A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
This invention relates to high density data storage using molecular memory integrated circuits.
Software developers continue to develop steadily more data intensive products, such as ever-more sophisticated, and graphic intensive applications and operating systems (OS). Each generation of application or OS always seems to earn the derisive label in computing circles of being “a memory hog.” Higher capacity data storage, both volatile and non-volatile, has been in persistent demand for storing code for such applications. Add to this need for capacity, the confluence of personal computing and consumer electronics in the form of personal MP3 players, such as the iPod, personal digital assistants (PDAs), sophisticated mobile phones, and laptop computers, which has placed a premium on compactness and reliability.
Nearly every personal computer and server in use today contains one or more hard disk drives for permanently storing frequently accessed data. Every mainframe and supercomputer is connected to hundreds of hard disk drives. Consumer electronic goods ranging from camcorders to TiVo® use hard disk drives. While hard disk drives store large amounts of data, they consume a great deal of power, require long access times, and require “spin-up” time on power-up. FLASH memory is a more readily accessible form of data storage and a solid-state solution to the lag time and high power consumption problems inherent in hard disk drives. Like hard disk drives, FLASH memory can store data in a non-volatile fashion, but the cost per megabyte is dramatically higher than the cost per megabyte of an equivalent amount of space on a hard disk drive, and is therefore sparingly used.
Phase change media are used in the data storage industry as an alternative to traditional recording devices such as magnetic recorders (tape recorders and hard disk drives) and solid state transistors (EEPROM and FLASH). CD-RW data storage discs and recording drives use phase change technology to enable write-erase capability on a compact disc-style media format. CD-RWs take advantage of changes in optical properties (e.g., reflectivity) when phase change material is heated to induce a phase change from a crystalline state to an amorphous state. A “bit” is read when the phase change material subsequently passes under a laser, the reflection of which is dependent on the optical properties of the material. Unfortunately, current technology is limited by the wavelength of the laser, and does not enable the very high densities required for use in today's high capacity portable electronics and tomorrow's next generation technology such as systems-on-a-chip and micro-electric mechanical systems (MEMS). Consequently, there is a need for solutions which permit higher density data storage.
Further details of the present invention are explained with the help of the attached drawings in which:
The number of tips 104 deployable on a tip platform associated with a tip die, and the number of groups 116 into which the number of tips 104 are arranged, can determine a number of interconnects between the tip die and the media 102. For example, if 1,088 deployable tips 104 extend from the platform, and the 1,088 tips 104 are arranged in thirty-two groups 116 having substantially the same number of respective deployable tips 104, it is desirable that thirty-four bit lines 110 be employed to receive and provide signals to the tips 104. Use of common interconnects enables management of a large potential number of signals and thereby increases flexibility in design. For example, as shown in
Use of fine position correction mechanisms (such as electrostatic actuators) for multiple tips can enable a method of self-servo writing on continuous media. For example, in one embodiment of a method of self-servo writing, adjacent tracks can be written to a media having an approximately uniform pitch separating the tracks. To achieve the approximately uniform pitch the tips can be separated into two groups during self servo writing. A first track can be written to the media using both groups of tips, the media and the tips being moved relative to one another as guided by a coarse position sensor. Half of the written lines can then be tracked by one of the two groups of tips using the coarse position sensor and the fine positioning error from the group of tips. The other of the two groups of tips can be offset using the fine position correction mechanisms, for example one track pitch in distance. A new track can be written by the other of the two groups of tips while tracking the originally written track with the one of the two groups of tips. The tracking and writing groups of tips can then be alternated to complete the writing of the adjacent track. The process can be repeated as desired to self-servo write the continuous media. In still other embodiments, some other combination of track following and track writing can be employed using coarse position sensors and fine position correction mechanisms to self-servo write a continuous media. One of ordinary skill in the art, in light of the present teachings, will appreciate that myriad different variations that can be applied to self-servo write a media using a combination of the coarse positioning sensors and fine positioning mechanisms. The present invention is not intended to be limited to self-servo writing by dividing tips into two groups, but rather the present invention is meant to encompass all such schemes that can take advantage of coarse position sensors and fine position mechanisms for enabling fine position offsets between tips.
Referring to
A planar offset register bank 222 can selectably provide planar offset information through the common planar offset interconnect 212 based on a selected group. The planar offset register bank 222 can store planar offset information for each tip (e.g., 4,352 values for the tip die 206 described above) while a number of common planar offset interconnects 212 required are as few as the number of tips of the selected group. The planar offset information can be provided through a slave digital-to-analog converter (DAC)(not shown). The slave DAC includes 68×3 bits of local memory, and the planar offset information is multiplexed out from the slave DAC to the tips of the selected group. A master DAC 226 provides an input for the slave DAC.
As schematically illustrated, a tip die 206 supporting 4,352 tips can electrically communicate with the memory device controller 220 using 201 interconnects (including a motor return interconnect). The common interconnects are reducible to 133 where planar offsets are not employed, or where planar offsets are multiplexed using a bit line, for example. The tip die 206 can be fixedly associated with the media frame 226 to avoid a need for flexible interconnects communicating the tip die 206 with the memory device controller 220. However, where a movable tip platform is employed, minifying interconnects can be important for reducing the complexity of integrating the media device.
As shown, group select provides an actuation signal that allows tips within the group to actuate toward the media 202, contacting the media 202 to form circuits with the common interconnects. In an embodiment, the actuation mechanism employed can be an electrostatic actuator so that the actuation signal removes an electrostatic force between electrodes, for example as described in U.S. patent application Ser. No. 11/553,408, entitled “Cantilever with Control of Vertical and Lateral Position of a Contact Probe Tip,” (Attorney Docket: NANO-01044US1) and U.S. patent application Ser. No. 11/553,449 entitled “Cantilever with Control of Vertical and Lateral Position of a Contact Probe Tip,” (Attorney Docket: NANO-01044US2). In other embodiments, the electrostatic actuator can be employed to urge the tip toward the media when an actuation signal is applied. In still further embodiments, the actuation mechanism can be some other mechanism, such as a thermal bimorph, or an electromagnetic actuator. Group select circuitry can be formed on the media die 224 to reduce a number of pins for providing signals to the tip die 206. An actuation force DAC 228 arranged outside of the media device 200 can allow the actuation force to be generally adjusted, providing external actuation control by way of a one pin connection, although in other embodiments, pins can be provided for actuation control external of the media device 200 for each of the active tips.
The memory device controller 220 comprises write/read front-end electronics 230 electrically connectable with the tip die 206 by wav of bit lines 210. In the embodiment shown, there can be sixty-eight bit lines 210 for sixty-eight tips. The memory device controller 220 further comprises analog-to-digital converters (ADC) 232 for preliminary decision-making and a serializer/deserializer (SERDES) 234 for converting data from/to a serial data stream and a parallel data stream. Binary data is multiplexed to 17 data lines 235 by way of the SERDES. Still further, the memory device controller 220 includes a control 236 for multiplexing and an analog pass-through scan-out 238 where 4 of 68 of the bit lines 237 are passed out for the primary purpose of scanning-out fine position information embedded in data for off-set and thermal drift control of the tips. The scanned-out information can be used to control the values updated for updating the planar offset register bank 222 to keep tips centered as temperature changes and the tips are subjected to thermal drift effects. Final ECC can be employed to correct incorrect determinations of the memory device controller 220.
The analog pass-through scan-out 238 described above allows detection of a servo pattern embedded on the media 202 and arranged within data and read by four tips at a given time (in an embodiment). Thus, in this example the analog pass-through scan-out 238 scans out information from four tips at a time cycling through the sixty-eight tips. The position is modulated through a feedback control loop (see
The media 202 for storing indicia is associated with a movable portion of the media die 224 referred herein as a media platform 203. The media platform 203 is electrically connected with the memory device controller 220, forming a circuit allowing indicia to be formed and/or read from the media 102. Referring to
Referring to
Coarse servo control of the media platform 203 can be achieved through the use of capacitive sensors. The media platform 203 can rely on a pair of capacitive sensors arranged at four locations using each pair of capacitive sensors for extracting a ratiometric signal independent of Z-displacement of the media platform 203. Two electrodes (not shown) are formed on one or both of the top and bottom caps 244. A third electrode 263 is integrally formed or fixedly connected with the media platform 203 to form a differential pair. Two capacitors are formed between the first electrode and third electrode 263, and between the second electrode and the third electrode 263. A ratio of capacitances can be sensitive to horizontal displacement of the media platform 203 with respect to the stationary portion 226 in the plane of the figure (X-displacement) and this ratio can be insensitive to Y and Z displacements of the media platform 203 with respect to the stationary portion. Thus, for a pair of capacitive sensors adapted to measure motion along an axis, at least two readings can be obtained from which can be extracted displacement along the axis and rotation about a center of the media platform 203. Four electrodes 263 are integrally formed or fixedly connected with the media platform 203. As shown in
In alternative embodiment, the media platform can have more or fewer pairs of capacitive sensors. In particular, pairs of capacitive sensors sensitive to the same type of motion (lateral (X), transverse (Y), X-Y skew or others) can be implemented in such a way that output signal of the first sensor is close to zero level and the output signal of the second sensor is close to its full scale output when the media platform is in equilibrium position. When the media platform is in an extreme position then an output signal of the first sensor is close to its full scale output and the output signal of the second sensor is close to zero.
Electrical connections to the media platform may require use of bridges. It is desirable to minify the use of bridges; therefore, it can be advantageous to employ position sensors requiring the smallest number of electrical connections between the media platform and the stationary portion. Capacitive sensing allows electrodes located on the media platform to be connected with the substrate, which can act is a common electrode. The substrate potential can be set to ground or to the high potential. Connecting capacitor plates to the substrate creates parasitic capacitors between the substrate and the stationary portions. In order to reduce the parasitic capacitance the media platform can be micro-machined between the fingers of the electrodes. Shallow cavities in the areas between the fingers can reduce parasitic capacitance. Wires bridge across the media platform to the media frame allowing signals to be electrically communicated out side of the memory device. The capacitive sensors allow control of media platform skew, and are driven differentially. A stator portion of the capacitive sensors is associated with a cap wafer. Sense amplified signals are provided from the stators to an interface controller (not shown).
In alternative embodiments, Hall-effect sensors sensitive to magnetic field can be used to determine the position of the media platform. Hall-effect sensors measure position based on changes of the mobility of carriers in the presence of magnetic field. Hall-effect sensors can be employed in the media platform, for example, in the form of magneto-resistors or magneto-transistors. Hall-effect sensors can be arranged in areas of the media platform where a component of the magnetic field has its largest gradient. Areas with large gradients of magnetic field exist in the middle of the coils where the magnetic field changes polarity. Displacement of the media platform causes changes in the magnetic field created by stationary magnets and can be detected by the Hall-effect sensors.
In still further embodiments, thermal position sensors can be used to determine the position of the media platform. Myriad different types of thermal sensors can be employed. For example, a thermal position sensor containing a heater and a differential pair of temperature sensors can be employed. In one embodiment, a stationary heater (e.g. a resistive heater) can be formed on one of the cap wafers, and two temperature sensors can be connected with the media platform and located symmetrically with respect to the heater so that in a neutral position a differential signal from the pair of temperature sensors is small. When the media platform is urged away from a neutral position the distance between the stationary heater and one of the temperature sensors increases. Correspondingly, the distance between the heater and the other of the temperature sensors decreases. The temperature difference resulting from this movement causes an electrical signal proportional to the displacement of the media platform.
Similarly to capacitive position sensors at least four magnetic or temperature sensors can be employed in order to measure displacement of the media platform within the Cartesian plane and the angle of rotation of the media plate within the Cartesian plane. At least two additional sensors can be employed in order to measure rotation of the media platform in X-Z and Y-Z planes.
A number of pins communicating signals from the memory device to an interface controller can be reduced to approximately sixty pins. The number of pins required to vary substantially depending on the amount and type of information processed by an interface controller, and an amount and type of information processed by the memory device controller. Referring to
The capacitive sensors described above can allow stabilization of the media platform. A system employing a mass, such as a media platform, supported or suspended by multiple springs may require an undesirably large bandwidth for communicating data to maintain stability of the mass while the mass is accessed. Use of capacitive sensors fixedly associated with the media platform can close loops that are always closed in the x and y dimensions of a Cartesian plane. If a controller desires to position the media platform at an extreme of the media platform's range of movement a servo controller can position the media platform as desired. To achieve such movement, it may be desirable to control a trajectory of the media platform, and by controlling the trajectory, vibration of the media platform can be minified.
Referring to
To accomplish movement approximately aligned with the track centers, the tips can be adjustable by application of a current or voltage to an electrostatic actuator, a thermal actuator or some other mechanism as described above. In an embodiment, the tips can be adjustable for example within a +/−3 track range. the alignment of the tips can be achieved by assigning offsets within the range of movement to the cantilevers, the offset adjusting the current or voltage applied to the actuator. Tip offsets can be fixed during media access, or tip offsets can be adjustable as the media platform moves relative to the tip. Referring to
Referring again to
As mentioned, the coarse servo control loops 380 (which in an embodiment include one coarse servo employed for each of two perpendicular axes in a Cartesian plane) can be used to accomplish movement of the media platform with a desired degree of stability. The coarse servo control loops 380, when coupled with cap sensors allows a stabile servo loop to be closed, thereby making the media platform relatively stiff and fast. Each coarse servo loop 380 includes a feed-forward (F-F) trajectory generator 381 that estimates a trajectory of the platform for moving from a first position to a second position. Trajectory estimation drives current into coils of the electromagnetic motor to limit jerking of the media platform when moving at a desirably fast rate. To accomplish precise movement at a low bandwidth, trajectories (also referred to herein as motion profiles) can be fed forward and summed 384 with the primary servo control loop, as shown. The trajectory generator 381 can be trained so that, in an embodiment, approximately 90% of the signal providing an objective motion is learned, so that the servo control loop only has to provide correction and/or contribution approximating 10% of the signal providing an objective motion. To accomplish motion, a trajectory F-F is fed forward to a DAC 385 that sets a voltage for a plant 387 (i.e. an electromagnetic actuator). The signal is amplified by a power amplifier 386 and provided to the plant 387. Motion of the media platform can be measured by the capacitive sensors and the capacitance measurements are converted to a signal in rm ADC 388. The signal, represented as Xposition, summed to a reference signal Xref and provided to an equalizer 383 for generating a correction signal for the trajectory F-F. The media platform has a mass that is very small and a spring flexure (e.g. owing to bridging) that is high. Vibration reduction is desirable.
In embodiments having two coils for motion in the x axis and two coils for motion in the y axis it may be desired that force applied to the two coils be offset some small amount. Desirably, equal forces are generated by each coil of a pair of coils; however, offset force can be applied to impart a slight spill to correct for skew of the media platform. Ideally, skew is not necessary. However, where residual error exists, it may be advantageous to enable skew correction. Referring to
The foregoing description of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to practitioners skilled in this art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
This application incorporates by reference all of the following co-pending application: U.S. patent application Ser. No. 11/553,421, entitled “Bonded Chip Assembly with a Micro-Mover for Microelectromechanical Systems,” Attorney Docket No. NANO-01041US1, filed Oct. 26, 2006. U.S. patent application Ser. No. 11/553,435, entitled “Memory Stage for a Probe Storage Device,” Attorney Docket No. NANO-01043US1, filed Oct. 26, 2006. U.S. patent application Ser. No. 11/553,408, entitled “Cantilever with Control of Vertical and Lateral Position of Contact Probe Tip,” Attorney Docket No. NANO-01044US1, filed Oct. 26, 2006. U.S. patent application Ser. No. 11/553,449 entitled “Cantilever with control of Vertical and Lateral Position of Contact Probe Tip,” Attorney Docket No. NANO-01044US2, filed Oct. 26, 2006. U.S. patent application Ser. No. 60/846,605, entitled “Architecture for a Memory Device,” Attorney Docket No. NAN-01045US0, filed Sep. 21, 2006.
Number | Date | Country | |
---|---|---|---|
60846605 | Sep 2006 | US |