for controlling the clarified phase discharge back pressure is set according to the measured flow rate. The operator is provided with a flow rate versus back pressure set points table to ensure the system is being controlled at optimum rate.
The main advantage of the present invention is that it optimises the clarified phase by monitoring and controlling the discharge of the solids built up. The detection line allows for both heavy and light solids to be accurately monitored. Additionally, the excess liquid lost in the solids output is greatly reduced and the operator is required to check the system less frequently, reducing labour costs. The combination of the first to fourth features allows the continuous self-cleaning centrifuge assembly to operate at optimum efficiency, without increasing the incidence of block-up of the system.
The centrifuge is fed with highest capacity while maintaining the required turbidity of the clarified product. This is all done totally automatically thus offering maximum yield and lower operational costs (less labour etc).
Number | Date | Country | Kind |
---|---|---|---|
2006906386 | Nov 2006 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2007/001760 | 11/15/2007 | WO | 00 | 5/14/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/058340 | 5/22/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3734398 | Keith, Jr. et al. | May 1973 | A |
4083488 | Gunnewig | Apr 1978 | A |
4149668 | Zurbruggen | Apr 1979 | A |
4151950 | Gunnewig | May 1979 | A |
4305817 | Kohlstette | Dec 1981 | A |
4475897 | Bradtmoller | Oct 1984 | A |
4525155 | Nilsson | Jun 1985 | A |
4536285 | Karlsson | Aug 1985 | A |
4729759 | Krook et al. | Mar 1988 | A |
4755165 | Gunnewig | Jul 1988 | A |
4805659 | Gunnewig et al. | Feb 1989 | A |
4820256 | Nordstrom | Apr 1989 | A |
4840612 | Pallmar | Jun 1989 | A |
5199938 | Kohlstette et al. | Apr 1993 | A |
5300014 | Chin et al. | Apr 1994 | A |
5453832 | Joyce | Sep 1995 | A |
5800330 | Modeer | Sep 1998 | A |
6358193 | Nyberg | Mar 2002 | B1 |
6368264 | Phillips et al. | Apr 2002 | B1 |
6468574 | Zettier | Oct 2002 | B1 |
7485084 | Borgstrom et al. | Feb 2009 | B2 |
7678039 | Åstrom | Mar 2010 | B2 |
20090298666 | Trager et al. | Dec 2009 | A1 |
20100081552 | Chan | Apr 2010 | A1 |
20100184579 | Trager | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
0 891 814 | Jan 1999 | EP |
60-54753 | Mar 1985 | JP |
10-118530 | May 1998 | JP |
2004 105 041 | Feb 2005 | RU |
1225820 | Apr 1986 | SU |
WO 2008058340 | May 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20100081552 A1 | Apr 2010 | US |