1. Technical Field
The present invention relates to a control method of a printing device, and a printing device.
2. Related Art
Printing devices (printers) that convey label paper (recording media) having labels affixed at a constant interval to a liner (backing paper) and print on the labels, and detect the gap between liner and the labels with a sensor while conveying the label paper are known from the literature. See, for example, JP-A-2008-238484. Some printers such as described in JP-A-2008-238484 that detect the gap between the liner and labels also detect the label interval (the interval at which labels are affixed) based on the detected gap, and based on the detected label interval determine if an error has occurred, such as if the correct type of label paper is not loaded or if the label paper is not being conveyed normally. The printer normally stops printing if it is determined that an error occurred because printing normally may not be possible.
Some printers that convey and print on paper with black marks preprinted at a specific interval detect the mark interval, which is the interval between one black mark and the next, with a sensor while conveying the paper. Based on the detected mark interval, some printers of this type determine if an error has occurred, such as if the correct type of marked paper is loaded or if the marked paper is conveyed normally, based on the detected mark interval. When an error is detected, the printer stops printing because normal printing may not be possible.
The label interval on a single length of label paper is a specific constant length, and the mark interval on a single length of marked paper is also a specific constant length. However, the manufacturer or the user may splice together different pieces of label paper or marked paper, and after splicing, the label interval or the mark interval may differ from the specified interval length where the paper is spliced. When such spliced paper is used for printing, the printers cited above will reliably detect an error and stop printing. There is, therefore, a need for a printer to execute an appropriate process so that printing does not stop unnecessarily and enable the printer to continue printing normally when spliced paper is used.
A printer capable of conveying label paper or black mark paper according to the invention executes a process for desirably handling conveyance of spliced paper.
To achieve the foregoing objective, a control method of a printing device having a conveyance unit configured to convey label paper with labels affixed at a specific interval to a liner, or marked paper having marks printed at a specific interval, and a printhead configured to print on the label paper or the marked paper conveyed by the conveyance unit, includes: detecting the label interval, which is the interval at which adjacent labels are affixed to the label paper, or the mark interval, which is the interval at which the marks are printed on marked paper, by a sensor disposed to the conveyance path while conveying the label paper or marked paper by the conveyance unit; determining there is an error if the label interval or the mark interval is shorter than a specified length; not determining an error occurred if, after a label interval or mark interval longer than the specified length is detected, the next-detected label interval or mark interval is longer the specified length; and determining an error occurred if, after a label interval or mark interval longer than the specified length is detected, the next-detected label interval or mark interval is longer than the specified length.
A printing device able to convey label paper or marked paper according to this configuration can execute a process appropriate to conveying paper that has been spliced.
In another aspect of the invention, the paper is the same type of label paper or marked paper that has been spliced, and the label interval or mark interval at the splice in the paper is longer than the specified length.
A printing device able to convey label paper or marked paper according to this configuration can execute a process appropriate to conveying paper that has been spliced.
Another aspect of the invention sets the specified length according to a command from operation of an operating switch or a control command from an external device, or detects the label interval or mark interval detected by a specific process, and sets the detected label interval or mark interval as the specified length.
This configuration can set a specified length of an appropriate value.
Another aspect of the invention is characterized by the printhead being disposed downstream from the sensor in the conveyance direction; printing by the printhead while conveying the label paper or the marked paper in the conveyance direction by the conveyance unit; and detecting the label interval or the mark interval by optically detecting the marks or an edge of the labels on the liner by a sensor.
This configuration can accurately detect the label interval or mark interval while printing with the printhead.
Another aspect of the invention is a printing device having a conveyance unit configured to convey label paper with labels affixed at a specific interval to a liner, or marked paper having marks printed at a specific interval; a printhead configured to print on the label paper or the marked paper conveyed by the conveyance unit; and a controller. The controller detects the label interval, which is the interval at which adjacent labels are affixed to the label paper, or the mark interval, which is the interval at which the marks are printed on marked paper, by a sensor disposed to the conveyance path while conveying the label paper or marked paper by the conveyance unit; determines there is an error if the label interval or the mark interval is shorter than a specified length; does not determine an error occurred if, after a label interval or mark interval longer than the specified length is detected, the next-detected label interval or mark interval is longer the specified length; and determines an error occurred if, after a label interval or mark interval longer than the specified length is detected, the next-detected label interval or mark interval is longer than the specified length.
A printing device able to convey label paper or marked paper according to this configuration can execute a process appropriate to conveying paper that has been spliced.
Other objects and attainments together with a fuller understanding of the invention will become apparent and appreciated by referring to the following description and claims taken in conjunction with the accompanying drawings.
A preferred embodiment of the present invention is described below with reference to the accompanying figures.
The inkjet printer 5 is a inkjet line printer that drives a conveyance roller 10 to convey paper 14 in the conveyance direction YJ1 and discharges ink from an inkjet line head 12 (printhead) onto the conveyed paper 14 to print images on the paper 14.
At least one of the recording media shown in
Four types of paper 14 are shown as examples of paper 14 used in the inkjet printer 5, but the paper 14 used in the inkjet printer 5 is not limited to these examples.
When paper 14 is set in the inkjet printer 5, the length of the set paper 14 corresponds to the conveyance direction YJ1. The inkjet printer 5 prints images on the labels S while conveying the paper 14 in the conveyance direction YJ1.
The inkjet printer 5 shown in
The upstream head unit 17 has three staggered printheads, upstream top printhead 17T, upstream left printhead 17L, and upstream right printhead 17R. The downstream head unit 18 likewise has three staggered recording heads, downstream top printhead 18T, downstream left printhead 18L, and downstream right printhead 18R.
A black nozzle row 20, and a cyan nozzle row 21 disposed downstream from the black nozzle row 20, are disposed to the upstream top printhead 17T.
The black nozzle row 20 is a nozzle row having nozzles (not shown) that eject ink as fine ink droplets formed in the nozzle row direction YJ2, which is perpendicular to the conveyance direction YJ1. Ink is supplied to the black nozzle row 20 from a black (K) ink cartridge (not shown). The upstream top printhead 17T drives an actuator such as a piezoelectric device to push ink out toward the paper 14, ejecting fine ink droplets from specific nozzles.
Like the black nozzle row 20, the cyan nozzle row 21 is a nozzle row of nozzles formed in the nozzle row direction YJ2, and ink is supplied thereto from a cyan (C) ink cartridge (not shown).
The upstream right printhead 17R and the upstream left printhead 17L are configured identically to the upstream top printhead 17T, and each has a black nozzle row 20, and a cyan nozzle row 21 disposed on the downstream side of the black nozzle row 20.
A magenta nozzle row 22, and a yellow nozzle row 23 located downstream from the magenta nozzle row 22, are disposed to the downstream top printhead 18T.
Like the black nozzle row 20, the magenta nozzle row 22 is a row of nozzles formed in the nozzle row direction YJ2, and has ink supplied from a magenta (M) ink cartridge (not shown).
Like the black nozzle row 20, the yellow nozzle row 23 is also a row of nozzles formed in the nozzle row direction YJ2, and has ink supplied from a yellow (Y) ink cartridge (not shown).
The downstream right printhead 18R and downstream left printhead 18L are configured identically to the downstream top printhead 18T, and each has a magenta nozzle row 22 and a yellow nozzle row 23 disposed on the downstream side of the magenta nozzle row 22.
Note that the printheads and the nozzle rows of the recording heads are shown in
The inkjet printer 5 ejects ink and forms dots on the paper 14, and print s images by the combination of dots. The basic operation forming a single dot on the paper 14 is described below using
Forming a dot of a specific color at position P1 on the paper 14 when the paper 14 is set to the position shown in
The inkjet printer 5 conveys the paper 14 in the conveyance direction YJ1 at a substantially constant speed while forming dots on the paper 14. Conveyance of the paper 14 in the conveyance direction YJ1 proceeds from the position shown in
Specific amounts of black (K), cyan (C), magenta (M), and yellow (Y) ink are thus ejected to position P1 on the paper 14, and a dot of a specific color is formed at position P1.
With an inkjet printer 5 according to this embodiment of the invention, the position of the inkjet line head 12 is fixed during the image printing process, the paper 14 moves at a constant speed relative to the stationary inkjet line head 12, ink is desirably ejected from the inkjet line head 12 to form dots, and an image is printed.
As shown in
As shown in
The controller 40 comprises a CPU, ROM, RAM, and other peripheral circuits, and the CPU controls the inkjet printer 5 through hardware and software, such as the CPU reading and running a control program.
The print unit 41 includes the inkjet line head 12, a drive circuit that drives the inkjet line head 12, and other configurations related to printing on paper 14, and prints images on the paper 14 as controlled by the controller 40.
The conveyance unit 42 includes the conveyance roller 10 described above, a conveyance motor 421 that drives the conveyance roller 10, a motor driver that drives the conveyance motor 421, and other configurations related to conveying the paper 14, and conveys the paper 14 as controlled by the controller 40. The controller 40 controls the motor driver to drive the conveyance motor 421, turn the conveyance roller 10, and convey the paper 14. The conveyance motor 421 is a stepper motor, and the controller 40 manages the conveyance distance by the number of steps.
The input unit 43 includes operating switches disposed to the inkjet printer 5, detects operation of the operating switches, and outputs to the controller 40. The controller 40 manages the operates corresponding to the operation of the operating switches based on input from the input unit 43.
The display unit 44 includes multiple LEDs, and causes the LEDs to turn on and off in specific patterns as controlled by the controller 40 to indicate the condition of the inkjet printer 5 and the occurrence of errors. The display unit 44 may be configured with a display panel such as an LCD display panel.
The storage unit 45 has nonvolatile memory such as an EEPROM or hard disk drive, and rewritably stores data.
The communication unit 46 communicates according to a specific communication protocol with the host computer 1 as controlled by the controller 40.
The black mark sensor 47 is a reflective optical sensor disposed to a position corresponding to where the black marks BM printed on black mark paper pass when black mark paper is set in the inkjet printer 5 as the paper 14 and conveyed. As shown in
The controller 40 detects if a black mark BM is present or is not present at the position of the sensor based on the detection value input from the black mark sensor 47. More specifically, based on the detection value input from the black mark sensor 47 during conveyance of the paper 14 (black mark paper), the controller 40 calculates the mark interval, which is the distance between consecutively printed black marks BM. Yet more specifically, while conveying the paper 14 (black mark paper), the controller 40 counts the number of steps the conveyance motor 421 is required to drive between detection of the leading edge BMa of one black mark BM on the conveyance direction YJ1 side and detection of the leading edge BMa of the black mark BM printed next after the one black mark BM on the upstream side in the conveyance direction YJ1, and calculates the mark interval between one black mark BM and the next black mark BM based on the number of steps. Triggered by detecting the leading edge BMa of a black mark BM, the controller 40 continues calculating the mark interval while conveying the paper 14 (black mark paper).
The gap sensor 48 is a transmissive optical sensor disposed to a position corresponding to where the labels S affixed to a liner pass when label paper as described above is set in the inkjet printer 5 as the paper 14 and conveyed. As shown in
The controller 40 calculates the label interval, which is the gap between adjacently affixed labels S, based on the detection value input from the gap sensor 48 while the paper 14 (label paper) is being conveyed. More specifically, as shown in
The notch sensor 49 is a transmissive optical sensor disposed to a position corresponding to where notches K1 formed in the paper 14 pass when paper 14 having notches K1 formed at a specific interval (referred to below as notched paper) as described above is set in the inkjet printer 5 as the paper 14 and conveyed. If notches K1 are formed in opposing pairs, the notch sensor 49 may be disposed to the position corresponding to only one of the notches K1. As shown in
The controller 40 detects if a notch K1 is present or is not present at the position of the sensor based on the detection value input from the notch sensor 49. More specifically, based on the detection value input from the notch sensor 49 during conveyance of the paper 14 (notched paper), the controller 40 calculates the label interval at which the labels are disposed by detecting the interval between adjacent notches K1. More specifically, as shown in
The inkjet printer 5 in this embodiment of the invention enables selecting whether the black mark sensor 47, gap sensor 48, or notch sensor 49 is used. Using a specific means, the user changes the sensor that is used according to the type of paper 14 that is set in the inkjet printer 5.
As shown in
The host controller 60 includes a CPU and controls the host computer 1. The host input unit 61 is connected to operating means such as input devices or input switches, detects operation of the operating means, and outputs to the host controller 60. The host display unit 62 has a display panel or other display means, and displays information on the display means as controlled by the host controller 60. The host storage unit 63 stores data. The host communication unit 64 communicates with the inkjet printer 5 according to a specific communication protocol as controlled by the host controller 60.
As described above, label paper having labels S affixed at a specific interval (
Operation of the host computer 1 and the inkjet printer 5 when the inkjet printer 5 prints label images continuously to plural labels S as controlled by the host computer 1 is described below.
As shown in column (A) of
Continuous printing base information is information required for continuous printing, that is, the inkjet printer 5 printing label images continuously to labels S. The continuous printing base information includes information indicating the number of labels S on which to print label images continuously.
The host controller 60 generates the continuous printing base information based on information input through a user interface provided by an application.
As shown in column (B) of
As shown in column (A) of
In this way, the host computer 1 sends image data for the label images to be printed on the labels S in continuously printing.
As shown in column (B) of
If image data was received, the controller 40 stores the received image data in a receive buffer not shown (step SB4), and goes to step SB3.
In this way, the inkjet printer 5 receives image data for the label images to print on the labels S, and stores the image data for the label images in the order received in the receive buffer.
Based on the image data stored in the receive buffer, the controller 40 continuously prints the label images on multiple labels S.
As shown in
While conveying the paper 14, the controller 40 manages adjusting the position of black marks BM, the leading edge Sa of labels S, or the position of the paper 14, and the position where printing starts, based on the detection value input from the black mark sensor 47, gap sensor 48, or notch sensor 49.
After starting to convey the paper 14, the controller 40 reads image data from the receive buffer (step SC2). Of the image data that has not been read from the receive buffer, the image data read in step SC2 is the image data that was stored first (earliest).
Next, based on the image data that was read, the controller 40 controls the print unit 41 and prints the label image on the corresponding label S (step SC3).
Next, the controller 40 determines based on the continuous printing base information if printing label images on all labels S to be printed continuously is finished (step SC4).
If printing label images on all labels S to be printed continuously is not finished (step SC4: NO), the controller 40 goes to step SC2.
If printing label images on all labels S to be printed continuously is finished (step SC4: YES), the controller 40 controls the conveyance unit 42 to stop conveying the paper 14 in the conveyance direction YJ1 (step SC5)• and ends the process.
Paper 14 that has been spliced may be set in the inkjet printer 5. Splicing means connecting two pieces of the same type of paper 14 together adhesively with tape or other means.
In
When the paper 14 is splices, the label interval (the mark interval if the paper 14 is black mark paper) in the area that was spliced is longer than the normal label interval (the mark interval if the paper 14 is black mark paper).
Because paper 14 that has been spliced may be set, the inkjet printer 5 according to this embodiment executes the process described below while conveying paper 14.
The operation shown in the flow chart in
The inkjet printer 5 executes the process shown in the flowchart in
As shown in
If the leading edge Sa of a label S was detected (step SD1), the controller 40 counts the number of steps the conveyance motor 421 (a stepper motor) must drive to convey the paper 14 from the leading edge Sa of the label S detected one before to the leading edge Sa of the next label Sin step SD1, and calculates the label interval (step SD2). The number of steps the controller 40 detects in step SD2 corresponds to the label interval. Note that the controller 40 counts the number of steps from detection of one leading edge Sa until detection of the next leading edge Sa upstream in the conveyance direction YJ1 from the one leading edge Sa.
Next, the controller 40 determines if the label interval detected in step SD2 is shorter than the set label interval (specified length) previously set as the label interval of the paper 14 set in the inkjet printer 5 (step SD3).
This set label interval is the value previously set by the user.
As described above, the inkjet printer 5 has an input unit 43 that detects and outputs operation of an operating switch disposed to the inkjet printer 5 to the controller 40. In this embodiment of the invention, the user operates the operating switch to set a value corresponding to the type of paper 14 set in the inkjet printer 5. The controller 40 acquires the value specified by the user based on the input from the input unit 43, and saves the value as the set label interval.
In this embodiment, the user operates an operating switch of the printer to save the set label interval in the inkjet printer 5, but the set label interval may be set based on a control command received from the host computer 1 or other device connected to the inkjet printer 5. In this event, information input to the device that generates the control command may simply be the information required to generate the control command.
Further alternatively, the inkjet printer 5 may convey the paper 14 a specific amount when the paper 14 is loaded, and the label interval calculated from the leading edges Sa or black marks BM detected during this conveyance may be saved as the set label interval.
By whatever method the set label interval is set, the set label interval is a value indicating the label interval of the paper 14 that is actually loaded in the inkjet printer 5.
If in step SD3 the controller 40 determines the label interval calculated in step SD2 is shorter than the set label interval (step SD3: YES), it determines an error occurred and executes an error handling process of stopping conveying the paper 14 and printing images on the paper 14 (step SD4), and ends the process.
Note that the value of the set label interval compared in step SD3 with the value of the label interval calculated in step SD2 is a value that reflects in the set label interval a margin of error introduced in the calculation of the label interval, for example.
The calculated label interval may be determined to be shorter than the set label interval in step SD3 in the following two cases. First, an error related to conveyance of the paper 14 occurred, and a label interval shorter than the value that was set as the set label interval due to the conveyance-related error was calculated. Second, there is a difference between the label interval of the paper 14 recognized by the user, and the label interval of the paper 14 set in the inkjet printer 5, and paper 14 with a shorter label interval than the value that was set as the set label interval is conveyed. Because images cannot be printed normally in either case, the controller 40 determines in step SD4 that an error occurred, and stops conveying the paper 14 and printing images on the paper 14 as the error handling process.
If in step SD3 the controller 40 determines the label interval calculated in step SD2 is not shorter than the set label interval that was set (step SD3: NO), the controller 40 determines if the label interval calculated in step SD2 is longer than the set label interval that was previously set (step SD5).
Note that the value of the set label interval compared in step SD3 with the value of the label interval calculated in step SD2 is a value that reflects in the set label interval a margin of error introduced in the calculation of the label interval, for example.
If in step SD5 the controller 40 determines the label interval calculated in step SD2 is not longer than the set label interval that was previously set (step SD5: NO), in other words, if the calculated label interval and the set label interval that was set are the same, control returns to step SD1. If the label interval calculated in step SD2 and the set label interval are the same, this is likely because an error has not occurred. Note that because the value of the label interval calculated in step SD2 and the value of the set label interval with which it is compared in step SD3 and step SD5 are values reflecting a margin of error in the set label interval, the calculated label interval and the set label interval are determined to be the same if the value of the calculated label interval is within a specific range of the value of the set label interval including the margin.
If in step SD5 the controller 40 determines the label interval calculated in step SD2 is longer than the set label interval that was set (step SD5: YES), the controller 40 determines if the label interval calculated in step SD2 the last (previous) time step SD2 was executed is longer than the set label interval (step SD6). More specifically, in step SD6 the controller 40 determines if a label interval longer than the set label interval (specific length) was calculated twice consecutively. Note that each time the label interval is calculated in step SD2, the controller 40 stores the calculated label interval in a specific storage area.
If in step SD6 the controller 40 determines the label interval calculated in step SD2 the last (previous) time step SD2 was executed is longer than the set label interval (step SD6: YES), in other words, if a label interval longer than the set label interval (specific length) was calculated twice consecutively, the controller 40 determines an error occurred, and stops conveying the paper 14 and printing images on the paper 14 as the error handling process (step SD7).
The calculated label interval may be determined to be longer than the set label interval twice consecutively in the following two cases. First, an error related to conveyance of the paper 14 occurred, and a label interval longer than the value that was set as the set label interval due to the conveyance-related error was calculated twice consecutively. Second, there is a difference between the label interval of the paper 14 recognized by the user, and the label interval of the paper 14 set in the inkjet printer 5, and paper 14 with a longer label interval than the value that was set as the set label interval is conveyed. Because images cannot be printed normally in either case, the controller 40 determines in step SD7 that an error occurred, and stops conveying the paper 14 and printing images on the paper 14 as the error handling process.
If in step SD2 the controller 40 determines the label interval calculated in step SD2 the last (previous) time step SD2 was executed is not longer than the set label interval (step SD6: NO), the controller 40 returns to step SD1. As a result, if a label interval longer than the set label interval is not calculated twice consecutively, that is, if a label interval longer than the set label interval is calculated (step SD5: YES) but the label interval calculated last time is the same as the set label interval (step SD6: NO), conveyance of the paper 14 and printing on the paper 14 do not stop, and the process of conveying the paper 14 and printing on the paper 14 continues.
If a label interval longer than the set label interval is detected only once and not consecutively, the inkjet printer 5 in this example applies control assuming that the paper 14 set in the inkjet printer 5 is spliced label paper. More specifically, spliced label paper has a label interval corresponding to the splice (
The operation of the inkjet printer 5 when label paper is conveyed is described in the flow chart in
As described above, a inkjet printer 5 (printing device) according to this embodiment has a conveyance unit 42 configured to convey label paper having labels S affixed at a specific interval to a liner in a conveyance direction YJ1, and an inkjet line head 12 (printhead) configured to print on the label paper conveyed by the conveyance unit 42. The inkjet printer 5 detects the leading edge Sa of labels by a sensor disposed to the conveyance path L while the conveyance unit 42 conveys the label paper, and calculates the label interval, which is the interval at which adjacent labels S are affixed on the label paper. When a label interval shorter than the set label interval (specific length) is calculated, the inkjet printer 5 determines an error occurred and stops the process. When a label interval longer than the set label interval (specific length) is calculated, and the label interval that was calculated the last time is the set label interval, the inkjet printer 5 does not determine an error occurred and continues the process. When a label interval longer than the set label interval is calculated, and the label interval that was calculated the last time is also longer than the set label interval, the inkjet printer 5 determines an error occurred and stops the process.
When a label interval longer than the set label interval is calculated based on detection because the paper was spliced, this configuration can prevent stopping printing unnecessarily and a drop in throughput. More specifically, this configuration enables an inkjet printer 5 that conveys and prints on label paper to execute a process appropriate to conveying paper 14 that has been spliced.
The inkjet printer 5 in this embodiment sets a set label interval according to a command from operation of an operating switch or a control command from an external device, or calculates the label interval by a specific process and sets the calculated label interval as the set label interval.
This configuration enables the setting a set label interval of an appropriate value.
In the inkjet printer 5 according to this embodiment, the inkjet line head 12 (printhead) is located downstream in the conveyance direction YJ1 from the sensors. The inkjet printer 5 prints with the inkjet line head 12 while conveying label paper or black mark paper in the conveyance direction YJ1 by the conveyance unit 42, and calculates the label interval or mark interval by optically detecting the leading edge Sa (edge) of the labels S on the liner with a sensor.
This configuration enables the inkjet printer 5 to accurately detect the label interval or mark interval while printing images on the paper 14 and conveying the paper 14 in conjunction with printing images.
The invention is described above with reference to a preferred embodiment thereof, but the invention is not limited thereto and can be modified and adapted in many ways without departing from the scope of the accompanying claims.
For example, the label interval or mark interval are calculated in the foregoing embodiment from the number of steps the conveyance motor 421, which is a stepper motor, is driven, but the invention is not so limited. For example, if the conveyance motor 421 is not a stepper motor, such as a brushless DC motor, the controller 40 may be configured to detect rotation of a conveyance roller 16 using a rotary encoder, and calculate the label interval based on the output of the rotary encoder.
The configuration of the inkjet line head 12 is also not limited to the configuration shown in
The function blocks described above with reference to the figures can be embodied as desired by the cooperation of hardware and software, and do not suggest a specific hardware configuration.
The invention being thus described, it will be obvious that it may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2015-171731 | Sep 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20090102878 | Yamada | Apr 2009 | A1 |
20100074635 | Sakurai | Mar 2010 | A1 |
20110311292 | Yamada | Dec 2011 | A1 |
20120133959 | Shibahara | May 2012 | A1 |
Number | Date | Country |
---|---|---|
2008-238484 | Oct 2008 | JP |
2009-102097 | May 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20170057259 A1 | Mar 2017 | US |