The present invention relates to a control method and apparatus for continuous casting steel pouring during the tapping of continuously cast steel ladles.
In the current pouring process of continuously cast steel ladles, the molten steel forms a vortex near the tapping hole of large steel ladles in the later stage of pouring, the steel slag floating on the surface of the molten steel converges at the center of the vortex and forms the shape of an inverted cone near the center of the vortex; under the adsorptive action of the vortex, the steel flag is drawn into the molten steel, and flows into the tundish through the long nozzle; if it is detected by the steel slag measurement means that steel slag amount has exceeded the specified standards, the apparatus for continuous casting steel pouring will activate the control system to close the sliding nozzle, so as to finish the pouring process. According to the principles of fluid mechanics, due to the existence of inverted cones of the steel slag, a large amount of molten steel is remained in the steel ladles. As indicated by the statistics of an enterprise about the steel slag amount of steel ladles after final pouring of continuously casting large steel ladles, the steel slag from a 150 ton steel ladle contains about 1˜3 ton molten steel, and the steel slag from a 300 ton steel ladle contains about 1˜5 ton molten steel. The residual molten steel is generally disposed of as steel slag, which causes resource wastage.
The object of present invention is providing a control method and apparatus for continuous casting steel pouring, by implementing optimization control over the molten steel discharging flow rate of steel ladles, so as to achieve the maximizing of discharging of molten steel while no or less steel slag flowing out and thus improve the yield rate of the molten steel.
In order to achieve above invention purpose, the present invention has used the following technical solution:
A control method for continuous casting steel pouring, including following steps:
Step one: measuring and reading the steel ladle pouring position signal by a steel ladle position sensor (14) mounted on a turntable of a steel ladle (1);
Step two: judging whether the pouring of the steel ladle (1) has begun therein by a steel pouring optimization control computer (13), back to the step one if the pouring of the steel ladle (1) has not begun, or forward to the step three if the pouring of the steel ladle (1) has begun;
Step three: reading and feeding a data of the steel slag measurement sensor (2) mounted above a steel ladle sliding nozzle (15) to an inferential controller within the steel pouring optimization control computer (13);
Step four: in the inferential controller, conducting a comparison between read data of the steel slag measurement and the manually set value of steel slag, and back to the step three if current measured value of the steel slag measurement is smaller than the manually set value of steel slag; if the current measured value of the steel slag measurement is greater than the manually set value of the steel slag, outputting and feeding a cylinder control variable to the PI controller in the steel pouring optimization control computer (13) and forward to the step five;
In the inferential controller, after the steel ladle and steel grade are selected, an opening degree d of the sliding nozzle is a function of a mass G of a molten steel inside a large steel ladle; a calculation formula of the opening degree d of the steel ladle sliding nozzle is:
Step five: conducting a comparison between the cylinder position signal output by the inferential controller and a cylinder position signal actually measured and a calculation in the PI controller, and feeding an output control signal to the cylinder driving unit (5) to drive the sliding nozzle driving cylinder (3) to move, thus reducing the opening degree of the sliding nozzle (15) of the steel ladle;
Step six: the PI controller sends the delayed signal, and reads the cylinder position signal with delaying for a period of time;
Step seven: when delayed time is passed, the PI controller reads current cylinder position signal;
Step eight: in the PI controller, judging the cylinder to be closed completely or not, and back to the step three to repeat above work if the cylinder has not been closed completely, or forward to the step nine if the cylinder has been closed completely;
Step nine, sending out the steel pouring termination signal, and back to the step one to repeat above work. A apparatus for continuous casting steel pouring, comprising: a steel ladle (1), a sliding nozzle (15), a steel ladle long nozzle (6), a tundish (7), a sliding nozzle driving cylinder (3) and a cylinder driving unit (5), wherein: said control device also includes a steel slag measurement sensor (2), a steel slag measurement signal amplifier (10), a steel ladle position sensor (14), a cylinder piston position sensor (4), an alarm (9) and a steel pouring optimization control computer (13); the steel pouring optimization control computer (13) includes an inferential controller and a PI controller; the steel slag measurement sensor (2) is installed above the sliding nozzle (15), and the steel slag measurement sensor (2) outputs signal to the steel slag measurement signal amplifier (10) and is connected with the steel pouring optimization control computer (13); the steel ladle position sensor (14) is installed on a turntable of the steel ladle (1), the steel ladle position sensor (14) outputs signal to an on-site process control computer (12); the on-site process control computer (12) outputs steel ladle position signal to a process signal interface unit (11); the process signal interface unit (11) outputs steel ladle position signal to the steel pouring optimization control computer (13); the cylinder piston position sensor (4) is installed on the sliding nozzle driving cylinder (3), the cylinder piston position sensor (4) outputs signal to the steel pouring optimization control computer (13); the output of the steel pouring optimization control computer (13) connects with the cylinder driving unit (5) and an alarm (9); the cylinder driving unit (5) outputs signal to the sliding nozzle driving cylinder (3) and drives the cylinder to move, so that controls the opening degree of the sliding nozzle (15). The control method and apparatus for continuous casting steel pouring of the present invention is to, measure the changing signal of the steel slag drawn into the molten steel in the pouring process by the steel slag measurement sensor installed on the sliding nozzle of the steel ladle, and then the steel pouring optimization control computer system is employed to make inferential analysis and judgment to provide the current new position of the sliding nozzle and control the closing process of the sliding nozzle. By controlling the sliding nozzle of the steel ladle, it is able to control the flow field distribution of the molten steel in the steel ladle, so as to avoid the turbulent flow of the molten steel in the steel ladle and thus achieve the object of controlling the remained molten steel inside the steel ladle.
By implementing optimization control over the molten steel discharging flow rate of steel ladles, the present invention can realize no or less steel slag flowing out while the maximizing of discharging of molten steel, and thus improve the yield rate of the molten steel and reduce the cost of production.
In
Drawings and embodiments are referred to further explain the present invention as follows.
As shown in
According to Coriolis' theorem, fluid particles in the pipe, under the action of pressure difference, are influenced by axial force and radial force respectively, so that the fluid track in the pipe is in precession. In the fluid mechanics model, a large ladle long nozzle is a pipe with a minor diameter while the large ladle itself is provided with a pipe with a larger diameter, thus, as long as there is a pressure difference, the molten steel will flow in the manner of precession. In the process of flowing of the molten steel, the molten steel at the edges of the pipe will be in friction against the pipe wall, so that the molten steel at the edges of the pipe wall flows slower than that at the center of the pipe. Therefore, as the fluid in the pipe is concerned, the molten steel at the center flows faster while that the molten steel at the wall edges flows slower, and then the molten steel far from the center will flow toward the center, which is the reason that a vortex in the molten steel of the large steel ladle is produced.
As can be known from Reynolds' transport theorem of fluid mechanics, when the fluid level in a container lowered to a critical height, a vortex will form above the outlet. The molten steel presents the same phenomenon, and when the molten steel in the steel ladle approaches a critical height, a vortex will form above the tapping hole and draw the steel slag in it. The control method for continuous casting steel pouring of the present invention uses the principle of the formation of the vortex in the steel ladle to control the molten steel flow rate of the steel ladle through optimization control technology, so as to restrain the formation of vortex, so as to remain the steel slag inside the steel ladle and facilitate the discharging of the molten steel. The working principle of the control method for continuous casting steel pouring of the present invention is described below:
In the later stage of pouring of the large steel ladle, the molten steel forms a vortex therein, and when the molten steel inside the large steel ladle is discharged nearly finished, the rotational velocity of the molten steel is accelerated, and the steel slag is drawn into the molten steel and flows into a tundish. As the change of the rotational velocity of the molten steel causes the change of the Reynolds number of the molten steel flowing in the nozzle, turbulent flow will appear when it reaches the critical Reynolds number. Under certain conditions, the rule of self-excitated vibration incurred by the fluid flowing in the pipe does not change; when the steel slag appears, the rule of self-excitated vibration in the pipe will change. As can be known from Reynolds experiment, the motion state of the fluid is related to pipe diameter, fluid viscosity and fluid velocity. If pipe diameter d and fluid motion viscosity ν are constant, the velocity upon the change from laminar flow to turbulent flow will be called the upper critical velocity (represented by υc); the average velocity upon the change from turbulent flow to laminar flow will be called lower critical velocity (represented by υ′c), and υ′c>υc. If pipe diameter d or fluid motion viscosity ν changes, then, no matter how d, ν or υc changes, the corresponding dimensionless number υcd/ν will be constant. The dimensionless number υcd/ν is called Reynolds number Re. Corresponding to upper and lower critical velocities, there will be:
Reynolds Number:
Upper Critical Reynolds Number:
Lower Critical Reynolds Number:
The above description indicates that the lower critical Reynolds number of the flow in the circular pipe is a constant value, while the upper critical Reynolds number upon the change from laminar flow to turbulent flow is related to external disturbance, which always exists in actual flow. Thus, the upper critical Reynolds number is of no actual significance for determining the flow state, and generally the lower critical Reynolds number Re′c is regard as the standard for determining the flow state (laminar flow or turbulent flow), as provided below:
Thus, the condition of the occurrence of turbulent flow in the long nozzle can be calculated according to continuous casting equipment data, that is:
According to Formula (1), the flow velocity of the molten steel flowing out of the steel ladle without causing turbulent flow can be deduced as below:
s=½D2π (3)
G=½D2πHρ (4)
To assure that there is no turbulent flow occurred in the flowing molten steel, the velocity νt of the molten steel shall satisfy Formula (2)
That is,
It can be known from the deduced Formula (8) that ζ=4gρ, wherein: ρ represents the density of the molten steel and is related to the steel grade, and ζ is a constant when there is a certain steel grade. ξ=2glρ2πD2, wherein ρ represents the density of the molten steel and is related to the steel grade, μ represents the viscosity of the molten steel and is also related to the steel grade, l represents the length of the nozzle and is a constant when the long nozzle is selected, and D represents the effective diameter of the molten steel in the steel ladle and is also a constant when the steel ladle is selected, so ζ is also a constant when the steel grade is selected. G represents the weight of the molten steel in the steel ladle, and is the value which varies most significantly in the formula: it reaches its maximum at the beginning of pouring of the steel ladle, and declines to its minimum at the end of pouring.
Formula (8) reveals the condition of the steel ladle being free of occurring turbulent flow in the pouring process, which is that: the opening degree d of the sliding nozzle of the steel ladle shall satisfy Formula (8). The formula (8) also reveals that when the steel ladle and steel grade are selected, the opening degree of the sliding nozzle of the steel ladle is only related to the weight of the molten steel in the steel ladle, that is, the opening degree of the sliding nozzle of the steel ladle is inversely proportional to the square root of the weight of the molten steel in the steel ladle.
The control method and apparatus for continuous casting steel pouring of the present invention is designed on the basis of this principle, and can realize the continuous online control of the opening degree of the sliding nozzle of the steel ladle on a real-time basis and thus control the molten steel to be free of occurring turbulent flow during flowing process, and assure that the molten steel in the ladle flows out completely.
The control method for continuous casting steel pouring of the present invention is realized on the basis of the above control apparatus for continuous casting steel pouring, and includes the following steps (see
Step one (see
Step two, the steel pouring optimization control computer 13 judges whether the pouring of the steel ladle 1 has begun on the basis of the information of the pouring position of the steel ladle, and back to the step one if the pouring of the steel ladle has not begun, or forward to step three if the pouring of the steel ladle has begun;
Step three, feeding the output signal of the steel slag measurement sensor 2 to the steel slag measurement signal amplifier 10, and the steel slag measurement sensor 2 is installed above the sliding nozzle 15 of the steel ladle; the steel pouring optimization control computer 13 reads the output signal of the steel slag measurement signal amplifier 10 to obtain the steel slag amount of the current molten steel, and feed it to the inferential controller in the steel pouring optimization control computer 13.
Step four (see
In the inferential controller, after the steel ladle and the steel grade are selected, the opening degree d of the sliding nozzle is a function of the mass G of the molten steel inside the large steel ladle. The calculation formula of the opening degree d of the steel ladle sliding nozzle as below:
Step five, conducting a comparison between the cylinder position signal output by the inferential controller and the actually measured cylinder position signal and a calculation in the PI controller, and feeding the output control signal to the cylinder driving unit 5 to drive the sliding nozzle driving cylinder 3 to move, thus reducing the opening degree of the sliding nozzle 15 of the steel ladle.
Step six, the PI controller sends the delayed signal, and reads the position feedback signal of the cylinder 3 with delaying for a period of time;
Step seven, when the delayed time is passed, the PI controller reads the current position signal of the cylinder 3;
Step eight, in the PI controller, judging the cylinder 3 to be closed completely or not, and back to the step three to repeat above work if the cylinder has not been closed completely, or forward to the step nine if the cylinder has been closed completely;
Step nine, sending out the steel pouring termination signal, and back to the step one to repeat the above work.
Provided above are only preferred embodiments of the present invention, which are in no way used to limit the scope of protection of the present invention. Thus, any modification, equivalent substitution, improvement or other changes made in the spirit and principle of the present invention shall fall within the scope of protection of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201210219611.6 | Jun 2012 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2012/001660 | 12/10/2012 | WO | 00 |