This application is a National Stage of International Application No. PCT/EP2015/050386, filed Jan. 12, 2015 (now WO 2015/107013 A1), which claims priority to European Application No. 14151689.8, filed Jan. 17, 2014. The entire disclosures of each of the above applications are incorporated herein by reference.
The disclosure relates to a fire alarm and/or extinguishing control panel for actuating two extinguishing agent supply devices, and a method for controlling two extinguishing agent supply devices.
The disclosure is applicable wherever efficient, environmentally friendly, reliable and cost-effective extinguishing of a fire with two extinguishing agent supply devices is necessary for machines, systems and devices, in spaces and open regions, and wherein said extinguishing agent supply devices are controlled by a fire alarm and/or extinguishing control panel.
Currently, water extinguishing systems, CO2 extinguishing systems and powder extinguishing systems are used to protect machines, systems and devices in large spaces and open regions. The use of extinguishing gases such as argon, nitrogen and synthetic extinguishing agents in gaseous form, such as e.g. HFC-227ea, requires a tightly enclosed space, which generally is not provided in the case of applications in large and open spaces. Furthermore, an economic use of these extinguishing agents is not possible at these space dimensions.
In many of these object protection applications, the use of water, water-based extinguishing agent, e.g. water with admixtures such as e.g. wetting and foaming means, powder extinguishing agent and CO2 is connected with significant disadvantages. Water leads to short-circuits, promotes corrosion and must be collected and disposed of in a targeted manner if it is contaminated by fire reaction products.
By generating water droplets with a very small diameter, an attempt is made by the use of water mist systems to obtain a higher extinguishing effect with, at the same time, a reduction in the amount of extinguishing water, but the physical properties of the water medium, in particular the trajectory of the water droplets influenced by the updraft of the fire, also restrict these applications.
CO2, which is without residue, already puts persons at risks at low concentrations and is lethal at relatively high concentrations.
Prior to the prohibition of halon (the use of halons is still permitted in some countries outside of the EU and it is also still permitted within the EU with special permits), the synthetic extinguishing gas halon 1211 was used for many of these applications. Halon 1211, which is electrically nonconductive, residue-free and gaseous under ambient pressure, could also be used for the protection of objects in open regions due its properties and extinguishing mechanism.
The synthetic halon successive products as extinguishing agents, which were developed by the chemical industry, are primarily designed for the application in the gaseous phase and for use in tightly closed spaces within the space protection concept. This approach emerges primarily from the extinguishing mechanism of these synthetic extinguishing agents which, in contrast to the chemical chain termination reaction of halons, is based on the withdrawal of heat. In order to obtain this effect of the withdrawal of heat, a relatively long dwell time of the synthetic extinguishing agent at the flame, a relatively long reaction time of the extinguishing agent are required to reliably extinguish an energetic fire.
To date, no system and no solution with synthetic extinguishing agents which can be used for an object and device protection in the described form are available commercially. The attention of all commercially available and known systems are mainly directed to the optimization of the evaporation of the synthetic extinguishing agents, which are stored in a liquid form, at the nozzles in order to obtain an extinguishing, homogeneous gaseous extinguishing agent/air mixture as quickly as possible in a tight enclosed space, which mixture can quickly withdraw heat from the fire.
WO 2004/098718A1 discloses a fire alarm and extinguishing control panel for a combined gas and spray water extinguishing system, comprising a common pipe system, wherein the combined system comprises an extinguishing gas supply device, an extinguishing water supply device, a common pipe, a fire detection device, and also a spray water valve station and a selection valve in the gas supply line. The selection valve controls the extinguishing gas flow from the gas supply line directly into the common pipe to the extinguishing nozzles and said valve is controlled by the extinguishing control device which also actuates the spray water valve station and releases or blocks the flow of water directly into the common pipe to the extinguishing nozzles. WO 2004/098718A1 furthermore discloses a method for extinguishing a fire which, after extinguishing with the extinguishing gas without success, comprises the method step of manually triggering the water extinguishing system, with the manual trigger being carried out by an operator by way of pressing a spray water valve station switch.
EP 2594319 A1 has disclosed a system for extinguishing or rendering inert, with a synthetic extinguishing agent, consisting of an extinguishing agent container, a pipe to the nozzles, an event detector and a fire alarm and/or control panel, wherein the fire alarm and/or control panel controls the discharge of the amount of extinguishing agent by way of a conveying device according to a predetermined value or threshold as a controlled variable for the amount of extinguishing agent to be discharged. In this system, the liquid synthetic extinguishing agent transitions into the gaseous phase at the extinguishing nozzles and it becomes effective at the flame, the seat of the fire, as a gaseous extinguishing agent, wherein some time passes until an extinguishing, homogeneous gaseous extinguishing agent/air mixture is built up at the flame, at the seat of the fire, and the extinguishing agent cannot act immediately, not quickly enough, onto the flame, onto the seat of the fire.
A further disadvantage of known systems of this type and the actuation thereof is that only a restricted volume of liquid synthetic extinguishing medium can be provided, and there cannot be further extinguishing in the case of re-ignition and resurgence of the fire after an extinguishing process has taken place and the liquid synthetic extinguishing agent has been completely used up.
In contrast thereto, as much synthetic extinguishing agent as possible must be introduced directly into the interaction zone in liquid form if quick extinguishing is required in the case of object protection applications. Evaporation of the liquid synthetic extinguishing agent at the nozzle would mean a loss of extinguishing effect, loss of influencing time of the extinguishing agent in the interaction zone. However, there is also a need for control apparatuses to be present which are able to detect fire signals after the whole amount of available synthetic extinguishing agent was discharged if the fire was not extinguished or if there is a resurgence thereof and which in this case actuate a second water-based extinguishing system.
Within the meaning of the disclosure, the term interaction zone is understood to mean the location at which the extinguishing effect develops, the flame and/or the combustion zone and/or the seat of the fire. In the case of a liquid synthetic extinguishing agent, the extinguishing effect lies in cooling (withdrawal of heat energy) and, in the case of a transition of the liquid extinguishing agent into the gaseous phase, there is the local oxygen displacement.
Proceeding from this prior art, it is therefore an object of the disclosure to develop a reliable, environmentally friendly and cost-effective solution for quickly and reliably extinguishing objects or devices in spaces, in particular in large or open spaces, in which a restricted amount of synthetic extinguishing agent is used, the latter acts intensively, and in which a fire is also reliably extinguished after the liquid synthetic extinguishing agent has been used up.
The solution according to the disclosure relates to a fire alarm and/or extinguishing control panel for actuating two extinguishing agent supply devices.
The first extinguishing agent supply device of the two extinguishing agent supply devices preferably has at least one extinguishing agent container. The second extinguishing agent supply device of the two extinguishing agent supply devices preferably has at least one storage container.
According to the disclosure, the fire alarm and/or extinguishing control panel has a control unit, which is configured to actuate a second extinguishing agent supply device when a second fire signal is detected at the time t2 after actuating a first extinguishing agent supply device (17) when a first fire signal is detected at the time t1, if it has examined whether the inequality (t1+tc)<t2<(t1+tb) is satisfied at the time t2, where tc represents the discharge time for complete discharge of at least one extinguishing agent container (1) of the first extinguishing agent supply device, tk represents the checking time following the discharge time tc and tb represents the monitoring duration, and wherein the monitoring duration tb is the sum of the discharge time tc and the checking time tk, starting from the time t1.
The first extinguishing agent supply device has a first extinguishing fluid in preferably at least one extinguishing agent container, preferably a liquid synthetic extinguishing agent. In an alternative embodiment, the at least one extinguishing agent container is not discharged completely but in part.
The second extinguishing agent supply device has a second extinguishing fluid in preferably at least one storage container, preferably water or a water-based extinguishing agent in a storage container which manifests itself as a water storage container. In an alternative embodiment, the first extinguishing agent supply unit comprises an extinguishing gas in at least one extinguishing agent container, in particular an inert gas or a gas mixture which is provided for extinguishing purposes by the first extinguishing agent supply unit.
The fire alarm and/or extinguishing control panel according to the disclosure and the method according to the disclosure are not restricted to actuating a first extinguishing agent supply unit with a liquid synthetic extinguishing agent as a first extinguishing fluid and a second extinguishing agent supply device with water or a water-based extinguishing fluid as a second extinguishing fluid, but comprise any combinations of first extinguishing fluids of the first and second extinguishing fluids of the second extinguishing agent supply device. Furthermore, the fire alarm and/or extinguishing control panel according to the disclosure and the method for controlling two extinguishing agent supply devices is substantially described in a preferred embodiment with a liquid synthetic extinguishing agent in at least one extinguishing agent container of the first extinguishing agent supply device and water or a water-based extinguishing agent in the second extinguishing agent supply device.
In a preferred embodiment, the control unit comprises a signal processing unit, in particular a microcontroller or digital signal processor. This signal processing unit is a component of an evaluation unit for evaluating signals of the event detectors connected to the fire alarm and/or extinguishing control panel. In an advantageous embodiment, the control unit comprises at least two modules, a first module which is equipped with an evaluation unit and a second module which generates control signals for actuating extinguishing agent supply devices and/or switch-off signals and which preferably also comprises a signal processing unit. In a further preferred embodiment, at least one signal processing unit and an optional memory, which are connected in a signal-conducting manner with the first and second module and preferably with further modules of the fire alarm and/or extinguishing control panel, are arranged in the fire alarm and/or extinguishing control panel.
The method for extinguishing objects or devices comprises the following method steps, which are preferably carried out in succession: detecting a first fire signal, in particular by at least one event detector and a fire alarm and/or extinguishing control panel, at the time t1; actuating a first extinguishing agent supply device, in particular by the fire alarm and/or extinguishing control panel, for discharging a first extinguishing fluid, preferably a liquid synthetic extinguishing agent, in particular by way of a separation station, a common pipe and at least one nozzle; detecting a second fire signal at the time t2, and actuating a second extinguishing agent supply device and discharging a second extinguishing fluid, preferably water or a water-based extinguishing agent, in particular by way of the separation apparatus, the common pipe and the at least one nozzle, for extinguishing purposes.
The liquid synthetic extinguishing agent is preferably discharged from one or more extinguishing agent containers and/or the storage pipe, which is filled with the liquid synthetic extinguishing agent.
The method is particularly suitable for extinguishing objects or devices such as machines or systems in large and/or open spaces. Spaces or open spaces with the objects or devices to be protected constitute the protected regions.
The liquid extinguishing agents are guided by the common pipe to at least one nozzle and discharged by way thereof onto the seat of the fire in the vicinity of, or at, the object or the device in the protected region in order to extinguish the fire. In general, a plurality of nozzles are arranged; the number conforms to the size and form of the object or the device and the size of the protected region. If reference is only made to one nozzle herein, then this always means at least one nozzle, i.e. also a multiplicity of nozzles. If reference is made to the second extinguishing agent water, or only to water, then a water-based extinguishing agent is also always meant as an alternative. If more than one nozzle is arranged, the common pipe contains a distribution pipe network, which guides the extinguishing agent to the nozzles which are arranged around the object to be protected or around the device at predefined positions.
When using a plurality of nozzles, the common pipe has branchings, a distribution pipe network to the nozzles and optionally to other protected regions. Therefore, a common pipe is also understood to mean such a pipe network below, said pipe network being used to discharge both liquid extinguishing agents by the nozzles.
In an alternative embodiment, the pipe or the pipe network to the nozzles serves as extinguishing agent container. Here, the pipe is sealed by a trigger valve. The trigger valve is situated directly in the protected region and the nozzles are connected to short branch lines. The trigger valve comprises a trigger element which, in particular, reacts to the fire characteristic of heat. Alternatively, the trigger valve is provided with an electric trigger, e.g. with a magnetic lifting piston or a pyrotechnic trigger. The pyrotechnic trigger represents an electrically ignitable pyrotechnic element which exerts the action of a force for triggering.
In a further alternative embodiment, the pipe or the pipe network is sealed with sprinkler nozzles which comprise a glass barrel as an alternative to a trigger valve, wherein the glass barrels of the sprinklers are opened by trigger elements, e.g. magnetic lifting pistons or a pyrotechnic trigger. The advantage of this solution lies in the short flooding time.
Hence, the method for extinguishing objects or devices with the aforementioned method steps (a) to (d) can alternatively be embodied with a pipe or the pipe network to the nozzles as an extinguishing agent container and carried out containing the liquid synthetic extinguishing agent, wherein the pipe or the pipe network is sealed by a trigger valve and/or sprinklers and the sprinklers are activated in the case of fire by a trigger device (magnetic lifting piston/pyrotechnic trigger).
In an advantageous embodiment of the method, the liquid synthetic extinguishing agent constitutes a non-flammable, non-ignitable, electrically nonconductive liquid with a vapor pressure of 0.1 to 3 bar at 21° C. and/or it has a density of 1400 kg/m3 to 1800 kg/m3 at a temperature of 21° C.
In a further advantageous embodiment of the method, the liquid synthetic extinguishing agent is FK-5-1-12 (C4F9OCH3). This is the extinguishing agent known under the trademark NOVEC 1230, which is FK 5-1-12 in the ASHRAE nomenclature. It is listed in the NFPA 2001 and ISO 14520 standards and also described by the chemical formulae (C4F9OCH3) or 1,1,1,2,2,4,5,5,5-NONAFLUORO-4-(TRIFLUOROMETHYL)-3-PENTANONE.
In a further advantageous embodiment of the method, the liquid synthetic extinguishing agent is a fluoroketone.
In a further embodiment variant of the method, the liquid synthetic extinguishing agent is driven out of the extinguishing agent container by means of a pressurized gas, preferably nitrogen, and through the common pipe to the nozzle by the actuation of the first extinguishing agent supply device by the fire alarm and/or extinguishing control panel for discharging the first extinguishing fluid, preferably the liquid synthetic extinguishing agent, in particular from the extinguishing agent container by way of the pipe and the at least one nozzle. To this end, the fire alarm and/or extinguishing control panel transmits a control signal to a valve and/or to an apparatus for pressurizing the liquid synthetic extinguishing agent in the extinguishing agent container. In an advantageous embodiment, the pressurized gas is superimposed on the liquid synthetic extinguishing agent in the extinguishing agent container of the first extinguishing agent supply device. The pressure of the pressurized gas in the extinguishing agent container (1) is 25, 42 or 50 bar.
The extinguishing agent container is sealed by a valve which opens the extinguishing agent container when actuated by the fire alarm and extinguishing control panel and the extinguishing agent can be discharged.
In a further advantageous embodiment of the method, there is purging of the common pipe and the nozzle or nozzles using a gas, preferably nitrogen, after method step (b). Preferably, this is carried out with the residual pressurized gas from the extinguishing agent container for the liquid synthetic extinguishing agent. An advantage of this is that the common pipe and the nozzles do not have any liquid synthetic extinguishing agent, or only very small amounts thereof, and hence a reaction with the second liquid extinguishing agent, preferably water or a water-based extinguishing agent, is avoided and hence corrosion in the common pipe and in components guiding an extinguishing means is avoided too.
In a further advantageous embodiment of the method, the liquid synthetic extinguishing agent is discharged via a conveying device from the extinguishing agent container by way of the common pipe and the at least one nozzle. Preferably, one or more pumps are used as conveying device or pressure increasing devices such as pyrotechnic gas generators or charge cartridges, which release gas with a predefined pressure if actuated when a fire signal is detected, said gas being guided into the extinguishing agent container for discharging the liquid synthetic extinguishing agent. In these embodiments, the first extinguishing agent supply device is actuated by the fire alarm and/or extinguishing control panel in method step (b) according to the disclosure by the transmission of control signals to the conveying device by way of the signal-conducting connection.
At least one event detector is present in the protected region to detect a fire signal. Preferably, these event detectors are arranged in the vicinity, on or even in the object to be protected. A fire signal is understood to mean the detection of a fire characteristic, which exceeds a predetermined threshold, or the manual actuation of a manual fire alarm, which transmits a fire single to the fire alarm and/or extinguishing control panel according to the disclosure. The detection of a fire characteristic is carried out by the sensors in an event detector, preferably an automatic fire alarm.
Fire characteristics are understood to mean all characteristics such as e.g. smoke, heat and flame radiation and also fire gases, which characterize an arising or erupted fire. They are based on the measurement of physical variables such as the light scattering at smoke aerosols and/or the temperature, the electromagnetic radiation or the detection of fire gases such as CO, NOx or longer-chained hydrocarbons or other substances characterizing the smoldering fire. All measurement variables which serve to identify the fire are referred to as fire characteristics below.
Fire alarms are preferably arranged in the protected region as event detectors. Depending on the expected fire characteristics in a protected region, automatic fire alarms, such as smoke alarms, heat detectors, flame detectors, spark detectors, combusting gas detectors, smoke suction systems, and/or manual fire alarms to be actuated by hand are used as fire alarms.
The decision as to whether the detection of a fire characteristic is a fire signal is preferably made by appropriate evaluation algorithms in the electronic evaluation unit of the event detector, preferably the fire alarm. The fire signal can also constitute a pre-alarm in order to introduce suitable measures.
Preferably, the event detector transmits the fire signal by way of a signal-conducting connection to the fire alarm and/or extinguishing control panel, which then detects this fire signal.
Electric lines are preferably provided for the signal-conducting connection between the event detector and the fire alarm and/or extinguishing control panel according to the disclosure. Alternatively, or additionally, the fire signal is transmitted by means of a wireless data transmission, for example by way of radio; then, the signal-conducting connection constitutes a radio connection.
The decision as to whether the detection of a fire characteristic is a fire signal can also be carried out by appropriate evaluation algorithms in an evaluation unit or a control unit of the fire alarm and/or extinguishing control panel, just like the detection of a fire signal by the manual actuation of a manual fire alarm.
In a particularly preferred embodiment of the method, the fire signal is counted as detected if it has been detected by the fire alarm and/or extinguishing control panel as a fire signal and said fire alarm and/or extinguishing control panel indicates a fire alarm and/or forwards this to a continuously occupied post.
The fire alarm control panel according to the disclosure used for the method constitutes a reception and control panel which receives and evaluates the events from various event detectors, in particular fire signals from fire alarms, which are arranged in one or more protected regions, and then initiates follow-up actions. As a reaction, the fire alarm control panel acts as a control panel and display unit and it can actuate various technical devices as a subsequent action, for example: actuating an internal or external display panel and individual and collective displays, for example LEDs and displays for fire and event notifications, forwarding a fire report to the constantly occupied control room in order to alert the fire services; triggering an evacuation alarm in order to evacuate a building or part thereof; actuating smoke outlet devices and/or fire protection shutter assemblies; switching off objects and devices to be protected, such as e.g. machines, computing devices; actuating an extinguishing system or an extinguishing agent supply apparatus and opening valves on extinguishing agent containers and on/in extinguishing fluid guiding components; and controlling the extinguishing process.
An extinguishing control panel is connected to a fire alarm control panel or a monitoring control panel or a control system in a signal-conducting manner, receives a fire signal and actuates an extinguishing system, triggers the latter to discharge the extinguishing agent in the protected region, in which a fire has been detected and controls the extinguishing progress, preferably by opening and possibly closing valves on extinguishing agent containers and/or on/in extinguishing fluid conducting components.
An extinguishing control panel for gas extinguishing systems or extinguishing systems with synthetic extinguishing agents can preferably partly or completely meet the requirements of EN12094-1.
A fire alarm and extinguishing control panel is a combined control panel, which has all components for satisfying the aforementioned functions and method of operation of a fire alarm control panel and an extinguishing control panel.
The fire alarm and/or extinguishing control panel according to the disclosure preferably has the following special features.
The fire alarm and/or extinguishing control panel carries out all monitoring, controlling, regulating, alerting, and switching on and off that is required for the function of the system. In advantageous refinements, it can forward all switching and operating states to predefined reception devices such as building management systems. The fire alarm and/or extinguishing control panel is connected in a signal-conducting manner to both the conveying device and the fill-level and pressure monitoring device. Furthermore, the fire alarm and/or control panel detects and processes the signals from the event detectors. Moreover, the fire alarm and/or extinguishing control panel can also be connected in a signal-conducting manner to the machines, systems and/or devices to be extinguished and switch these off or on.
The control unit of the fire alarm and/or extinguishing control panel which is connected by signal-technical means to the evaluation unit of the fire signals initiates all follow-up actions, all actuations.
The control unit of the fire alarm and/or extinguishing control panel can be programmed and configured by way of various means, a personal computer, a tablet computer, a servicing or programming tool. To this end, use is made of a program interface present in or at the fire alarm and/or extinguishing control panel. By way of this means, it is possible to store parameters such as times, in particular a discharge time tc, a checking time tk, a monitoring duration tb, in a memory of the control unit and/or the fire alarm and/or extinguishing control panel. The programming preferably stored in the signal processing unit of the control unit then initiates the pre-programmed follow-up actions when detecting fire signals, in particular the actuation of extinguishing agent supply devices.
The programming stored in the microcontroller system of the control unit contains a test module, which generates a signal for actuating the second extinguishing agent supply device when a second fire signal is detected at the time t2, if the test module determines that the time t2 satisfies the inequality (t1+tc)<t2<(t1+tb), where tc represents the discharge time for complete or partial discharge of the at least one or more extinguishing agent containers of the first extinguishing agent supply unit, tk represents the checking time following the discharge time tc and tb represents the monitoring duration, and wherein the monitoring duration tb is the sum of the discharge time tc and the checking time tk, starting from the time t1.
In an advantageous embodiment of the fire alarm and/or extinguishing control panel, the programming stored in a signal processing unit of the control unit has a test module, which generates a signal for actuating the second extinguishing agent supply device when the second fire signal is detected at the time t2, if the test module determines that the time t2 satisfies the inequality (t1+tc)<t2<(t1+tb).
In a further advantageous embodiment of the fire alarm and/or extinguishing control panel, the fire alarm and/or extinguishing control panel has a memory and furthermore comprises a programming interface which is embodied and configured in such a way that the discharge time tc, the checking time tk and the monitoring duration tb are stored in the memory by way of the programming interface using a programming and/or configuration means.
In a preferred refinement of the fire alarm and/or extinguishing control panel, the programming and/or configuration means constitute in particular a personal computer, a tablet computer, a notebook, a smartphone or a service or programming tool.
In an advantageous refinement, the fire alarm and/or extinguishing control panel is configured in such a way that these parameters can be entered and/or modified, additionally or exclusively, by way of operating elements of the display and operating unit of the fire alarm and/or extinguishing control panel.
In an advantageous embodiment, the central control unit of the fire alarm and/or extinguishing control panel is configured in such a way that the method step (b) is only initiated when two event detectors each detect a fire signal, preferably within a predetermined time interval. This increases the reliability of triggering the extinguishing process and reduces instances of erroneous triggering due to deceptive values. In this case, the central control unit is configured in such a way that only the reception of two fire signals from two fire alarms in a protected region causes the fire alarm and/or extinguishing control panel to evaluate this as a fire signal, as a first fire signal, and the actuation of the first extinguishing agent supply device is carried out as follow-up action.
In a preferred embodiment, the actuation of the first extinguishing agent supply device is carried out by the fire alarm and/or extinguishing control panel by transmitting a control value to a valve, preferably to a magnetic valve, which is arranged on the extinguishing agent container or the component storing the extinguishing agent, and the valve opens and releases the extinguishing agent flow in the direction of the at least one nozzle.
The first extinguishing fluid, preferably the liquid synthetic extinguishing agent, which preferably is pressurized by gas, is discharged in the protected region over the seat of the fire by way of the at least one nozzle via the separation apparatus and the common pipe. In an alternative embodiment, a conveying device or a pump is actuated, which discharge the liquid synthetic extinguishing agent from the extinguishing agent container by way of the separation apparatus, the common pipe and the at least one nozzle.
The fire alarm and/or extinguishing control panel stores the time t1, the time of detecting the first fire signal, preferably in the arranged event memory. The time t1 then constitutes a stored parameter of the fire alarm and/or extinguishing control panel.
In an advantageous embodiment, the fire alarm and/or extinguishing control panel is embodied to switch off the power supply of the machine, system or device to be extinguished by way of the fire alarm and/or extinguishing control panel at the time t1 or after a predetermined delay duration ta following this, which delay duration may also assume the value of zero. As result, the energy supply for a possible source of fire origin is interrupted and/or a short-circuit is prevented.
The central control unit of the fire alarm and/or extinguishing control panel is embodied and configured in such a way that it has stored a predetermined checking time tk and a predetermined discharge time tc for the first extinguishing fluid from the extinguishing agent container or from a plurality of extinguishing agent containers of the first extinguishing agent supply device, preferably with a liquid synthetic extinguishing agent, by way of programming and configuration. The discharge time tc starts at the time t1, which was stored when detecting the first fire signal by the fire alarm and/or extinguishing control panel. In an advantageous embodiment, the discharge time tc is the time of discharging the at least one or more extinguishing agent containers of the first extinguishing agent supply device, for example one or three extinguishing agent containers. In further advantageous embodiments, the discharge time tc constitutes the time of complete or partial discharge. In the case of a partial discharge, the degree of discharge is preferably predefined; by way of example, the partial discharge can be predefined at 90% or 70%.
In a further advantageous embodiment, the discharge time tc is predetermined as a stored parameter in the fire alarm and/or extinguishing control panel. In an alternative solution, the discharge time tc is calculated at the time tm>t1, preferably on the basis of extinguishing fluid parameters of the first extinguishing agent supply device, detected by way of extinguishing fluid parameter detection means.
These extinguishing fluid parameters are detected by way of a signal-conducting connection between the extinguishing fluid parameter detection means and the fire alarm and/or extinguishing control panel. The extinguishing fluid parameters are stored in the fire alarm and/or extinguishing control panel, preferably in the control unit.
In this advantageous embodiment, the fire alarm and/or extinguishing control panel is embodied to calculate this discharge time on the basis of the detected extinguishing fluid parameters. Extinguishing fluid parameters are, in particular: pressure and/or temperature in the extinguishing agent container; and/or flow rate of the extinguishing fluid in conjunction with the detected duration of discharge of the extinguishing fluid after the time t1; and/or mass difference in the extinguishing fluid prior to, or at, the time t1 and at the time tm, or a combination therefrom.
In the checking time tk, which follows the discharge time tc, the fire alarm and/or extinguishing control panel examines whether a further fire signal is detected. This may be the case if the fire is not yet extinguished by the extinguishing process using the first extinguishing fluid, preferably the liquid synthetic extinguishing agent, according to method step (a), if there is a re-ignition or re-eruption, or if a second fire breaks out.
The sum of the discharge time tc and the checking time tk results in a monitoring duration tb, starting from the time t1, at which the fire alarm and/or extinguishing control panel examines whether a second extinguishing stage with the second extinguishing fluid, preferably with water or a water-based extinguishing agent, needs to be carried out. These times therefore have the following functional relationship tb=tc+tk.
If no fire signal is detected by at least one event detector and the fire alarm and/or extinguishing control panel up into the time t1+tb, the extinguishing process is complete.
The times tc, tk and tb are also stored by programming and configuring the fire alarm and/or extinguishing control panel. Therefore, they are preferably predetermined for the method according to the disclosure.
In an advantageous refinement of the method, the time t2 is after the complete or partial discharge of the extinguishing agent container, after the discharge time tc has expired, but it lies within a monitoring duration tb, wherein the monitoring duration tb is the sum of the discharge time tc and a checking time tk, starting from the time t1, where the checking time tk follows the discharge time tc and an examination is carried out during this time tk, in particular by the fire alarm and/or extinguishing control panel, as to whether a fire signal is detected and whether the time t2 satisfies the inequality (t1+tc)<t2<(t1+tb).
To this end, the central control unit of the fire alarm and/or extinguishing control panel is embodied and configured in such a way that, by way of programming and configuration, it actuates the second extinguishing agent supply device and the second extinguishing fluid, preferably water or a water-based extinguishing agent, is discharged by way of the separation apparatus, the common pipe and the at least one nozzle for extinguishing purposes if, at the time t2, a second fire signal is detected by the event detector and the fire alarm and/or extinguishing control panel and this time t2 is after the complete or partial discharge of the at least one extinguishing agent container of the first extinguishing agent supply unit within the monitoring duration tb, and t2 satisfies the inequality (t1+tc)<t2<(t1+tb).
Hence, the fire alarm and/or extinguishing control panel according to the disclosure is embodied to carry out a two-stage extinguishing process controlled according to demand, with discharging of a first extinguishing fluid, preferably a liquid synthetic extinguishing agent for the first extinguishing stage, and, if the fire has not been put out or re-erupts within a predetermined time tb, to discharge a second extinguishing fluid, preferably water or water-based extinguishing agent as a second extinguishing stage.
In an advantageous embodiment of the method, there is, prior to method step (d) in the case of the detection of a second fire signal at the time t2, actuation of the separation apparatus by the fire alarm and/or extinguishing control panel for the purposes of generating a switch position of the separation apparatus which releases the transport path of the second extinguishing fluid, preferably the water or the water-based extinguishing agent, in the direction of the common pipe and the at least one nozzle and completely blocks the transport path of the first extinguishing fluid, preferably the liquid synthetic extinguishing agent, from the first extinguishing agent supply device in the direction of the common pipe and the nozzle. Like in method step (a), the fire signal is detected by the at least one event detector and the fire alarm and/or extinguishing control panel.
In a further advantageous refinement of the method, there is actuation of the separation apparatus by the fire alarm and/or extinguishing control panel, prior to method step (b), for the purposes of generating a switch position which releases the transport path of the first extinguishing fluid, preferably the liquid synthetic extinguishing agent, in the direction of the common pipe and the at least one nozzle and completely blocks the transport path of the second extinguishing fluid, preferably the water or the water-based extinguishing agent, from the second extinguishing agent supply device in the direction of the common pipe and the at least one nozzle.
The disclosure furthermore relates to a system for extinguishing objects or devices, comprising the following: a first extinguishing agent supply device with a liquid synthetic extinguishing agent in an extinguishing agent container, on which a valve is arranged; a second extinguishing agent supply device with a water storage container with water or a water-based extinguishing agent, or with a water supply device and a conveying device, which generates the volumetric flow and pressure for the water or the water-based extinguishing agent; a separation apparatus and a common pipe and at least one nozzle, wherein these components are embodied to provide the liquid synthetic extinguishing agent first and then, if required, water or a water-based extinguishing agent; at least one event detector, which is connected in a signal-conducting manner to a fire alarm and/or extinguishing control panel for detecting a fire signal, wherein the fire alarm and/or extinguishing control panel is configured in such a way that it actuates and opens the valve at the time t1 if a first fire signal is detected, for the purposes of discharging the liquid synthetic extinguishing agent from the extinguishing agent container by way of the common pipe and the at least one nozzle, and it additionally actuates the conveying device if a second fire signal is detected at the time t2, said conveying device discharging the water or the water-based extinguishing agent by way of the common pipe and the at least one nozzle for extinguishing purposes.
In a preferred embodiment of the system, a liquid synthetic extinguishing agent is stored in at least one closed extinguishing agent container, which is embodied as a pressure vessel, superimposed with a pressurized gas, preferably nitrogen. A valve closes this container. The system pressure of these extinguishing agent containers is monitored by way of pressure monitoring devices. A drop in the system pressure by a defined predetermined value in relation to the nominal pressure at 21° C. is detected as a fault by way of a signal-conducting connection to a fire alarm and/or extinguishing control panel, indicated by this control panel and/or transmitted to a reception or reporting device. The valve outlet of these extinguishing agent containers is connected in a fluid-technical manner to a separation apparatus by way of a check valve and a first supply line. From the separation apparatus, a pipe system leads to extinguishing nozzles which are arranged in and around the object to be protected or the region to be protected or the device to be protected.
In the second extinguishing stage, if a second fire signal is detected at the time t2, the water is supplied either by means of a storage container or by means of a water supply device, e.g. an available water line, for example from the pipe of the public water supply. A conveying device, e.g. a pressure-increasing device, generates the volumetric flow and pressure required for discharging the water. The water storage and provision is monitored using pressure monitoring devices and/or fill-level monitoring devices, which are connected to the fire alarm and/or extinguishing control panel in a signal-conducting manner; a predetermined threshold of the pressure and/or the fill level being undershot by a predefined value is detected by the fire alarm and/or extinguishing control panel and indicated as a fault. Hence, it is possible to introduce steps to remedy the fault and bring the extinguishing system back into the operational state.
A fill-level monitoring device such as a mechanical float or electrical fill-level monitoring such as an ultrasonic measurement system can be arranged in the water storage container. A signal can be provided from the fill-level monitoring device to a fire alarm and/or control panel by way of electric lines, or else by radio.
It is advantageous to use a pump as a conveying device for the water, said pump being suitable for conveying or increasing the pressure of liquid media. Driving can be carried out electrically or pneumatically.
Alternatively, the conveying or the pressure increase in the water can be carried out by superimposing pressurized gas, preferably nitrogen.
The separation apparatus decouples the flow of the first extinguishing fluid, preferably the liquid synthetic extinguishing fluid, from the flow of the second extinguishing fluid, preferably the water or the water-based extinguishing agent, and ensures that there is no mixing of the two extinguishing fluids in the pipes or in the distribution pipe network. The separation apparatus is preferably embodied as a separation station, as is conventional in water extinguishing systems, or as a multi-port valve or as a different switchable valve or valve combination for opening and closing the transport paths of the first extinguishing fluid and the second extinguishing fluid, preferably the liquid chemical extinguishing agent and the water or the water-based extinguishing agent.
At the extinguishing agent container for the synthetic extinguishing agent, a return flow preventer, preferably a check valve, prevents water from entering into this extinguishing agent container in the case of a malfunction of the separation apparatus. If use is made of a water storage container, it is also advantageous to attach a return flow preventer, preferably a check valve, here for preventing entry of synthetic extinguishing agent.
In a further advantageous embodiment, the return flow preventer at the extinguishing agent container for the synthetic extinguishing agent and the return flow preventer upstream of the water storage container form the separation apparatus. In this case, the valves of the return flow preventers have a signal-conducting connection to the fire alarm and/or extinguishing control panel.
The employed pipes for conveying the liquid synthetic extinguishing agent and the water can consist of metal or any other suitable fire-retardant materials. The pipes are preferably designed for the employed pressure stage of the liquid synthetic extinguishing agent, preferably 25, 42 or 50 bar. Any other pressure stage is also possible in other advantageous embodiments.
An advantageous refinement of the disclosure is distinguished by the fire alarm and extinguishing control panel being embodied and configured in such a way that, when it detects a second fire signal, it actuates the separation apparatus, prior to actuating the conveying device, for the purposes of generating a switch position which releases the transport path of the water or the water-based extinguishing agent in the direction of the common pipe and the nozzle and, at the same time, it blocks the transport path of the liquid synthetic extinguishing agent from the first extinguishing agent supply device in the direction of the common pipe to the nozzle.
The advantage consists of the fact that, as result of the solution according to the disclosure for the risk stage of a normal fire at or in the object to be protected or at or in a device, extinguishing is carried out quickly and reliably with the first extinguishing fluid, preferably the liquid synthetic extinguishing agent. For the risk stage of a larger fire or for a re-ignition or re-eruption of the fire, extinguishing is carried out with the second extinguishing fluid, preferably the more cost-effective extinguishing agent water or a water-based extinguishing agent. As result, the financial outlay is significantly reduced compared to extinguishing systems and methods which employ a synthetic extinguishing agent for all risk stages.
A further advantage consists of the solution according to the disclosure providing the option of extinguishing using water or a water-based extinguishing agent if the fire re-ignites or new fire breaks out in the time up to the establishment of the operational state of the first extinguishing agent supply device, i.e. up to after the refilling of the extinguishing agent container with liquid synthetic extinguishing agent.
It is advantageous to arrange a plurality of conveying devices between the extinguishing agent container and the nozzles and/or between the storage container for the second extinguishing fluid, preferably for water or a water-based extinguishing agent, and the nozzles. As a result of this, it is possible to discharge the extinguishing agent in different protected regions, in which an extinguishing process is intended to be carried out.
Furthermore, the use of a pressure switch, a contact manometer or a pressure sensor with a signal evaluation unit as a pressure monitoring device is advantageous, the latter being connected in a signal-conducting manner to the fire alarm and/or extinguishing control panel according to the disclosure.
Instead of one extinguishing agent container for the first extinguishing fluid, preferably a liquid synthetic extinguishing agent, or one storage container for the second extinguishing fluid, preferably water or a water-based extinguishing agent, it may be advantageous to arrange a plurality of extinguishing agent containers or a plurality of storage containers.
The solution according to the disclosure is advantageous in that it combines the merits of an extinguishing system with a first extinguishing fluid, preferably a liquid synthetic extinguishing agent, with the advantages of a conventional water extinguishing system. As a result of this, the disadvantage that systems with liquid synthetic extinguishing agent were previously not suitable for object protection is remedied. By way of an additional second extinguishing stage with water or a water-based extinguishing agent, the costs of the first extinguishing agent supply device with a liquid synthetic extinguishing agent are significantly reduced, with a high reliability and availability of the whole extinguishing system being a given. Moreover, material and system costs are saved by the common use of common pipes with a distribution pipe network and nozzles for the two different extinguishing agents.
Furthermore, the disclosure relates to a method for controlling two extinguishing agent supply devices by way of a fire alarm and/or extinguishing control panel. The method comprises the following method steps, which are preferably carried out in succession: detecting a first fire signal at the time t1; actuating a first extinguishing agent supply device; detecting a second fire signal at the time t2; actuating a second extinguishing agent supply device after an examination is carried out by the fire alarm and/or extinguishing control panel as to whether the time t2 satisfies the inequality (t1+tc)<t2<(t1+tb), where tc represents a discharge time for complete or partial discharge of at least one extinguishing agent container of the first extinguishing agent supply device, tk represents a checking time following the discharge time tc and tb represents a monitoring duration, and wherein the monitoring duration tb is the sum of the discharge time tc and the checking time tk, starting from the time t1.
In a preferred embodiment of the method, the discharge time tc is predetermined as a stored parameter in the fire alarm and/or extinguishing control panel or it is calculated at the time tm>t1.
In a further refinement of the method, the discharge time tc is calculated on the basis of extinguishing fluid parameters of the first extinguishing agent supply device, detected by means of extinguishing fluid parameter detection means.
In a further manifestation of the method, the following method steps are furthermore carried out: detecting the extinguishing fluid parameters by way of a signal-conducting connection between the extinguishing fluid parameter detection means and the fire alarm and/or extinguishing control panel; and storing the extinguishing fluid parameters in the fire alarm and/or extinguishing control panel carried out.
In particular, the extinguishing fluid parameters are the following: pressure and/or temperature in the extinguishing agent container; flow rate of the extinguishing fluid in conjunction with the detected duration of discharge of the extinguishing fluid after the time t1; or mass difference in the extinguishing fluid prior to, or at, the time t1 and at the time tm, or a combination therefrom.
In a further preferred manifestation of the method, there is actuation of a separation apparatus, prior to actuating the first extinguishing agent supply device, for the purposes of generating a primary switch position of the separation apparatus (8) which releases the transport path of the first extinguishing fluid, preferably a liquid synthetic extinguishing agent, in the direction of a common pipe and at least one nozzle and completely blocks the transport path of the second extinguishing fluid, preferably water or a water-based extinguishing agent, from the second extinguishing agent supply device in the direction of the common pipe and the at least one nozzle.
Further advantageous or expedient features and refinements of the disclosure emerge from the dependent claims and from the description. Particularly preferred embodiments are explained in more detail on the basis of the drawings.
In conjunction with
The second arranged extinguishing agent supply device 18 comprises storage containers with a second extinguishing fluid, preferably a water storage container 2 with water 3 or a water-based extinguishing agent, and a supply device 7, which generates the volumetric flow and pressure for the water or the water-based extinguishing agent.
A first supply line 20 guides the liquid synthetic extinguishing agent 14 to the separation apparatus 8 and via a common pipe 9 and to at least one nozzle 10 after the fire alarm and/or extinguishing control panel according to the disclosure has opened the valve 16. In the illustrated exemplary embodiment, 3 nozzles are depicted; these are situated in the protected region 19 in which the object 22 to be protected, the object 22 to be extinguished, is acted on with extinguishing agent in the case of fire. The separation apparatus 8, the common pipe 9 and the nozzles 10 are embodied in such a way that they initially guide the liquid synthetic extinguishing agent 14 and subsequently, where necessary, water 3 or a water-based extinguishing agent to the object to be extinguished.
A likewise advantageous embodiment of the system, in which a water supply device 15 is arranged in addition to the water storage container 2, is not depicted here.
Two event detectors 11, which are connected to a fire alarm and/or extinguishing control panel 12 by way of the signal-conducting connection 13, are arranged in the protected region 19. A fire signal is detected by the fire alarm and/or extinguishing control panel 12 by way of this signal-conducting connection 13. The fire alarm and extinguishing control panel 12 is embodied and configured in such a way that it actuates and opens the valve 16, when a first fire signal is detected at the time t1, for the purposes of discharging the first extinguishing fluid, preferably the liquid synthetic extinguishing agent 14, with the pressurized nitrogen from the extinguishing agent container 1. The liquid synthetic extinguishing agent 14 reaches the object 20 to be extinguished in the protected region 19 by way of the common pipe 9 and the three nozzles 10. The common pipe 9 contains a distribution pipe network 23, which guides the extinguishing agents to the nozzles 10 which are arranged at predefined positions around the object 22 to be protected. The predefined positions are determined in such a way that the fire can be extinguished in the shortest amount of time with a minimal amount of extinguishing agent.
After complete discharge of the liquid synthetic extinguishing agent 14, the event detectors 11 examine whether the fire is extinguished. This is the case if no fire signal is detected via the event detectors 11 and the fire alarm and/or extinguishing control panel 12 within a predetermined monitoring duration tb starting from the time t1.
If a second fire signal is detected at the time t2, the fire alarm and/or extinguishing control panel 12 additionally actuates the conveying device 7 which discharges the second extinguishing fluid, preferably the water 3 or the water-based extinguishing agent, from the storage container 2 in the exemplary embodiment from
A pressure monitoring device 4 is arranged at or in the extinguishing agent container 1. Water 3 is supplied by way of a storage container 2 with a fill-level monitoring device 5 arranged at or in the container, or from a water line of the public water supply 15 (
The fill-level monitoring device 5 and the pressure monitoring device 4 are connected to the fire alarm and/or control panel 12 in a signal-conducting manner, by way of the signal-conducting connection 13 in the depicted example, which is preferably embodied as an electric line. Pressure and fill-level are detected and monitored by the fire alarm and/or extinguishing control panel 12. If predetermined thresholds are dropped below and/or exceeded, this is transmitted to a predetermined reception and/or notification device. The conveying device 7 generates the volumetric flow and pressure required for discharging the water 3. The extinguishing agent container 1 with the liquid synthetic extinguishing agent 14 is connected to the separation apparatus 8 by way of the first supply line 21 and the conveying device 7 for the water 3 or the water-based extinguishing agent is connected to the separation apparatus 8 by the second supply line 22. From the separation apparatus 8, the common pipe 9 guides the extinguishing agent to the nozzles 10 in the protected region 19. The separation apparatus 8 ensures that in each case only one extinguishing agent is situated in the pipe 9 and the water 3 or the water-based extinguishing agent and the liquid synthetic extinguishing agent 14 are kept separately.
From the separation apparatus 8, the pipe 9 leads to the nozzles 10, which discharge the liquid synthetic extinguishing agent 14 and, if necessary, the water 3 thereafter onto the object 20 to be protected and to be extinguished. For the purposes of being actuated, the conveying device 7, the valve 16 at the extinguishing agent container 1 and the separation apparatus 8 are connected in a signal-conducting manner to the fire alarm and/or extinguishing control panel 12. In the exemplary embodiments depicted in
The first and second extinguishing agent supply devices 17, 18 are actuated by way of this signal-conducting connection 13, i.e. the valve 16 is actuated in the case of a first fire signal, said valve open the extinguishing agent container 1, and the conveying device 7 is actuated in the case of a second fire signal within the predetermined monitoring duration tb. By way of these actuations, the respective extinguishing agent is discharged by way of the common pipe 9 and the nozzles 10 and the fire is fought at, or in, the object 22 to be extinguished.
The fire alarm and/or extinguishing control panel 12 depicted in
This switching state of the separation apparatus is the secondary switching state of the separation apparatus 8 since the second extinguishing stage with the second extinguishing fluid, preferably with water 3 or a water-based extinguishing agent, only occurs where necessary if the first extinguishing stage with the first extinguishing fluid, preferably with the liquid synthetic extinguishing agent 14, has not led to extinguishment and if a second fire signal is detected.
The fire alarm and/or extinguishing control panel 12 is furthermore embodied and configured in such a way that it actuates the separation apparatus 8, prior to actuating the first extinguishing agent supply device 17, for the purposes of generating a switch position of the separation apparatus 8 which releases the transport path of the first extinguishing fluid, preferably the liquid synthetic extinguishing agent 14, in the direction of the common pipe 9 and the at least one nozzle 10 and completely blocks the transport path of the second extinguishing fluid, preferably the water 3 or the water-based extinguishing agent, from the second extinguishing agent supply device 18 in the direction of the common pipe 9 and the at least one nozzle 10. This switching position of the separation apparatus is the primary switching position of the separation apparatus 8 since the first extinguishing stage is carried out with the first extinguishing fluid, preferably the liquid synthetic extinguishing agent 14. This actuation of the separation apparatus 8 can be dispensed with if it is already in this primary switching state prior to actuating the first extinguishing agent supply device 17.
After the liquid synthetic extinguishing agent 14 was discharged, the residual nitrogen flows thereafter and removes all residues of the synthetic extinguishing agent 14 from the pipe 9. Hence, there is purging of the common pipe 9 and the at least one nozzle 10 with a gas, nitrogen in this embodiment, after actuating the first extinguishing agent supply device 17 and before actuating the second extinguishing agent supply device 18.
A first fire signal is detected at the time t1 by at least one event detector 11 and a fire alarm and/or extinguishing control panel 12. As a result, the first extinguishing agent supply device 17 is actuated by the fire alarm and/or extinguishing control panel 12 for discharging the first extinguishing fluid 14 via the separation apparatus 8, the common pipe 9 and the at least one nozzle 10.
If a second fire signal is detected at the time t2, the second extinguishing agent supply device 18 is actuated and the second extinguishing fluid, preferably the water 3 or the water-based extinguishing agent, is discharged for extinguishing purposes by way of the separation apparatus 8, the common pipe 9 and the at least one nozzle 10.
Here, the second extinguishing agent supply device 18 is only actuated if the time t2 after the complete or partial discharge of the extinguishing agent container 1 is after the discharge time tc has expired but within a monitoring duration tb, wherein the monitoring duration tb, starting from the time t1, is the sum of the discharge time tc and a checking time tk, wherein the checking time tk follows the discharge time tc and, during this time tk, the fire alarm and/or extinguishing control panel (12) examines whether a fire signal is detected and the time t2 satisfies the inequality (t1+tc)<t2<(t1+tb).
Number | Date | Country | Kind |
---|---|---|---|
14151689 | Jan 2014 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/050386 | 1/12/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/107013 | 7/23/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5947207 | Conforti | Sep 1999 | A |
5957210 | Cohrt | Sep 1999 | A |
5992530 | Sundholm | Nov 1999 | A |
6006840 | Sundholm | Dec 1999 | A |
6390203 | Borisov | May 2002 | B1 |
7775292 | Romanco | Aug 2010 | B1 |
7806195 | Popp | Oct 2010 | B2 |
8360163 | Hauzer | Jan 2013 | B2 |
8418774 | Gensel | Apr 2013 | B2 |
8505642 | Cashion | Aug 2013 | B2 |
8662192 | Dunster | Mar 2014 | B2 |
8791826 | Russwurm | Jul 2014 | B2 |
8813858 | Gatsonides | Aug 2014 | B2 |
8863856 | Eckholm | Oct 2014 | B2 |
8925642 | Meier | Jan 2015 | B2 |
8973670 | Enk, Sr. | Mar 2015 | B2 |
9033061 | Chattaway | May 2015 | B2 |
9035243 | Lenkeit | May 2015 | B2 |
9387352 | Habitzl | Jul 2016 | B2 |
20060032939 | Relyea | Feb 2006 | A1 |
20060124321 | Aamodt | Jun 2006 | A1 |
20100132963 | Sprakel | Jun 2010 | A1 |
20100212920 | Lelic | Aug 2010 | A1 |
20110056707 | Gamble | Mar 2011 | A1 |
20110253398 | Mouri | Oct 2011 | A1 |
20140069665 | Fernstrum | Mar 2014 | A1 |
20140158382 | Ferguson | Jun 2014 | A1 |
20160332012 | Lenkeit | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
19700578 | Jul 1998 | DE |
102006032503 | Jan 2008 | DE |
2594319 | May 2013 | EP |
2004098718 | Nov 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20160332012 A1 | Nov 2016 | US |