(Not Applicable)
(Not Applicable)
The present disclosure relates generally to coating systems and, more particularly, to controlled-environment painting apparatuses for applying coatings to a plurality of items such as mechanical fasteners.
Manufacturers are continuously implementing new production techniques and build philosophies in efforts to reduce production cycle time and cost. Particularly for manufacturers of large-scale assemblies such as commercial aircraft, minor improvements to the production process can lead to appreciable reductions in production time and cost. One approach to reducing production cycle time and cost is to reduce the amount of labor required at final assembly. In this approach, instead of receiving a multitude of individual components and partially-completed subassemblies from a variety of different subcontractors for final assembly, large-scale manufacturers may assign to subcontractors a larger share of the production process by requesting that subcontractors provide subassemblies in a more completed state. In furtherance of this approach, large-scale manufacturers may request that the subcontractors deliver the subassemblies in a pre-painted condition.
At final assembly, mechanical fasteners such as bolts and screws may be employed to assemble the various subassemblies. Certain fasteners such as those that are exposed to the aircraft exterior must also be available at final assembly in a pre-painted condition. The heads of such fasteners may be pre-painted to match the pre-painted subassemblies. Considering the large quantity of subassemblies that make up a commercial aircraft and the overall size of such aircraft, the quantity of fasteners that must be provided in a pre-painted condition may be relatively large.
The success of the above-described build philosophy is dependent at least in part upon the availability of qualified subcontractors to perform the painting operations in a manner that is consistent with the manufacturer's quality and timeliness requirements. In this regard, the ability to achieve a reduction in production cycle time is dependent upon the ability of the subcontractor to deliver the subassembly on schedule. The ability of the subcontractor to meet quality requirements may be dependent upon the subcontractor's access to appropriate equipment and the availability of skilled technicians.
Such equipment and technicians may be necessary to meet specific requirements regarding the preparation, priming and application of intermediate and topcoat paint layers to the fasteners heads. For example, paint and other coating materials for aircraft are typically applied with precise control of film thicknesses. Difficulties in meeting film thickness requirements can occur as a result of inconsistencies during manual application of paint. Furthermore, inappropriate temperature and humidity levels during application of the paint and during curing of the paint can result in inconsistencies in adhesion and appearance (e.g., runs, wrinkles) of the painted fastener heads.
As a result of such stringent requirements, the number of subcontractors that are qualified to provide painting services may be limited. The limited number of qualified subcontractors may impact the ability to provide the large quantity of pre-painted fasteners on schedule. Difficulties in meeting schedule may be exacerbated by subcontractors that are qualified but are located remotely from the manufacturer such as in out-of-state locations. Furthermore, the remote location of such qualified subcontractors may limit the ability to procure pre-painted fasteners on an emergent need basis at final assembly. Such emergent need may occur as a result of part shortages on the production line.
Although the erection by the manufacturer of an on-site painting facility and curing oven may eliminate problems associated with the limited availability of qualified subcontractors, the construction of such a facility would defeat the goal of shifting a larger share of the production process to the subcontractors. Furthermore, the construction, operation and maintenance of an on-site painting facility and a curing oven having the requisite temperature and humidity control capabilities may be prohibitively expensive.
As can be seen, there exists a need in the art for a painting apparatus that provides an environment wherein large quantities of components such as mechanical fasteners can be painted with precise control of temperature and humidity. Furthermore, there exists a need in the art for a painting apparatus that facilitates the application of paint to fastener heads at a desired film thickness and on an automated basis without the need for skilled labor. Additionally, there exists a need in the art for a painting apparatus that allows for the painting of fastener heads on an emergent need basis. Finally, it is desirable that such painting apparatus is simple in construction and low in cost.
The above-described needs associated with the application of paint and other coating materials to fasteners and other members is specifically addressed by a self-contained painting apparatus that is adapted for applying coating materials to one or more surfaces of members which may be of any shape, size and configuration. For example, the members may be configured as elongate members such as, without limitation, mechanical fasteners having a head and a shaft and which may include bolts, screws, rivets, pins, and a variety of other configurations. However the members may be provided in non-fastener configurations having a variety of shapes and sizes and which may include one or more member surfaces to which the coating material may be applied using the painting apparatus as disclosed herein.
The painting apparatus may be provided in a relatively small size to facilitate transporting thereof to different locations such as different locations of a manufacturing or assembly facility. In addition, by providing the painting apparatus in a relatively small size, the temperature and humidity level of an interior environment of the painting apparatus may be easily controlled and maintained such as by using a pressurized air source. Even further, the relatively small size may simplify construction and reduce the cost of the painting apparatus as compared to relatively large, stationary paint booths and curing ovens which may be more costly to construct, operate and maintain and which may permanently occupy a relatively large area.
The painting apparatus may used to apply a variety of different coating materials to the surfaces of the members at a controlled sweep rate and at a controlled standoff distance from the member surfaces of the members. In addition, the painting apparatus allows for the application of coating materials in an automated manner in order to improve the accuracy and consistency of film thickness, coating adhesion and finish appearance as compared to prior art methods that rely on manual application by skilled operators.
The painting apparatus may include an enclosable housing having at least one spraying device movably mounted within the housing. The spraying device may be configured as a spray gun movably mounted to a cross beam. The cross beam may be movably mounted to at least one slide rail which may be mounted within the housing. The cross beam may be movable along the slide rail which may include at least one rack position. The cross beam may be operative to stop at one or more rack positions of the slide rail.
When the cross beam is stopped at the rack position, the spraying device may sweep or move along the cross beam while spraying coating material onto at least one member surface of one or more members mounted on a rack assembly. The member may comprise a fastener such as bolts, screws, rivets, pins, and a variety of other configurations. The member surface may comprise at least one surface of a head of the fastener. For example, the member surface may comprise a top surface of the head, a side surface of the head or any other surface of the fastener. In this regard, the head may comprise any surface or portion thereof that may receive coating material sprayed by the spraying device. Furthermore, the member surface may comprise any surface of any member of any size, shape, and configuration including, without limitation, any structural or mechanical element, component, system, assembly, subassembly or other configuration. In this regard, the painting apparatus may facilitate the application of coating material to any member or portion thereof and is not limited to elongate members such as fasteners.
The member may be mounted in a rack assembly which may be mounted in the housing. Each of the rack assemblies is preferably, but optionally, positioned in correspondence with each of the rack positions such that the spraying device is properly positioned with respect to the rack assembly as it moves along the cross beam. For configurations wherein the members are comprised of fasteners having heads, the fasteners may be mounted in the rack assemblies such that the heads or other member surfaces associated with the fastener may be exposed to the spraying device in order to receive the coating material that is sprayed thereby.
The movement of the cross beam along the one or more slide rails may be driven by any suitable power source including, but not limited to, pneumatic, electrical, hydraulic, and/or mechanical power or various combinations thereof such as electro-mechanical power, hydro-mechanical power or by power provided by an internal combustion engine or the cross beam may be manually-driven. In an embodiment, pneumatic power may be used in combination with one or more air motors that may be mounted at any suitable location on the painting apparatus. For example, at least one air motor may be mounted on at least one slide rail such as at one of opposing ends of the slide rail. Likewise, movement of the spraying device along the cross beam may be driven by any suitable power source such as any of the power sources indicated above with regard to driving the cross beam along the slide rails. In an embodiment for driving the spraying device along the cross beam, pneumatic power may be used in combination with one or more air motors mounted at any suitable location such as at one of opposing ends of the cross beam. Advantageously, the use of pneumatic power to drive the movement of the cross beam and the spraying device may avoid hazards normally associated with flammable gases or vapors in the presence of an electrical source of ignition such as electrically-powered motors.
For pneumatically-powered painting apparatuses, pneumatic power may be provided by a pneumatic source that may be located at any location such as on or adjacent to the housing. The pneumatic source may be remotely located relative to the housing. The pneumatic source may be fluidly connected to the housing via one or more conduits. The pneumatic power may be controlled using an appropriate pneumatic circuit comprising, for example, regulators, valves, air cylinders and other components such as limit switches. A pressurized air source may be located remotely to the housing and may be fluidly connected thereto in order to deliver pressurized, conditioned air to the housing.
The housing may be enclosable using one or more removable or pivotable doors and/or lid in order to form an environmentally-controllable chamber. The air source may maintain the temperature and/or relative humidity level of the chamber during application of the coating material and during curing of the coating material which may be different that the temperature and humidity level required during application of the coating material.
In preparation for applying coating material to one or more member surfaces of one or more members, the members may be loaded onto a panel. The members may be loaded onto the panel prior to loading the panel onto into the housing. For example, members such as fasteners may be loaded onto a panel prior to loading the panel onto a base support of the rack assembly which may be fixedly mounted inside the housing. As indicated above, the fasteners may each include a head and may have a shaft extending from the head. The rack assembly and/or panel may optionally include a plurality of apertures that may be formed as a pattern of holes or slots. The apertures are preferably sized and configured to receive the shafts such that each one of the members is supported by the head which may rest upon an upper surface of the panel or rack assembly. Following loading of the members (e.g., fasteners) onto the panels, the panels may be loaded onto the rack assemblies which may be positioned within the housing. Each one of the panels may be secured in position on a corresponding one of the rack assemblies such as by using a clamping mechanism.
Once the panels are loaded onto the rack assemblies in the housing, the cross beam may be successively moved to each rack position. At each rack position, the spraying device may move along the cross beam spraying coating material onto the member surfaces of one or more members such as fasteners that may be loaded in the rack assembly at that rack position. After the coating material is sprayed onto the member surfaces of the members, an ejection or lifting mechanism may be employed to lift the members such that the member surfaces may be separated from the upper surface of the rack assembly. For example, for configurations wherein the member is a fastener having a head and a shaft, the lifting mechanism may push upwardly on the shaft to lift the fastener head away from the upper surface of the rack assembly to prevent paint bridging between the heads and the upper surface of the rack assembly. The lifting mechanism may maintain the member surfaces (e.g., heads) in spaced relation to the upper surface during curing of the paint. Following curing of the coating material on the member surfaces, the panels may be removed from the housing after which the members may be removed from the panels.
The features, functions and advantages that have been discussed can be achieved independently in various embodiments of the present disclosure or may be combined in yet other embodiments, further details of which can be seen with reference to the following description and drawings.
These and other features of the present disclosure will become more apparent upon reference to the drawings wherein like numbers refer to like parts throughout and wherein:
Referring now to the drawings wherein the showings are for purposes of illustrating preferred and various embodiments of the disclosure only and not for purposes of limiting the same,
The painting apparatus 10 may include a portable housing 12 for containing at least one spraying device 102 (e.g., spray gun) that may be movably mountable on a cross beam 84. The cross beam 84 may be movably mounted on one or more slide rails 110. In this regard, the cross beam 84 may be mounted on a single one of the slide rails 110. The cross beam 84 may optionally be mounted on a spaced pair of the slide rails 110. The slide rail(s) 110 may be fixedly mounted to the housing 12. The spraying device 102 may be movable at a predetermined rate along the cross beam 84 and may be driven by any suitable power source such as, without limitation, pneumatic, electrical, hydraulic, mechanical, electro-mechanical, hydro-mechanical power and/or the cross beam 84 may be manually-driven. For pneumatic power, the painting apparatus 10 may include an air motor 90 for driving the cross beam 84 using a variety of different drive mechanisms such as belt drive, screw drive, chain drive and any other suitable mechanism. The cross beam 84 may likewise be driven along the slide rails 110 using any suitable power source such as mentioned above with regard to the spraying device 102. For a pneumatically driven cross beam 84, the painting apparatus may include one or more air motors 90 to drive the cross beam 84 along the slide rails 110 using a suitable drive mechanism such as, without limitation, belt drive, screw drive and chain drive or a variety of alternative drive mechanisms.
The cross beam 84 may be selectively positionable along the slide rails 110 at one or more rack positions 114 corresponding to one or more rack assemblies 38 that may be mounted within the housing 12. Each one of the rack assemblies 38 may contain one or more members 30 such as fasteners 142 that may be loaded onto the rack assembly 38. The members 30 are preferably oriented such that the member surfaces 31 of the members 30 are exposed to receive coating material 106 that may be sprayed from the spraying device 102. Each one of the rack assemblies 38 may be adapted to mount a plurality of the members 30 such as up to several hundred or more members 30. The housing 12 may be adapted to receive a plurality of the rack assemblies 38 such as up to five rack assemblies 38 although the housing 12 may be adapted to receive any number of rack assemblies 38.
The spraying device 102 may be movable along the cross beam 84. The movement of the spraying device 102 may be adjustable with regard to sweep rate (i.e., speed of the spraying device 102 along the cross beam 84) and standoff distance between the spraying device 102 and the member surfaces 31 of the members 30. A lifting mechanism 72 may optionally be included with the painting apparatus 10 in order to separate the member surfaces 31 such as fastener 142 heads 32 from the rack assemblies 38 following application of the coating material 106 (e.g., paint). The lifting mechanism 72 may prevent bridging of the coating material 106 between the member surface 31 and the rack assembly 38. The lifting mechanism 72 may eliminate the occurrence of cured paint film flash extending beyond the perimeters of the member surfaces 31 (e.g., heads 32) when the members 30 (e.g., fasteners 142) are removed from the rack assembly 38.
The technical effects of the disclosed embodiments include an increase in accuracy with which the film thickness of the coating material 106 is applied to the member surfaces 31 due to the automated movement of the spraying device 102 along the cross beam 84. Furthermore, the housing 12 may be enclosable to form an environmentally-controllable chamber 22 such that the temperature and/or humidity may be selectively controlled during application of the coating material 106. In addition, the environmentally-controllable chamber 22 may facilitate curing of the coating material 106 under optimal temperature and/or humidity conditions. In this manner, the painting apparatus 10 may result in an improvement in adhesion of the coating material 106 to the member surfaces 31 as well as an improvement in the appearance of the coated member surfaces 31 (e.g., no runs, sags or wrinkles in the coating surface).
Referring briefly to
As is illustrated in
In addition, the air source 26 is preferably operative to maintain the temperature and/or relative humidity of the chamber 22 at an appropriate level during curing of the coating material 106 which may be different than the temperature and humidity level required for application of the coating material 106. In one embodiment, the air source 26 may be operative to maintain the temperature between approximately 55 and 95 degrees Fahrenheit and the relative humidity between approximately 20 and 70 percent although the air source 26 may be operative to maintain the chamber 22 at any temperature and/or at any relative humidity level.
The painting apparatus 10 may be adapted for applying coating materials 106 of any composition and is not limited to the application of paint. For example, the painting apparatus 10 may be used for the application of primers, lacquers, varnishes, sealants, and various other compositions. Although adapted for applying coating materials 106 to a wide variety of members 30 of different shape and size as mentioned above, the painting apparatus 10 is described and illustrated in the context of applying paint to fasteners 142 which may be of any size, shape and configuration without limitation. For example, the fasteners 142 may be configured as bolts, screws, rivets, nails, shear pins, clevis pins, studs and any other type of elongate member 30 having the head 32 and, optionally, a shaft 34 as shown in
Furthermore, although the painting apparatus 10 is adapted for applying coating materials 106 to any member surface 31 of any member 30 such as to a top surface of the heads 32, the painting apparatus 10 may apply the coating materials 106 such as paint to other surfaces such as side surfaces of the heads 32 and to tool recesses formed in fastener 142 heads 32 (e.g., Phillips screw drive recess). Advantageously, because of the manner in which the members 30 may be mounted in the rack assembly 38, application of the coating materials 106 may be limited to the exposed member surfaces 31 such as the surfaces of the fastener heads 32 in order to minimize or prevent overspray of coating material 106 onto areas such as on non-exposed sides of a member or on the shaft 34 or an underside of the heads 32 of a fastener 142.
Referring to FIGS. 2 and 4-5, for embodiments where the member 30 is configured as a fastener 142, the head 32 of each member 30 may be of a larger size or width (e.g., diameter) than the width (e.g., diameter) of the shaft 34 such that the members 30 may be suspended by one of the apertures 46 in the rack assembly 38. In this regard, each one of the apertures 46 may be configured such that an underside of the member surface 31 (e.g., an underside of the head 32) of each member 30 (e.g., fastener 142) may be supported on the upper surface 42 of the rack assembly 38 such as on the upper surface 44 of a panel 44 of the rack assembly 38 as best seen in
The apertures 46 may be formed in the rack assembly 38 and/or in the panel 44 as a pattern of holes although slots or other aperture 46 configurations may be provided. The hole pattern may be uniformly or non-uniformly distributed throughout the panel 44 or rack assembly 38. The apertures 46 may have a circular cross section although other cross sections are contemplated. The apertures 46 may be sized and configured complementary to the size and shape of the members 30 such as fasteners 142 that may be mounted in the apertures 46. For example, FIGS. 2 and 4-5 illustrate fasteners 142 having countersunk heads 32 installed in a plurality of apertures 46 formed in each of the panels 44 and/or rack assemblies 38 if no panel 44 is provided. The shaft 34 of each member 30 may be inserted into a corresponding one of the apertures 46 such that the member 30 is suspended in a vertical orientation with the member surface 31 or top surface of the member 30 or head 32 being exposed to the spraying device 102. In this manner, the shaft 34 and the underside of the member 30 or head 32 may be protected from overspray.
Referring to
As shown in
The movement of the spraying device along the cross beam 84 may occur automatically as part of a preprogrammed sequence initiated by activation of the activation switch 98. However, as indicated above, in an alternative mode of operation, the painting apparatus 10 may be controlled by manipulation of one or more switches such as using switches 143-148 shown in
Referring still to
The limit switch 100 located at the first position 86 may stop the movement of the spraying device 102 and/or to stop the spraying of the coating material 106 as the spraying device 102 returns from the second position 88. After the cross beam 84 is returned to the first position 86, the cross beam 84 may then be caused to move to the next nearest rack position 114 wherein the above-described sequence of spraying of coating material 106 and movement of the cross beam 84 to the next nearest rack position 114 may be repeated.
The above-described steps may be repeated until the cross beam 84 encounters a no-rack stop 126 which may be mounted on at least one of the slide rails 110 as shown in
Referring to FIGS. 1 and 3-5, the painting apparatus 10 may include at least one of the spraying devices 102 which may be provided with a spray head 104. The spraying device 102 may be configured as a paint gun as known in the art or in any other suitable configuration for discharging coating material 106. The spraying device 102 is operative to spray the coating material 106 onto the exposed member surface 31 of one or more members 30 that may be loaded into the rack assemblies 38. The rack assemblies 38 are preferably fixedly mountable within the housing 12 but, optionally, may be removably mounted in the housing 12. Each one of the rack assemblies 38 may preferably include one of the panels 44 which may be removably mountable to the rack assembly 38. As was mentioned above, each one of the panels 44 may have a plurality of apertures 46 for receiving the members 30. The members 30 may be loaded into each panel 44 after which the member surfaces 31 may be cleaned or otherwise prepared to receive the coating material 106. Each panel 44 may be loaded onto one of the rack assemblies 38 in the housing 12 such as by manual loading as shown in
Referring to
In one embodiment, the housing 12 may be constructed without extensive regard to sealing which may simplify construction and reduce cost. In this regard, the housing 12 may be configured such that some degree of leakage from the chamber 22 may occur. In consideration of such leakage, the painting apparatus 10 may be preferably positioned inside of a paint booth 120 as shown in
Wheels 24 such as castoring wheels 24 may be mounted at lower ends of the legs 134 to facilitate transportability of the painting apparatus 10 as shown in
Referring to FIGS. 1 and 3-5, the painting apparatus 10 may include one or more slide rails 110 such as the pair of slide rails 110 that may be disposed in spaced relation to each other such as on opposing sides of the housing 12. If a single slide rail 110 is provided, the slide rail 110 may be supported inside the housing 12 in any suitable manner such as with one or more rail posts 118 although the slide rail 110 may be affixed to the housing 12 side wall 14 or the slide rail 110 may be supported by other means. The painting apparatus 10 may optionally include a pair of the slide rails 110 which may be mounted on one or more of the rail posts 118 as shown in
Referring to
Referring still to
Referring to FIGS. 1 and 3-5, the cross beam 84 may be mounted transversely relative to one or more slide rails 110. The cross beam 84 may be operatively coupled to the slide rail 110 at any location along the cross beam 84. For example, the cross beam 84 may have one end that may be coupled to a single one of the slide rails 110. Optionally, the cross beam 84 may have opposing ends that may be operatively coupled to a pair of the slide rails 110. As indicated above, the cross beam 84 may be moved along the slide rails 110 using any suitable power source including, but not limited to, pneumatic, electrical, hydraulic or mechanical power or various combinations thereof and including a manually-driven cross beam 84. For an embodiment of the painting apparatus 10 driven by pneumatic power, at least one air motor 90 such as a linear air motor may be mounted on at least one of the slide rails 110 such as at one of opposing ends of one or more of the slide rails 110. As was mentioned above, the cross beam 84 may be stopped at each one of the rack positions 114 in order to allow the spraying device 102 to move across the rack assembly 38 at that rack position 114 while the spraying head 32 sprays the coating material 106 onto the member surface 31 of one or more members 30 that may be mounted in the rack assembly 38.
The movement of the spraying device 102 across the cross beam 84 may also be driven by any suitable power source such as, without limitation, the power sources mentioned above with regard to driving the cross beam 84 along the slide rail 110. The use of a non-electrical power source such as pneumatic power to drive the cross beam 84 or the spraying device 102 may avoid the hazards associated with flammable gases or vapors which may be present in the housing 12 during the spraying process. As is known in the art, undesirable effects may occur when gases or vapors are exposed to an electrical source such as electrically-powered motors. Advantageously, by powering the movement of the cross beam 84 and the spraying device 102 with pneumatic power using air motors 90, such undesirable effects may be avoided.
As can be seen in
Regarding the movement of the cross beam 84, a torque rod 92 may optionally be included to couple the power source such as the air motor 90 shown in
Referring to
The panel 44 may optionally be mounted on a base plate 48 which may have an opening formed therein to accommodate the protrusion of shafts 34 through the apertures 46 in the panel 44. The base plate 48 may be supported by one or more base supports 50 which may be generally vertically-oriented. For example, the base plate 48 may be supported on at least one of opposing ends of the base plate 48. Each one of the base supports 50 may include a pair of height-adjustable feet 52 for supporting the rack assembly 38 in the housing 12. The panel 44 may be removably secured to the base plate 48 at opposing ends of the panel 44 by means of one or more clamping mechanisms 56. In one embodiment, the clamping mechanism 56 may be configured as a clamp block 60 as illustrated in
Referring still to
In yet a further embodiment, the rod 66 may be spring-loaded via a biasing mechanism 70 (e.g., compression spring) located under the base plate 48 such that manually lifting the clamp bar 62 allows for insertion of the panel 44 and release of the clamp bar 62 causes clamping of the panel 44 against the base plate 48 under the biasing force of the compression spring. It should be noted that the above-described embodiments of the clamping mechanisms 56 are representative only and should not be construed as limiting alternative embodiments by which the panel 44 may be clamped or otherwise mounted to the base plate 48.
Referring to
Referring to
The lifting plate 76 may be lifted upwardly into contact with the free ends 36 of the shafts 34 such that the member surfaces 31 may be pushed upwardly away from the upper surface 42 of the panel 44 of the rack assembly 38. In this manner, the lifting plate 76 may separate the member surfaces 31 (e.g., heads 32) from the upper surface 42 to prevent paint bridging after the heads 32 have been painted but prior to curing of the paint. Although the lifting mechanism 72 is illustrated and described as a lifting plate 76, it should be noted that such configuration is a representative embodiment and should not be construed as limiting alternative embodiments of the lifting mechanism 72 having the capability to separate the heads 32 from the upper surface 42. Furthermore, although the lifting mechanism 72 is described and illustrated in the context of a fastener 142 head 32, the lifting mechanism 72 may facilitate the separation of member surfaces 31 from the upper surface 42 wherein the members 30 may be provided in a variety of alternative sizes, shapes and configurations as described above.
Referring to
In
Referring to
The cross beam 84 of the painting apparatus 10 illustrated in
Referring still to
The lifting mechanism 72 for the painting apparatus 10 illustrated in
Referring to
Referring to
The pressurized air may be delivered to the spraying device 102 in order to discharge coating material 106 from the spray head 104 as shown in
Referring to
More particularly and referring to
As shown in
A test-spray switch 146 may further be included in the pneumatic circuit 140 as shown in
A fastener-eject switch 147 may be included in the pneumatic circuit 140 as shown in
In one embodiment for operating the painting apparatus 10, an operator may mount a plurality of the members 30 into the panels 44 and/or rack assemblies 38 by inserting the shafts 34 of the members 30 into the apertures 46. The heads 32 may be cleaned in a manner as described above. The operator may load the panel 44 into one of the rack assemblies 38 mounted in the housing 12 and may clamp the panel 44 to the rack assembly 38 using one of the clamping mechanisms 56. A test of the spraying device 102 may be commanded by actuating the test-spray switch 146 prior to initiating movement of the spraying device 102 along the cross beam 84.
By actuating the move-across switch 145, the spray head 104 may spray the coating material 106 onto the member surfaces 31 of the members 30 loaded in the rack assembly 38 at that rack position 114 as the spraying device 102 moves from the first position 86 toward the second position 88 on the cross beam 84. Following the spraying of coating material 106 and return of the spraying device 102 to the first position 86, the operator may actuate the move-up or move-down switch 143, 144 to move the cross beam 84 to the next nearest rack position 114. The move-across switch 145 may again be actuated by the operator and the process repeated until all the member surfaces 31 of the members 30 in all the rack assemblies 38 are coated (e.g., painted). Additional or different coats of coating material 106 may be applied as described above using the combination of switches 143-148.
Referring to
Referring to
Referring to
The housing 12 may be enclosed with the lid 18 and/or door 138 to form the chamber 22. The air source 26 may be activated to deliver conditioned air to the chamber 22 at a predetermined temperature and humidity. The air source 26 may be fluidly connected to the painting apparatus 10 using one or more conduits 128 and/or fittings 28 which may be mounted on a side of the paint booth 120 and/or on the housing 12. The painting apparatus 10 may be moved into the paint booth 120 prior to connecting the air source 26/pneumatic source 94. The connection of the air source 26 may also include connecting to the pressure pot 108 if located outside of the paint booth 120.
The painting sequence may be initiated in step 154 by activating the activation switch 98 or by actuating the move-up or move-down switch 143, 144 which may start the movement of the cross beam 84 (i.e., spraying device) such as from the home position 112 to a nearest one of the rack positions 114. The cross beam 84 may be moved along the slide rails 110 toward the nearest rack position 114 until the cross beam 84 is aligned with the rack assembly 38 as may be indicated by the index stop 54. Once the cross beam 84 is positioned at the rack assembly 38, step 156 includes moving the spraying device 102 along the cross beam 84 across a length of the rack assembly 38 from the first position 86 to the second position 88 while spraying the coating material 106 onto the heads 32. The movement of the cross beam 84 and the spraying of coating material 106 from the spraying device 102 may be initiated by actuating the move-across switch 145 as shown in
Step 162 comprises stopping the spraying of the coating material 106 once the spraying devices 102 reaches the second position 88 as may be indicated by the triggering of the limit switch 100. The spraying device 102 may then be returned to the first position 86. Step 164 includes moving the cross beam 84 along the slide rail 110 toward the next nearest one of the rack positions 114 which may be initiated by actuating the move-up or move-down switch 143, 144. The sequence of steps comprising moving the spraying device 102 along the cross beam 84 from the first position 86 to the second position 88 while spraying coating material 106 in step 160 (which may be initiated by actuating the move-across switch 145), stopping the spraying of the coating material 106 and returning the spraying device 102 to the first position 86 in step 162, and moving the cross beam 84 the next nearest one of the rack positions 114 in step 164 may be repeated until the cross beam 84 encounters the no-rack stop 126 in step 166.
If the no-rack stop 126 is encountered by the cross beam 84, then the cross beam 84 may be moved back to the home position 112 in step 168 such as by manipulation of the move-up or move-down switches 143, 144. If additional coats of coating material 106 are required to be applied to the heads 32 in step 170, the previously applied coating material 106 may be allowed to cure for a predetermined period of time prior to spraying of the additional coating material 106 in step 162 or prior to re-initiating steps 156-166. If a different type of coating material 106 is required to be applied to the heads 32 such as an exterior coat to be applied over an intermediate coat or over a primer coat, the coating material 106 in the pressure pot 108 may be changed and the sequence re-initiated following the elapse of an appropriate time period to allow the previously-applied coating material 106 to cure in step 176.
If no additional coating material 106 is to be applied, step 178 comprises initiating separation of the fastener 142 heads 32 from the upper surface 42 of the panel 44 or rack assembly 38. The lifting mechanisms 72 illustrated in
Step 184 comprises allowing the coating material 106 to cure which may further include delivering air to the chamber wherein the air is conditioned with a temperature and humidity that is compatible for curing of the coating material 106. Step 186 comprises removing or opening the lid 18 and/or door 138 from the housing 12 to allow for removal of the panels 44 or rack assemblies 38. The fasteners 142 may then be removed from the panels 44 or rack assemblies 38 in step 188. Another set of unpainted fasteners 142 or other member 30 configurations may then be loaded into the panels 44 or rack assemblies 38 according to the above-described sequence.
Referring to
Referring still to
The gate 130 as shown in
The above-described sequence may be repeated until all the heads 32 of the members 30 are painted or until the housing 12 is filled with rack assemblies 38. The air source 26 may be activated to deliver temperature and humidity-conditioned air that is conducive to curing of the paint until curing is complete. An operator may allow for a period of time for solvent flash off or solvent evaporation from the coating material 106 prior to removal of the painting apparatus 10 from the paint booth 120 and/or prior to removal of the panels 44 or rack assemblies 38 from the housing 12 and/or removal of the members 30 from the panels 44.
Referring to
Each of the processes of method 200 may be performed or carried out by a system integrator, a third party, and/or an operator (e.g., a customer). For the purposes of this description, a system integrator may include without limitation any number of aircraft manufacturers and major-system subcontractors; a third party may include without limitation any number of venders, subcontractors, and suppliers; and an operator may be an airline, leasing company, military entity, service organization, and so on.
As shown in
Apparatus and methods embodied herein may be employed during any one or more of the stages of the production and service method 200. For example, components or subassemblies corresponding to production process 208 may be fabricated or manufactured in a manner similar to components or subassemblies produced while the aircraft 202 is in service. Also, one or more apparatus embodiments, method embodiments, or a combination thereof may be utilized during the production stages 208 and 210, for example, by substantially expediting assembly of or reducing the cost of an aircraft 202. Similarly, one or more of apparatus embodiments, method embodiments, or a combination thereof may be utilized while the aircraft 202 is in service, for example and without limitation, to maintenance and service 216.
Additional modifications and improvements of the present disclosure may be apparent to those of ordinary skill in the art. Thus, the particular combination of parts described and illustrated herein is intended to represent only certain embodiments of the present disclosure and is not intended to serve as limitations of alternative embodiments or devices within the spirit and scope of the disclosure.