The present invention relates to a control device for a bicycle with curved handlebars, typical of racing bicycles.
Typical control devices feature a support body fixable to the handlebars of the bicycle and a brake lever pivotally attached thereto. The brake lever comprises a resisting arm to which an end of a brake cable is attached, typically an inextensible sheathed cable (Bowden cable). When the brake lever is actuated by bringing its power arm towards the handlebars, the resisting arm of the brake lever moves away from the handlebars, and the resulting tension on the brake cable actuates the brake, thus clamping its jaws around the rim of the wheel. In some of these control devices, so-called integrated devices, there are also one or more levers and/or one or more buttons to actuate a derailleur of the bicycle gearshift.
In one riding condition, the cyclist grips the handlebars. Such a riding position is the most favorable for braking, both because the actual power arm is at its maximum, and because the cyclist acts upon the lever with the fingers other than the thumb, and in particular with the forefinger and the middle finger, starting from a condition in which the hand is substantially open.
In another riding condition, the cyclist grips the support body itself, resting the palm of the hand on its top surface. The actuation of the brake lever is still efficient, because the power arm is still sufficiently long, and the cyclist starts from a condition in which the hand is only partially closed.
From this riding condition, in order to avoid the cyclist's hand sliding forwards away from the support body losing its grip, control devices are known wherein the support body is provided with a small projection in a distal-upper position. However these projections are not grippable. Also known are control devices wherein the support body includes a horn-shaped projection, arched inwards, which are intended to support a display device, and are therefore not grippable.
Control devices are known wherein the projection of the support bodies is extended in order to facilitate gripping in yet another riding condition. Some of these devices feature a grippable horn-shaped projection, arched inwards. However, in order to actuate the brake lever from the riding condition in which the cyclist grips the projection by resting the palm of the hand on its proximal surface and closing the fingers around the projection itself, the cyclist must however actually release his/her grip, opening the fingers and sliding the palm on the top surface of the support body. In short, braking is only possible if the cyclist positions himself/herself in the above described riding condition in which the cyclist grips the support body.
Therefore, there remains a need for a control device for a bicycle with curved handlebars that is particularly versatile and safe with regard to the riding and braking conditions.
The invention relates to a control device for a bicycle with curved handlebars. The control device comprises a support body having a grippable distal upper projection, and fixable to the handlebars of the bicycle, and a brake lever pivotally mounted to the support body, a resisting arm of which, integrally moves with an end of a brake cable. The brake lever has a first actuation area in a first riding condition gripping the support body, and a second actuation area in a second riding condition gripping the projection. A third actuation area may also be incorporated into the brake lever for use in a third riding condition.
The invention also relates to a brake lever for a bicycle with curved handlebars. The brake lever features a pivot pin, a resisting arm with which an end of a brake cable integrally moves, and a power arm. The power arm comprises an upper portion having a concavity facing towards the distal side, an intermediate portion having a convexity facing towards the distal side, and a bottom portion having a concavity facing towards the distal side. The brake lever has a first actuation area comprising the intermediate portion and the bottom portion, and a second actuation area comprising the upper portion and the intermediate portion.
Further characteristics and advantages of the invention shall become clearer from the description of a preferred embodiment thereof, made with reference to the attached drawings, wherein:
In the present introduction and description, and in the attached claims, all spatial references such as vertical, horizontal, distal, proximal, top, bottom, inner and outer are made with reference to the condition of the support body fixed to the handlebars; in particular, by proximal, facing towards the handlebars is meant, while by distal, facing away from the handlebars is meant, by inner, facing towards the center of the handlebars is meant, while by outer, facing away from the center of the handlebars is meant.
The support body is more specifically fixable projecting distally from the curved ends of the handlebars, so that the brake lever hangs substantially vertically therefrom, in front of the curved ends of the handlebars.
The invention relates to a control device for a bicycle with curved handlebars. The control device comprises a support body having a grippable distal-upper projection fixable to the handlebars of the bicycle, and a brake lever pivoted to the support body, a resisting arm of which integrally moves with an end of a brake cable. The brake lever comprises a first actuation area in a first riding condition gripping the support body, and a second actuation area in a second riding condition gripping the projection. In an alternate embodiment, a third actuation area may also be incorporated into the brake lever for use in a third riding condition.
The projection preferably projects further inwards with respect to the inner side of the support body, forming a recess intended to receive the cyclist's thumb in said second riding condition. Through such a recess, a small rotation of the wrist is caused, and consequently the fingers other than the thumb, or at least the middle finger, ring finger and little finger close, in a lowered position, below the projection itself. Preferably, the projection projects inwards with respect to the inner side of the support body by a distance at its upper end comprised between 2 and 12 mm, more preferably between 4 and 8 mm, and even more preferably of 6.5 mm.
In a preferred embodiment, the projection is convex in a distal-outer part thereof. Such a convexity preferably has a radius of curvature comprised between 30 and 45 mm, more preferably between 33 and 38 mm, even more preferably of 35 mm.
It is also preferred that the projection is convex in an upper-outer part thereof. The convexity is preferred to have a radius of curvature comprised between 10 and 30 mm, more preferably between 13 and 20 mm, even more preferably of 15 mm.
Preferably, the projection has a distal surface extending above the brake lever. Such a distal surface advantageously provides a rest for the cyclist's forefinger, to improve the grip in the second riding condition, possibly also during braking. Preferably, said distal surface extends for a height comprised between 5 and 30 mm, more preferably between 10 and 20 mm, and even more preferably of 14 mm.
A pivot pin of the brake lever is below and a first distance from the upper surface of the support body comprised between 0 and 15 mm, more preferably between 3 and 10 mm, even more preferably of 6 mm. Because this distance is particularly short, it is possible to make a brake lever that works in mechanically advantageous conditions from all riding conditions.
Preferably, the ratio between the distance of the point of application of the middle finger within the first actuation area from the top surface of the support body and said first distance is greater than 3.3, more preferably it is greater than 7 and even more preferably it is 10.
Preferably, the ratio between the distance of the point of application of the middle finger within the second actuation area from the upper surface of the support body and said first distance is greater than 1, more preferably it is greater than 3, and even more preferably it is 5.
Preferably, the distance between a pivot pin of the brake lever and a point of integral movement of the brake cable and the brake lever is comprised between 20 and 30 mm, more preferably between 23 and 27 mm, even more preferably it is 24.6 mm.
Preferably, the ratio between the distance of the point of application of the middle finger within said first actuation area from a pivot pin of the brake lever and the distance between the pivot pin of the brake lever and a point of integral movement of the brake cable and the brake lever is comprised between 1.5 and 3.3, more preferably between 2 and 2.5, and even more preferably it is 2.26.
Moreover, the ratio between the distance of the point of application of the middle finger within said second actuation area from a pivot pin of the brake lever and the distance between the pivot pin of the brake lever and a point of integral movement of the brake cable and the brake lever is preferably comprised between 0.6 and 1.9, more preferably between 0.8 and 1.4, and even more preferably it is 1.13.
It is envisioned that the first actuation area and the second actuation area overlap for at least 30%, more preferably for at least 50%.
The brake lever, at the first actuation area, has an upper portion having a convexity facing towards the distal side, and a bottom portion having a concavity facing towards the distal side. As a result, the middle finger rests in an area with an inclination of the brake lever from distal-upper to proximal-bottom, which is particularly advantageous for the application of force that must be exerted on the brake lever in the first riding condition.
Preferably, the portion with convexity facing towards the distal side of the brake lever has a radius of curvature comprised between 47 and 60 mm, preferably between 50 and 56 mm, even more preferably of 53 mm, and the portion with concavity facing towards the distal side has a radius of curvature comprised between 50 and 62 mm, more preferably between 53 and 59 mm, even more preferably of 56 mm.
At the second actuation area, the brake lever preferably has an upper portion having a convexity facing towards the distal side, an intermediate portion having a concavity facing towards the distal side, and a bottom portion having a convexity facing towards the distal side. As a result, the middle finger rests in an area with an inclination of the brake lever from proximal-upper to distal-bottom, which is particularly advantageous for the pushing action that has to be exerted onto the brake lever in the second riding condition.
Preferably, the top portion has a radius of curvature comprised between 45 and 55 mm, preferably between 48 and 52 mm, even more preferably of 50 mm, the intermediate portion has a radius of curvature comprised between 30 and 38 mm, more preferably between 32 and 36 mm, even more preferably of 34 mm, and the bottom portion has a radius of curvature comprised between 47 and 60 mm, more preferably between 50 and 56 mm, even more preferably of 53 mm.
In another preferred embodiment, the brake lever further has a third actuation area in a third riding condition gripping the handlebars. The third actuation area preferably has a concavity facing towards the distal side, which is particularly advantageous in applying the force that has to be exerted onto the brake lever. Preferably, the portion with concavity facing towards the distal side of the brake lever has a radius of curvature comprised between 50 and 62 mm, more preferably between 53 and 59 mm, even more preferably of 56 mm.
Typically, the end of the brake cable is made to integrally move with the brake lever through insertion of a head thereof in an idle pin fixed to the brake lever.
Preferably the brake lever has one or more weight reduction holes.
In a second aspect thereof, the invention concerns a brake lever for a bicycle with curved handlebars, having a pivot pin, a resisting arm with which an end of a brake cable integrally moves, and a power arm. The power arm has an upper portion having a concavity facing towards the distal side, an intermediate portion having a convexity facing towards the distal side, and a bottom portion having a concavity facing towards the distal side. The brake lever has a first actuation area comprising said intermediate portion and said bottom portion, and a second actuation area comprising said upper portion and said intermediate portion.
In another preferred embodiment, the brake lever also has a third actuation area comprising said bottom portion.
In the preferred arrangement, the upper portion has a length comprised between 18 and 22 mm, more preferably of 20 mm. The intermediate portion has a length comprised between 38 and 46 mm, more preferably of 42 mm. And the bottom portion has a length comprised between 52 and 64 mm, more preferably of 58 mm.
The resisting arm of the brake lever has an upper portion having a concavity facing towards the distal side, and a bottom portion having the convexity facing towards the distal side. It is preferred that the upper portion of the resisting arm has a length comprised between 30 and 40 mm, more preferably of 35 mm.
In any of the above described embodiments, it is preferred that that the brake lever has one or more weight reduction holes.
Preferred values of the radii of curvature of the brake lever and other advantageous characteristics thereof are indicated above with reference to the control device of the invention.
The control device 1 comprises a support body 5 fixable to the handlebars M, through suitable means such as a clamp 22, at the curved left end of the handlebars M, so as to distally project from the handlebars M.
The brake lever 2 is pivoted about a pivot pin 6 extending substantially horizontally in a distal position of the support body 5.
The brake lever 2, above the pivot pin 6, has a resisting arm 7. An end of the brake cable F is attached close to an end of the resisting arm 7 and moves integrally therewith. More specifically, a head T at the end of the brake cable F is inserted into a transversal hole of an idle pin 8, in a per se well known way.
The idle pin 8 is at a distance L1 (
Below the pivot pin 6, the brake lever 2 has an actuation arm 9 hanging from the support body 5 substantially vertically, in front of the curved end of the handlebars M.
The brake lever 2 further has a per se known stop device 10, which allows the brake lever 2 to move between a rest position and a release position. From the rest position the actuation arm 9 moves towards the handlebars M, and therefore the resisting arm 7 moves away from the handlebars M, causing the actuation of the brake through the traction of the brake cable F through the idle pin 8, integrally moving with the brake lever 2. In the release position, the actuation arm 9 is moved further away from the handlebars M, and therefore the resisting arm 7 is brought closer to the handlebars with respect to the rest position, to allow the brake cable F to be detensioned and therefore allow the jaws of the brake to be widened and promote the disassembly operations of the wheel.
The support body 5 has a distal-upper projection 11. The projection 11 projects for a height H1 (
As can be seen in
The projection 11 has a width W1 at the base corresponding to the width of the support body 5, and a width W2 at its upper end 14 slightly smaller than the width W1 at the base. As shown in
The projection 11 has a length P1 (
Referring generally to
The resisting arm 7 of the brake lever 2 extends substantially for its entire length in a distal cavity (not shown) of the projection 11, but not for the entire height H1 of the projection 11. In other words, the projection 11 has a distal surface 16 extending for a height H2 above the brake lever 2. The projection 11 also has a proximal surface 17 smoothly fitted to the upper surface 12 of the support body 5.
The support body 5 has a length P3 at its upper surface 12, a height that slightly decreases from a height H3 at the proximal side to a height H4 at the beginning of the projection 11 and, as stated above, a width W1 (
The brake lever 2, in particular its distal surface, has a curvilinear progression. Substantially the entire length of its resisting arm 7 has a convexity towards the distal side, with radius of curvature R1 for a portion of length L5. At the pivot pin 6, the brake lever has a concavity towards the distal side, with curvature R2 for a portion of length L6. The portion of the actuation arm 9 adjacent to the pivot pin 6 has a convexity towards the distal side, with radius of curvature R3 for a portion of length L7. The remaining portion of the actuation arm 9, or free end, has a concavity towards the distal side, with radius of curvature R4 for a portion of length L8. The various curvatures are smoothly fitted at inflection points.
The brake lever 2 further has one or more weight reduction holes 21.
The brake lever 2 of the control device 1 is actuatable from three distinct riding conditions of the cyclist.
In one riding condition, shown in
The actual power arm relative to this riding condition, meant as the distance between the pivot pin 6 and the central point of application of force through the middle finger, is indicated with L2. It should be noted that the actual position of the fingers and in particular of the middle finger, can vary between cyclists, and therefore the actual power arm L2 can slightly vary according to the size of the cyclist's hand. The distance between the point of application of force and the upper surface 12 of the support body 5 is indicated with D2.
Such a riding position is the most favorable for braking, both because the actual power arm L2 is at its maximum, and because the cyclist acts upon the lever 2 starting from a condition in which the hand is substantially open.
In another riding condition, shown in
The four fingers other than the thumb, or at least the little finger and/or the ring finger, can be closed around the support body 5 during riding. In order to be ready for braking, the cyclist places one or more of the four fingers other than the thumb, typically the forefinger and the middle finger, around the brake lever in an actuation area 19 comprising part of the portion of convexity of radius of curvature R3 and length L7, and part of the portion of concavity of radius of curvature R4 and length L8. More specifically, the middle finger rests in the bottom area of the portion of convexity of radius of curvature R3 or in the upper area of the portion of concavity of radius of curvature R4, and therefore in an area with an inclination of the brake lever 2 from distal-upper to proximal-bottom. This inclination is particularly advantageous for applying the force that has to be exerted on the brake lever 2 by the cyclist in this riding condition.
The actual power arm relative to this riding position, again meant as the distance between the pivot pin 6 and the central point of application of force through the middle finger, is indicated with L3. As noted above, the actual position of the fingers and in particular of the middle finger, and therefore the actual power arm L3 can slightly vary according to the size of the cyclist's hand. The distance between this point of application of force and the upper surface 12 of the support body 5 is indicated with D3.
The actuation of the brake lever 2 from this riding condition in which the cyclist grips the support body 5 is in general still easy, since the actual power arm L3 remains sufficient and the cyclist starts from a condition in which the hand is only partially closed.
In yet another riding condition, shown in
The convexities of the projection 11 make it easier for it to be gripped and for the brake lever 2 to be reached with the hand fingers in this riding condition. Specifically, the four fingers other than the thumb are closed around the brake lever 2 in an actuation area 20 comprising part of the portion of convexity of radius of curvature R1, the portion of concavity of radius of curvature R2, and part of the portion of convexity of radius of curvature R3. More specifically, the middle finger rests in a bottom area of the portion of concavity R2 or in an upper area of the portion of convexity R3 of the brake lever 2, and therefore in an area with an inclination of the brake lever 2 from proximal-upper to distal-bottom. This inclination is particularly advantageous for the pushing action that has to be exerted on the brake lever 2 by the cyclist in this riding condition.
In order to improve the grip, the cyclist's forefinger can also be closed around the distal surface 16 of the projection 11, both during normal riding and also during braking.
The actual power arm relative to this riding position, again meant as the distance between the pivot pin 6 and the central point of application of force through the middle finger, is indicated with L4. Also in this case, the actual position of the fingers and in particular of the middle finger, and therefore the actual power arm L4 can slightly vary according to the size of the cyclist's hand. The distance between such a point of application of force and the upper surface 12 of the support body 5 is indicated with D4.
The actuation of the brake lever 2 from this riding condition in which the cyclist grips the projection 11 is in general still easy, because the actual power arm L4 is still sufficient and the cyclist starts from a condition in which the hand is only partially closed.
This riding condition, in which the cyclist grips the projection 11, is the most critical since the actual power arm L4 is relatively short and the cyclist starts from a condition in which the hand is practically closed. However, since as stated above the middle finger, the ring finger and the little finger rest on the actuation area 20 below the pivot pin 6, braking is possible and easy, in part as a result of the described curvature of the brake lever 2.
It should be noted that the actuation area 19 and the actuation area 20 overlap in part, preferably for at least 30%, more preferably for at least 50%.
Acceptable ranges, preferred ranges and preferred values of various sizes and size ratios of the control device 1 are indicated in TABLE 1.
It should be noted that the distance D1 of the pivot pin 6 of the brake lever 2 from the upper surface 12 of the support body 5 is substantially less than typical values of controls of the prior art, which are around 24 to 36 mm.
The ratio between the distance D3 of the point of application of force in the riding condition of
It should also be noted that, in the case of the preferred values indicated above, the lever ratio, meant as the ratio between the actual power arm L2, L3, L4 respectively for the three riding conditions, and the actual resisting arm L1 is 3.17, 2.26, 1.13 respectively for the three riding conditions. Therefore, in all three riding conditions there is a mechanical advantage.
To control the derailleur, the lever 3 and the button lever 4 could be replaced by a single lever with double direction of actuation, by a pair of levers, by a pair of button levers, or also one or both could be replaced, in the case of control of an electrical/electronic gearshift, by a control button for a switch, with one or more levers being possibly provided to actuate the button.
The control device 1 could also not be of the integrated type, with the lever 3 and the button lever 4 being omitted.
Vice-versa, the control device could comprise further elements, such as one or more buttons, with possible associated levers, to control an electronic device such as a cycle computer.
Number | Date | Country | Kind |
---|---|---|---|
M107A2230 | Nov 2007 | IT | national |
Number | Name | Date | Kind |
---|---|---|---|
1706542 | Pugh et al. | Mar 1929 | A |
2384728 | Crumble | Sep 1945 | A |
2586604 | Bennett | Feb 1952 | A |
2770980 | Millward | Nov 1956 | A |
2854857 | Gleasman et al. | Oct 1958 | A |
3279779 | Thomas et al. | Oct 1966 | A |
3760648 | Hoffman | Sep 1973 | A |
3776061 | Yoshigai | Dec 1973 | A |
3915029 | Shimada | Oct 1975 | A |
3972247 | Armstrong | Aug 1976 | A |
4002350 | Timbs | Jan 1977 | A |
4075871 | Burke | Feb 1978 | A |
4100820 | Evett | Jul 1978 | A |
4319673 | Kojima | Mar 1982 | A |
4454784 | Shimano | Jun 1984 | A |
4459871 | Shimano | Jul 1984 | A |
4605240 | Ciem et al. | Aug 1986 | A |
4740001 | Torleumke | Apr 1988 | A |
D298309 | Coue | Nov 1988 | S |
4840082 | Terashima et al. | Jun 1989 | A |
4885951 | Desenclos et al. | Dec 1989 | A |
4930368 | Nagano | Jun 1990 | A |
4945785 | Romano | Aug 1990 | A |
4966046 | Tagawa | Oct 1990 | A |
5012692 | Nagano | May 1991 | A |
5020387 | Nagano | Jun 1991 | A |
5050444 | Nishimura | Sep 1991 | A |
5094120 | Tagawa | Mar 1992 | A |
RE34007 | Desenclos et al. | Jul 1992 | E |
5159851 | Rahmes | Nov 1992 | A |
5186071 | Iwasaki | Feb 1993 | A |
5203213 | Nagano | Apr 1993 | A |
5213005 | Nagano | May 1993 | A |
5222412 | Nagano | Jun 1993 | A |
5241878 | Nagano | Sep 1993 | A |
5257683 | Romano | Nov 1993 | A |
5279179 | Yoshigai | Jan 1994 | A |
5287765 | Scura | Feb 1994 | A |
5303608 | Iwasaki | Apr 1994 | A |
5400675 | Nagano | Mar 1995 | A |
5479776 | Romano | Jan 1996 | A |
5480356 | Campagnolo | Jan 1996 | A |
5515743 | Lumpkin | May 1996 | A |
5528954 | Yoshigai | Jun 1996 | A |
5601001 | Kawakami et al. | Feb 1997 | A |
5676020 | Jordan et al. | Oct 1997 | A |
5676021 | Campagnolo | Oct 1997 | A |
5676022 | Ose | Oct 1997 | A |
5755139 | Kojima | May 1998 | A |
5787757 | Ozaki | Aug 1998 | A |
5791195 | Campagnolo | Aug 1998 | A |
5806372 | Campagnolo | Sep 1998 | A |
5832782 | Kawakami | Nov 1998 | A |
5896779 | Biersteker et al. | Apr 1999 | A |
5900705 | Kimura | May 1999 | A |
5921140 | Lemmens et al. | Jul 1999 | A |
5970816 | Savard | Oct 1999 | A |
6073730 | Abe | Jun 2000 | A |
6095010 | Arbeiter | Aug 2000 | A |
6098488 | Vos | Aug 2000 | A |
6370981 | Watarai | Apr 2002 | B2 |
6457377 | Hsu | Oct 2002 | B1 |
6502477 | Assel | Jan 2003 | B1 |
6553861 | Ose | Apr 2003 | B2 |
6564670 | Feng et al. | May 2003 | B2 |
6564671 | Ose | May 2003 | B2 |
6647823 | Tsumiyama et al. | Nov 2003 | B2 |
6792826 | Dal Pra′ | Sep 2004 | B2 |
7100471 | Irie et al. | Sep 2006 | B2 |
20020078789 | Chen | Jun 2002 | A1 |
20020104401 | Dal Pra′ | Aug 2002 | A1 |
20020124679 | Dal Pra′ | Sep 2002 | A1 |
20020139637 | Tsumiyama et al. | Oct 2002 | A1 |
20030094064 | Dal Pra′ | May 2003 | A1 |
20030167871 | Irie et al. | Sep 2003 | A1 |
20030177855 | Tsumiyama et al. | Sep 2003 | A1 |
20040144193 | Sato et al. | Jul 2004 | A1 |
20040237697 | Kawakami | Dec 2004 | A1 |
20040237698 | Hilsky et al. | Dec 2004 | A1 |
20050241428 | Tsai | Nov 2005 | A1 |
20060070480 | Fujii | Apr 2006 | A1 |
20060207375 | Jordan et al. | Sep 2006 | A1 |
20060272443 | Tsumiyama | Dec 2006 | A1 |
20070034037 | Dal Pra′ et al. | Feb 2007 | A1 |
20070068332 | Fujii et al. | Mar 2007 | A1 |
20070137388 | Dal Pra′ | Jun 2007 | A1 |
20070137391 | Fujii | Jun 2007 | A1 |
20070178715 | Fujii | Aug 2007 | A1 |
20070186715 | Dal Pra′ | Aug 2007 | A1 |
20070193386 | Fujii | Aug 2007 | A1 |
20070204716 | Dal Pra′ | Sep 2007 | A1 |
20080098848 | Dal Pra′ et al. | May 2008 | A1 |
20080196537 | Dal Pra′ | Aug 2008 | A1 |
20080210041 | Dal Pra′ et al. | Sep 2008 | A1 |
20080210042 | Dal Pra′ | Sep 2008 | A1 |
20090025504 | Dal Pra′ et al. | Jan 2009 | A1 |
20090031846 | Dal Pra′ et al. | Feb 2009 | A1 |
20090133526 | Dal Pra′ et al. | May 2009 | A1 |
Number | Date | Country |
---|---|---|
248133 | Apr 1947 | CH |
1144761 | Mar 1997 | CN |
2436412 | Jun 2001 | CN |
1443679 | Sep 2003 | CN |
1550405 | Dec 2004 | CN |
3136922 | Mar 1983 | DE |
3706545 | Sep 1988 | DE |
19607640 | Jan 1997 | DE |
202006006796 | Aug 2006 | DE |
0371254 | Jun 1990 | EP |
0478901 | Apr 1992 | EP |
0504118 | Sep 1992 | EP |
0504118 | Sep 1992 | EP |
0361335 | Feb 1994 | EP |
0601211 | Jun 1994 | EP |
0601221 | Jun 1994 | EP |
0635422 | Jan 1995 | EP |
0504118 | Apr 1995 | EP |
0714826 | Jun 1996 | EP |
0744334 | Nov 1996 | EP |
0790175 | Aug 1997 | EP |
1123861 | Aug 2001 | EP |
1134158 | Sep 2001 | EP |
1245483 | Oct 2002 | EP |
0785128 | Nov 2002 | EP |
1264765 | Dec 2002 | EP |
1342655 | Sep 2003 | EP |
1440878 | Jul 2004 | EP |
1449756 | Aug 2004 | EP |
1473220 | Nov 2004 | EP |
1481883 | Dec 2004 | EP |
1502847 | Feb 2005 | EP |
1535829 | Jun 2005 | EP |
1564131 | Aug 2005 | EP |
1642823 | Apr 2006 | EP |
1642823 | Apr 2006 | EP |
1698550 | Sep 2006 | EP |
1698551 | Sep 2006 | EP |
1705110 | Sep 2006 | EP |
1739001 | Jan 2007 | EP |
1816066 | Aug 2007 | EP |
1826111 | Aug 2007 | EP |
960276 | Apr 1950 | FR |
2777528 | Oct 1999 | FR |
2777528 | Oct 1999 | FR |
9805066 | Oct 1999 | FR |
2861686 | Feb 2006 | FR |
615173 | Jan 1949 | GB |
2012893 | Aug 1979 | GB |
58003987 | Jun 1956 | JP |
51060342 | May 1976 | JP |
17893 | Jan 1982 | JP |
17894 | Jan 1982 | JP |
58030884 | Feb 1983 | JP |
224879 | Dec 1983 | JP |
59094989 UA | Jun 1984 | JP |
60107475 | Jun 1985 | JP |
639516 | Mar 1988 | JP |
157092 | Oct 1989 | JP |
2088384 | Mar 1990 | JP |
03292280 | Dec 1991 | JP |
04331689 | Nov 1992 | JP |
05097088 | Apr 1993 | JP |
05082786 | Nov 1993 | JP |
05286476 | Nov 1993 | JP |
06016170 | Jan 1994 | JP |
07033063 | Feb 1995 | JP |
07251784 | Oct 1995 | JP |
08328679 | Dec 1996 | JP |
10147263 | Jun 1998 | JP |
2006103674 | Apr 2006 | JP |
2007223594 | Sep 2007 | JP |
61241287 | Oct 2007 | JP |
136125 | Jun 1990 | TW |
510875 | Nov 2002 | TW |
519089 | Jan 2003 | TW |
570013 | Jan 2004 | TW |
1223636 | Nov 2004 | TW |
200505732 | Feb 2005 | TW |
M290134 | May 2006 | TW |
200709988 | Mar 2007 | TW |
I279353 | Apr 2007 | TW |
200738512 | Oct 2007 | TW |
I289127 | Nov 2007 | TW |
9218374 | Oct 1992 | WO |
03093094 | Nov 2003 | WO |
2005044656 | May 2005 | WO |
Entry |
---|
Chinese Office Action, Appl. No. CN 200610090826.7, dated Apr. 3, 2009. |
Chinese Office Action, Appl. No. CN 200710005823.3, dated Sep. 25, 2009. |
Chinese Office Action, Appl. No. CN 200810082341.2, dated Nov. 30, 2010. |
European Search Report, Appl. No. EP 05425458.6, dated Nov. 16, 2005. |
European Search Report, Appl. No. EP 05017003.4, dated Dec. 20, 2005. |
European Search Report, Appl. No. 06003694.4, dated Jul. 31, 2006. |
European Search Report, Appl. No. RS 144832, dated Apr. 16, 2007 |
European Search Report, Appl. No. RS 115409, dated Jul. 18, 2007. |
European Search Report, Appl. No. RS 115410, dated Jul. 31, 2007. |
European Search Report, Appl. No. RS115682, dated Oct. 30, 2007. |
European Search Report, Appl. No. 08003760.9, dated Jun. 27, 2008. |
European Search Report, Appl. No. EP 08003755.9, dated Jun. 27, 2008. |
European Search Report, Appl. No. EP 08022485.0, dated Jul. 2, 2009. |
European Search Report, Appl. No. 08005438.0, dated Nov. 5, 2010. |
Japanese Office Action, Appl. No. JP 2002-332045, dated Dec. 16, 2008. |
Japanese Office Action, Appl. No. JP 2008-550914, dated May 24, 2011. |
English Translation of Japanese Office Action, Appl. No. 2006-176333, dated Aug. 23, 2011. |
Taiwan Search Report, Appl. No. 096101651, dated Oct. 5, 2011. |
Taiwan Office Action and Search Report, Appl. No. 095121477, dated Nov. 25, 2011. |
European Search Report, Appln. No. EP 08005438.0-2425/2062809, dated Nov. 5, 2010. |
Japanese Office Action for Application No. 2008-297977 dated Nov. 27, 2012 (with English translation). |
English translation of Taiwanese Office Action and Search Report issued May 28, 2013 in correspondingTaiwanese Patent Application No. 097145163. |
Number | Date | Country | |
---|---|---|---|
20090133526 A1 | May 2009 | US |