This application claims priority under 35 U.S.C. § 119 to Japanese patent application Serial No. 2016-070658, filed Mar. 31, 2016, which is incorporated herein by reference in its entirety.
The present invention relates to a control method for a massage machine and a massage element of a massage machine.
There is a massage machine for making a massage unit compact.
Also, there is a massage machine which can perform a beating operation in which a beating width is automatically changed when massage elements are moved up and down while performing the beating operation, and a width between the massage elements are not changed more than necessary.
A control method for a massage machine according to one aspect comprises a controlling step for individually controlling operations of a kneading motor for eccentrically and pivotally moving a pair of massage elements of the massage machine, a width adjustment motor for adjusting a width between the pair of massage elements, a strength-and-weakness motor for adjusting front-back movement of the pair of massage elements and an up-and-down motor for adjusting up-and-down movement of the pair of massage elements. The controlling step operates the massage elements so that movement of the massage elements in a width direction thereof due to the width adjustment motor is directed to a reverse direction with respect to movement of the massage elements in the width direction thereof due to the kneading motor, movement of the massage elements in a front-back direction due to the strength-and-weakness motor is directed to a reverse direction with respect to movement of the massage elements in the front-back direction due to the kneading motor, and movement of the massage elements in an up-and-down direction due to the up-and-down motor is directed to a reverse direction with respect to movement of the massage elements in the up-and-down direction due to the kneading motor.
A massage element of a massage machine according to yet another present invention comprises a massage element constituted of a rod-like member having a size approximated to a size of a finger of a human.
In this case, the massage element is constituted of not a member having an oval spherical shape or a circular spherical shape, which is a common massage ball, but the rod-like member having the size approximated to the size of a finger of a human. Specifically, the size of the rod-like member is preferably equal to a size of a thumb or an index finger of a human. Specifically, it is more preferable that the rod-like member has a curved shape of a ball of a finger whose tip end portion has a size of 5 cm or less or a curved shape of a ball of a finger whose tip end portion has a size of 3 cm or less. Further, the rod-like member may contain a semispherical body whose tip end portion has a size of ϕ3 cm or less. Further, the rod-like member may have a massage rod shape used for pressing a sole of a foot and it is preferable that a length of the rod-like member is equal to a diameter of the oval spherical shape or the spherical shape of the massage ball.
In this case, when the one of the plural kinds of the massage elements is selected, the actuator is driven to pivotally move the massage element connecting member in the one direction. On the other hand, when the other one of the plural kinds of the massage elements is selected, the actuator is driven to pivotally move the massage element connecting member in the direction opposite to the one direction. As a result, it is possible to select one of the plural kinds of massage elements to provide the massage to the person to be treated. Thus, the person to be treated can select numerous variations of massages.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this regard, the same numbers are used throughout the drawings to reference the same objects or the equivalent objects and description for the same objects or the equivalent objects is not repeated. For ease of explanation, configurations are shown in the drawings referenced in the following description in a simplified or schematized manner and/or some of configuration members are omitted in the drawings. Further, a dimensional ratio among the configuration members shown in each drawing does not necessarily indicate an actual dimensional ratio.
In this regard, in the following description for the massage machine 100, as shown in
As shown in
Next, one or more expansion and contraction bags (air treatment portions) which can repeatedly expand are provided in the waist air bag portion 250 provided to stand on the seat portion 200 shown in
Further, the arm treatment portions 500 are respectively provided to stand on the left and right sides on the seat portion 200 shown in
Finally, the control part 800 is provided inside the base portion 400. Further, the control part 800 performs processes described below in response to operations of the operation part 700.
Next, description will be given to the massage unit 310 and then description will be given to a control method for the massage elements (the pair of massage balls) provided in the massage unit 310.
The massage unit 310 shown in
(Kneading Motor Mechanism)
The kneading motor mechanism 330 includes a kneading motor 331, eccentrically and pivotally moving bodies 332 for kneading and a support axis 333. As a result, when the kneading motor 331 is driven, the pair of massage elements 321, 322 are eccentrically and pivotally moved in the front-back direction by the eccentrically and pivotally moving bodies 332 provided on the support axis 333 to perform a kneading operation. As a result, the massage elements are eccentrically and pivotally moved in the front-back direction. Thus, the kneading operation contains all of movement in the up-and-down direction, movement in the front-back direction and movement in the left-right direction and this results in that an abutting angle of the massage elements (the massage balls) with respect to the body is also changed. Details of the kneading operation will be described below.
(Width Adjustment Mechanism)
The width adjustment mechanism 340 includes a width adjustment motor 341 for the massage element 321, a width adjustment motor 342 for the massage element 322 and slide axes 343, 344. As a result, when the width adjustment motor 341 for the massage element 321 normally rotates, the massage element 321 is moved toward the left direction. On the other hand, when the width adjustment motor 341 for the massage element 321 reversely rotates, the massage element 321 is moved toward the right direction. Further, when the width adjustment motor 342 for the massage element 322 normally rotates, the massage element 322 is moved toward the right direction. On the other hand, when the width adjustment motor 342 for the massage element 322 reversely rotates, the massage element 322 is moved toward the left direction.
By individually rotating the width adjustment motor 341 for the massage element 321 and the width adjustment motor 342 for the massage element 322 as described above, it is possible to change an absolute position of each of the massage elements 321, 322, thereby changing a width between the massage elements 321, 322.
As a result, it is possible to change the width between the pair of massage elements. Thus, it is possible to change the positions of the pair of massage elements to be contacted with the back of the person to be treated, thereby providing treatment matching preference of the person to be treated.
(Strength-and-Weakness Motor Mechanism)
The strength-and-weakness motor mechanism 350 includes a strength-and-weakness motor 351 and a strength-and-weakness axis 352. The strength-and-weakness motor 351 can move the pair of massage elements 321, 322 in the front-back direction through the strength-and-weakness axis 352 and a pinion gear (not shown in the drawings). Namely, the pair of massage elements 321, 322 are moved toward the front side when the strength-and-weakness motor 351 normally rotates and the pair of massage elements 321, 322 are moved toward the back side when the strength-and-weakness motor 351 reversely rotates. In this regard, the strength-and-weakness motor 351 can adjust the movement of the pair of massage elements 321, 322 in the front-back direction in not two stages but multiple stages. As a result, it is possible to provide a massage in which the pair of massage elements 321, 322 are pressed onto to the back of the person to be treated with high pressure by moving the pair of massage elements 321, 322 toward the front side. Further, it is possible to provide a massage in which the pair of massage elements 321, 322 are pressed onto the back of the person to be treated with low pressure by moving the pair of massage elements 321, 322 toward the back side.
(Up-and-Down Motor Mechanism)
Next, the up-and-down motor mechanism 360 includes an up-and-down motor 361 and an up-and-down axis 362. When the up-and-down motor 361 normally rotates, the up-and-down axis 362 is rotated and this rotation is transmitted to the pinion gear and a rack (not shown in the drawings). This allows the massage unit 310 to be moved toward the upper direction. Further, when the up-and-down motor 361 reversely rotates, the up-and-down axis 362 is rotated and this rotation is transmitted to the pinion gear and the rack (not shown in the drawings). This allows the massage unit 310 to be moved toward the lower direction. As a result, it is possible to move the pair of massage elements 321, 322 in one of the upper and lower directions. Thus, it is possible to massage an upper portion of the back of the person to be treated by moving the pair of massage elements 321, 322 toward the upper direction and it is possible to massage a lower portion of the back or the waist of the person to be treated by moving the pair of massage elements 321, 322 toward the lower direction.
Subsequently, description will be given to operations of the control part 800 in this embodiment.
Here,
(Pressing and Rubbing Kneading Flow Chart)
First, as shown in
Next, the control part 800 drives the kneading motor 331 (step S2). When the kneading motor 331 is driven, the pair of massage elements 321, 322 are moved in each direction of the up-and-down direction, the left-right direction and the front-back direction as shown in
Next, the control part 800 drives the width adjustment motor 341 for the massage element 321 and the width adjustment motor 342 for the massage element 322 (step S3). In the case where the width adjustment motor 341 for the massage element 321 and the width adjustment motor 342 for the massage element 322 are driven, whereas the movement of pair of massage elements 321, 322 are changed in the left-right direction as shown in
Subsequently, the control part 800 drives the strength-and-weakness motor 351 (step S4). In the case where the strength-and-weakness motor 351 is driven, whereas the movement of pair of massage elements 321, 322 are changed in the front-back direction as shown in
Finally, the control part 800 drives the up-and-down motor 361 (step S5). In the case where the up-and-down motor 361 is driven, whereas the movement of pair of massage elements 321, 322 are changed in the up-and-down direction as shown in
In this regard, although the processes from the process of the step S2 to the process of the step S5 are performed in sequence according to the described flow chart, the present invention is not limited thereto. It is preferable that the control part 800 simultaneously performs the processes from the process of the step S2 to the process of the step S5. Further, it may be possible to change the sequential order for the processes from the process of the step S2 to the process of the step S5 and perform the processes according to the changed sequential order. In this case, it is preferable that the processes from the process of the step S2 to the process of the step S5 are performed within a level of a time duration which does not give a feeling of strangeness to the person to be treated. For example, it is preferable to perform the processes within 2 seconds, and it is more preferable to perform the processes within 0.1 seconds.
(Operation Explanation for Pressing and Rubbing Kneading)
Subsequently,
In this embodiment, in the case of combining each operation of the four motors in the left-right direction, it is possible to reduce magnitude of the operation of the pair of massage elements 321, 322 in the left-right direction as shown in
Each of
Further, the solid line in each of
As shown in
Further, in the case where only the kneading motor 331 is operated, the massage elements 321, 322 are moved along the dotted moving locus TR1 as shown in
In the same manner as the case shown in
Next, each of
Although the configuration shown in
Subsequently,
A tip end portion of each of the rod-like massage elements 323, 324 shown in
Finally,
As shown in
When the actuator 391 normally rotates, the massage element connecting member 397 is moved toward a direction of an arrowed line R10. As a result, it is possible to allow the pair of massage elements 323, 324 to make contact with the body of the person to be treated. Further, when the actuator 391 reversely rotates, the massage element connecting member 397 is moved toward a direction opposed to the arrowed line R10. As a result, it is possible to allow the pair of massage elements 321, 322 to make contact with the body of the person to be treated. Further, the massage element arm 395 is attached to the massage element connecting member 397 as shown in
As described above, it is possible to easily switch between the massage with the massage balls of the conventional massage elements 321, 322 and the massage of the pressing and rubbing kneading with the rod-like massage elements of the massage elements 323, 324 shown in
As described above, in the seat-type massage machine 100 according to the present invention, it is possible to form the locus (the moving locus TR10) of the pair of massage elements 321, 322 within the narrower area due to the operations of the four motors compared with the locus of the pair of massage elements 321, 322 due to the normal kneading motor 331 with keeping the change of the abutting angle of the massage element arm with respect to the body caused by the eccentric pivot operation with respect to the kneading axis due to the kneading motor 331. Further, it is possible to form the smooth locus (the moving locus TR10) of the pair of massage elements 321, 322 within the narrower area by executing the operation of the opposite phase with respect to the phase of the operation of the pair of massage elements 321, 322 due to the kneading motor 331 with keeping the change of the abutting angle of the massage element arm with respect to the body caused by the eccentric pivot operation with respect to the kneading axis due to the kneading motor 331. As a result, it is possible to provide the so-called pressing and rubbing kneading to the person to be treated.
Further, the control part 800 can make the magnitude of the opposite phase be in the range of not less than 50% and not more than 100% of the magnitude of the phase. As a result, it is possible to move the massage elements 321, 322 in two directions among the three directions without moving the massage elements 321, 322 in the other one direction. Thus, it is possible to realize various kinds of pressing and rubbing kneading.
In this regard, in this embodiment, although the phase of each operation of the width adjustment motor 341 for the massage element 321, the width adjustment motor 342 for the massage element 322, the strength-and-weakness motor 351 and the up-and-down motor 361 is adjusted so as to be the opposite phase with respect to the phase of the operation of the kneading motor 331 by shifting the phase of each operation of these four motors by 180 degrees, the present invention is not limited thereto. The phase of each operation of these four motors may be adjusted so as to be a phase shifted by more than 90 degrees and less than 270 degrees. Even in this case, it is possible to form the locus of the pair of massage elements 321, 322 due to the kneading motor 331 within the narrower area in the case of increasing the amplitude of each movement of the motor whose phase has been shifted. In this regard, although the massage machine having the backrest portion is exemplified in the description for the seat-type massage machine 100 according to this embodiment, the present invention is not limited thereto. The present invention may be a bed-type massage machine and it is possible to apply the present invention to a massage machine for treating only a part of the body of the person to be treated.
(Correspondence Relationships Among Each Portion in the Embodiments and Each Constituent Element in the Claims)
In the present invention, each of the massage elements 321, 322, 323, 324 corresponds to “a massage element”, each of the kneading motor mechanism 330 and the kneading motor 331 corresponds to “a kneading motor”, the massage element arm 395 corresponds to “a massage element arm”, the massage element connecting member 397 corresponds to “a massage element connecting member”, each of the width adjustment mechanism 340, the width adjustment motor 341 for the massage element 321, the width adjustment motor 342 for the massage element 322 and the width adjustment motor 345 corresponds to “a width adjustment motor”, each of the strength-and-weakness motor mechanism 350 and the strength-and-weakness motor 351 corresponds to “a strength-and-weakness motor”, each of the up-and-down motor mechanism 360 and the up-and-down motor 361 corresponds to “an up-and-down motor”, the control part 800 and the flow chart shown in
Although the preferred embodiment of the present invention is described above, the present invention is not limited thereto. It would be understood that a variety of embodiments can be practiced without departing from the spirit and scope of the present invention. Further, the functions and effects provided by the configuration of the present invention have been described in this embodiment, these functions and effects are merely one example and do not limit the present invention.
Further, in recent years, there has been a growing trend from a person to be treated that a massage machine should provide various kinds of treatment.
It is a primary object of the present invention to provide a control method for a massage machine and a massage element of a massage machine which can provide pressing-and-rubbing kneading to a person to be treated. It is another object of the present invention to provide a control method for a massage machine and a massage element of a massage machine which can provide the pressing-and-rubbing kneading to the person to be treated with a massage machine using a massage unit which can realize a kneading operation by allowing a massage element to perform an eccentric pivot operation with respect to a kneading axis.
In this regard, the words of “pressing and rubbing kneading” mean a treatment method in which each of the massage elements is rotationally moved so as to draw a small circle in a state that the massage element is pressed onto a stiffness part of a muscle to partially add pressure. In this treatment method, the time of drawing the circle, it is preferable that the massage element is moved so as to add pressure to a body surface in an outer direction of the circle with adding pressure to the body surface in a direction perpendicular to the body surface to press and stretch a treated part toward an outer side. This pressing and rubbing kneading can be realized by the eccentric pivot operation with respect to the kneading axis and an interlocking control among a width adjustment mechanism, a front-back movement mechanism and an up-and-down movement mechanism.
A control method for a massage machine according to one aspect comprises a controlling step for individually controlling operations of a kneading motor for eccentrically and pivotally moving a pair of massage elements of the massage machine, a width adjustment motor for adjusting a width between the pair of massage elements, a strength-and-weakness motor for adjusting front-back movement of the pair of massage elements and an up-and-down motor for adjusting up-and-down movement of the pair of massage elements. The controlling step operates the massage elements so that movement of the massage elements in a width direction thereof due to the width adjustment motor is directed to a reverse direction with respect to movement of the massage elements in the width direction thereof due to the kneading motor, movement of the massage elements in a front-back direction due to the strength-and-weakness motor is directed to a reverse direction with respect to movement of the massage elements in the front-back direction due to the kneading motor, and movement of the massage elements in an up-and-down direction due to the up-and-down motor is directed to a reverse direction with respect to movement of the massage elements in the up-and-down direction due to the kneading motor.
In this case, with keeping a change of an abutting angle of a massage element arm with respect to a body caused by an eccentric pivot operation with respect to a kneading axis due to the kneading motor, it is possible to form a locus of the pair of massage elements within a narrower area due to the operations of the kneading motor, the width adjustment motor, the strength-and-weakness motor and the up-and-down motor compared with a locus of the pair of massage elements due to a normal kneading motor. As a result, it is possible to provide the so-called pressing and rubbing kneading to the person to be treated.
Further, although the locus of the pair of massage elements due to a conventional kneading motor is three dimensions, it is possible to move the locus of the pair of massage elements in two dimensions or fix the locus of the pair of massage elements at one point to add force from all directions by further using the control method for the massage machine according to the present invention. As a result, it is possible to provide a massage such as the so-called pressing and rubbing kneading to the person to be treated with curved surfaces of the massage elements. In addition, by further using a control method due to the conventional kneading motor, it is possible to provide a more variety of massages to the person to be treated.
A control method for a massage machine of a second present invention according to the control method for the massage machine of the one aspect, wherein the controlling step may adjust the movement of the massage elements in the width direction thereof due to the width adjustment motor so as to be an opposite phase with respect to a phase of the movement of the massage elements in the width direction thereof due to the kneading motor, the movement of the massage elements in the front-back direction due to the strength-and-weakness motor so as to be an opposite phase with respect to a phase of the movement of the massage elements in the front-back direction due to the kneading motor, and the movement of the massage elements in the up-and-down direction due to the up-and-down motor so as to be an opposite phase with respect to a phase of the movement of the massage elements in the up-and-down direction due to the kneading motor.
In this case, with keeping the change of the abutting angle of the massage element arm with respect to the body caused by the eccentric pivot operation with respect to the kneading axis due to the kneading motor, it is possible to form a smooth locus of the pair of massage treatments within a narrower area by executing an operation of an opposite phase with respect to a phase of an operation of the pair of massage elements due to the kneading motor.
A control method for a massage machine of a third present invention according to the control method for the massage machine of the second present invention, wherein the controlling step may adjust magnitude of amplitude of the opposite phase to fall within the range of not less than 50% and not more than 100% of magnitude of amplitude of the phase.
In this case, the controlling step can make the magnitude of the amplitude of the opposite phase be in the range of not less than 50% and not more than 100% of the magnitude of the amplitude of the phase. As a result, it is possible to various kinds of movement such as movement for not moving the pair of massage elements in one direction and moving the pair of massage elements in other two directions. Thus, it is possible to realize various kinds of pressing and rubbing kneading.
A massage element of a massage machine according to yet another present invention comprises a massage element constituted of a rod-like member having a size approximated to a size of a finger of a human.
In this case, the massage element is constituted of not a member having an oval spherical shape or a spherical shape, which is a conventional massage ball, but the rod-like member having the size approximated to the size of the finger of the human. Specifically, the size of the rod-like member is preferably equal to a size of a thumb or an index finger of the human. Specifically, it is more preferable that the rod-like member has a curved shape of a ball of a finger whose tip end portion has a size of 5 cm or less or a curved shape of a ball of a finger whose tip end portion has a size of 3 cm or less. Further, the rod-like member may contain a semispherical body whose tip end portion has a size of ϕ3 cm or less. Further, the rod-like member may have a massage rod shape used for pressing a sole of a foot and it is preferable that a length of the rod-like member is equal to a diameter of the oval spherical shape or the spherical shape of the massage ball.
A massage element of a massage machine of an eighth present invention according to the massage element of the massage machine of the seventh present invention, wherein the massage element may have a plurality of massage elements, one of the massage elements may have a kneading ball shape, each of the others of the massage elements may be constituted of the rod-like member, and the massage element having the kneading ball shape and the massage elements each constituted of the rod-like member may be connected with each other by a massage element connecting member.
In this case, since the massage element having the kneading ball shape (such as an oval spherical shape, a spherical shape and a tire-shape) and each massage element constituted of the rod-like member are connected with each other by the massage element connecting member, it is possible to provide a massage with the massage element having the kneading ball shape and a massage with each massage element constituted of the rod-like member to the person to be treated.
A massage element of a massage machine of a ninth present invention according to the massage element of the massage machine of the eighth present invention, further comprises a pivotally moving device, wherein the massage element connecting member may be connected to the pivotally moving device.
In this case, the pivotally moving device is pivotally moved to move the massage element connecting member. As a result, one of the massage element having the kneading ball shape and the massage element constituted of the rod-like member is selected, thereby allowing the selected one to make contact with the person to be treated. As a result, it is possible to select one of the massage element having the kneading ball shape and the massage element constituted of the rod-like member by normally rotating or reversely rotating the pivotally moving device. Further, since the massage element connecting member is connected to the massage element arm, it is possible to provide the massage with one of the massage element having the kneading ball shape and the massage element constituted of the rod-like member by utilizing movement of the kneading motor.
A control method for a massage machine according to another aspect comprises a controlling step for controlling an actuator operating a massage element connecting member to which plural kinds of massage elements are attached, wherein the controlling step performs by driving the actuator to pivotally move the massage element connecting member in one direction in a case where one of the plural kinds of massage elements is selected and driving the actuator to pivotally move the massage element connecting member in a direction opposite to the one direction in a case where the other one of the plural kinds of massage elements is selected.
Number | Date | Country | Kind |
---|---|---|---|
JP2016-070658 | Mar 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5792080 | Ookawa | Aug 1998 | A |
6190339 | Imazaike | Feb 2001 | B1 |
6224563 | Nonoue | May 2001 | B1 |
6832991 | Inada | Dec 2004 | B1 |
7429251 | Tanizawa | Sep 2008 | B2 |
7494475 | Morita | Feb 2009 | B2 |
7892192 | Tsukada | Feb 2011 | B2 |
20050010144 | Chen | Jan 2005 | A1 |
20050090770 | Chen | Apr 2005 | A1 |
20070149907 | Ting | Jun 2007 | A1 |
20070299377 | Shiraishi | Dec 2007 | A1 |
20080200853 | Tielve | Aug 2008 | A1 |
20080312569 | Chen | Dec 2008 | A1 |
20090149785 | Canto Garcia | Jun 2009 | A1 |
20110275968 | Liu | Nov 2011 | A1 |
20140024983 | Numata | Jan 2014 | A1 |
20150216759 | Tamaki | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
1993137762 | Jun 1993 | JP |
2001-087332 | Apr 2001 | JP |
2003-024402 | Jan 2003 | JP |
2003-275270 | Sep 2003 | JP |
2008029426 | Feb 2008 | JP |
2013-153969 | Aug 2013 | JP |
Entry |
---|
Chinese Office Action dated Nov. 5, 2019, Chinese Application No. 201611236787.7, 29 Pages. |
Japanese Office Action dated Nov. 12, 2019, Japanese Application No. 2016-070658, 6 Pages. |
Japanese office Action dated Jun. 11, 2020 in Japanese Application No. 2016-070658, 5 pages with translation. |
Number | Date | Country | |
---|---|---|---|
20170281455 A1 | Oct 2017 | US |