Temperature and humidity control system for unventilated greenhouses. Water conservation in agriculture. CO2 sequestration.
An unventilated or closed greenhouse may be used to sequester CO2 in decomposition resistant biomass such as humus or woody plant matter by using the CO2 to increase agricultural yield within the greenhouse. Water may also be recycled within a closed greenhouse, allowing deployment of the greenhouse in regions where arable land and fresh water are scarce.
The most challenging problem of operating a closed greenhouse is to remove heat during the day while preventing the relative humidity from rising to a level that is too high for the plants. In US-20080271367-A1 due to Huhta-Koivisto et al, the air of a closed greenhouse is cooled by dispensing cool falling droplets that remove both sensible and latent heat from the air. However the water is cooled by evaporation and water is thereby lost to the outside air. One embodiment of the invention circulates the water in a water-to-water heat exchanger, and one might evaporate seawater rather than freshwater on the other side of the heat exchanger, although this solution would generally restrict the greenhouse to be on the coast. One might also cool the reservoir of water within the greenhouse by using a chiller, but this solution is energetically expensive.
In EP 0 517 432 A1 due to Assaf, a large reservoir of water disposed outside of the greenhouse is cooled by circulating the water at night through a water-to-air heat exchanger, where cool ambient air is used on the other side of the heat exchanger so that heat is discharged from the reservoir to the ambient air. This invention uses the stratification of temperature within the reservoir, wherein the warmest water near the surface of the water is circulated to the heat exchanger. Although the reservoir is shown as open to the outside air, the evaporation is reduced because the water is not agitated or dispersed as droplets. However circulating water to the heat exchanger has disadvantages compared to an air-to-air heat exchanger: water is heavy, so the heat exchanger tubes would require significant support not otherwise necessary for an air-to-air heat exchanger, and there are likely many connections, so that extra expense would be required during the construction of the heat exchanger to avoid leaks.
A droplet system may be used during the day to control the temperature and humidity of the air in a closed greenhouse, with the heat accumulated in a large reservoir of water within the greenhouse during the day rather than concurrently cooling the water by evaporation or by using a chiller. This invention addresses the problem of discharging the accumulated heat in the reservoir by using the same droplet system coupled to an air-to-air heat exchanger, so that forced convection of saturated greenhouse air transfers the reservoir heat to the cool ambient air of the late night and morning.
An unventilated greenhouse provided with a continuous source of CO2 is cooled by transferring solar energy entering the greenhouse during the day into large reservoirs of water located inside the greenhouse. The accumulated reservoir heat is discharged to the outside air during the late night and morning when the outside temperature is coolest by circulating the greenhouse air through banks of thin-walled tubes located outside of the greenhouse building that serve as heat exchangers. Heat and water vapor are transferred between the greenhouse air and reservoirs by circulating reservoir water through a droplet dispenser deployed above the reservoirs. The reservoirs, droplet dispensers, and the entrance and exit ports to the heat exchanger system in the walls of the greenhouse are surrounded by a restricted volume or “tunnel” that may optionally be closed to effectively isolate the volume of air above the reservoirs and within the heat exchangers from the air in the remainder of the greenhouse volume.
During the day the heat exchanger ports are closed while wall sections along the sides of the tunnels are pivoted or slid to allow air to exchange freely between the tunnels and the remainder of the greenhouse volume. The droplet dispenser above the reservoirs is activated to transfer heat and water vapor from the greenhouse air to the cool droplets and into the reservoir, gradually warming the reservoir water during the day. During the late night and morning hours the heat exchanger ports are opened and the tunnels are closed off from the remainder of the greenhouse volume, creating a restricted volume of air above the reservoirs and within the heat exchangers. The droplets are activated above the reservoirs and saturated air is circulated through the tunnels and heat exchangers to transfer heat from the tunnel air into the cool ambient air flowing past the heat exchanger tubes, cooling the tunnel air above the reservoirs. The warm reservoir droplets transfer heat and water vapor to the cool tunnel air, cooling the reservoir water so that the reservoirs can store the solar energy entering the greenhouse during the following day.
With the exception of unintended infiltration the air never leaves the greenhouse system so that all of the water is recycled. CO2 emitted from the decomposition of biomass into humus within the greenhouse is also recycled. Hence this cooling system is most suitable for enabling agriculture in higher elevation deserts or higher latitude deserts where fresh water is scarce and the temperature is cool (<16° C.) in the early morning.
The energy requirement to maintain the greenhouse temperature and humidity during a 24-hour cycle is reduced by using the ambient night and morning temperature to cool the greenhouse. This allows the option of providing all of the required energy for the greenhouse cooling system with photovoltaics and battery storage. The solar modules may be deployed on the roof of the greenhouse over the reservoirs so that the reservoirs are shaded, preventing unneeded solar radiation from entering the greenhouse.
A plan schematic of a small greenhouse array is shown in
The reservoirs store the heat entering the greenhouse from solar radiation during the day. During this period the entry and exit ports to the heat exchangers are closed and the tunnels are open to circulate air between the tunnel volumes and the greater greenhouse volume. Heat is transferred from the air to the reservoir by pumping reservoir water above the reservoir into trays or a network of conduit under the roof of the tunnel and allowing the water to fall back by gravity or to be sprayed into the reservoir as small droplets that exchange both latent and sensible heat with the surrounding air. By the end of the day the reservoir water has warmed several degrees; this heat has to be discharged to the outside air during the night and morning so that the reservoir water is sufficiently cool to absorb the solar heat during the following day.
The greenhouse air is cooled or dehumidified at night and during the morning by circulating the air from greenhouse to greenhouse through the heat exchangers. During this period the air within the tunnels above the reservoirs may be circulated through the heat exchangers between the greenhouses as shown by the arrows. The tunnels are closed off from the greater greenhouse volume and the entry and exit ports to the heat exchangers at each end of the tunnels are open. Turnaround sections (21) allow air from a first greenhouse to eventually be returned to the first greenhouse. The turnaround sections may be replaced by additional greenhouses suitably oriented to achieve the same purpose. CO2 (18) is introduced at one or more locations in the greenhouse array to replenish the CO2 consumed by the plants.
An elevation schematic for two greenhouse buildings (10) is shown in
An elevation schematic of a single greenhouse building (10) is shown in
A plan view schematic of one embodiment of the tunnel (14) is shown in
A second plan view schematic for this embodiment of the tunnel is shown in
Water drawn from the reservoirs to irrigate the plants is returned to the greenhouse air through evaporation from the surface of the soil or transpiration from the plants. Water that transpires from the plants or evaporates from the droplets or soil will eventually be returned to the reservoirs by condensation onto the droplets falling into the reservoirs or by condensation on the inner surfaces of the heat exchanger tubes.
The droplet size must be large enough to allow easily returning the droplets to the reservoirs. Depending upon the geometry of the reservoir and dispensing system, the droplets from a very fine mist or fog may have a diameter that is too small for this application. With this caveat in mind, smaller droplets in general are much better than larger droplets for heat transfer. Ideally the droplets have a diameter of less than 1 mm.
For some embodiments it may be preferable to reduce the floor space occupied by the reservoirs. One such embodiment uses a tall cistern for a reservoir with suitable conduit to provide a tunnel that accommodates the geometry of a tall cylindrical structure.
Additional embodiments of this invention may cool other structures besides greenhouses or may use other lighting schemes for the plants. In an alternative embodiment artificial lighting using efficient red and blue LEDs instead of sunlight may reduce the load on the cooling system. In another embodiment wide band gap photovoltaic modules with transparent front and back contacts such as thin film perovskite solar cells may be deployed on the roof of the greenhouse and use the blue part of the spectrum to generate energy for powering the cooling system while transmitting the red part of the spectrum to the plants. The use of soilless cultivation schemes such as hydroponic or aeroponic cultivation are additional embodiments of the same invention.
The remainder of this discussion describes in much greater detail a theoretical model of a specific embodiment of this invention that is operated to cultivate sugarcane. The model and its computer simulation illustrate the heat and mass transport principles behind the operation of the cooling system as well as a recipe for operating the greenhouse cooling system over a 24-hour cycle during the hottest days of the summer. We will use a coordinate system with {circumflex over (x)} in the direction of the airflow shown for the top row of greenhouses in
Each greenhouse building in the model has a width W=50 m that extends along the {circumflex over (x)} direction, a length that may be extended indefinitely along {circumflex over (z)}, and a total height hG of 10 m. The greenhouse height includes dr=1.2 m of either reservoir or soil depth and 8.8 m of air volume; reservoirs occupy half the greenhouse floor space so that 2 ha of enclosed area provides 1 ha of cultivated area. The reservoirs and cultivated regions are disposed as 5 m wide lanes that extend along {circumflex over (x)}. The reservoir lanes are enclosed in tunnels that enclose a rectangular volume with a height h=2 m above the reservoirs for the droplet cooling system. As previously described, the sides of the tunnels are optionally opened during the day to the air in the greater greenhouse volume.
The greenhouse buildings are separated along {circumflex over (x)} by a distance L=15 m but connected to one another in this region by heat exchanger tube banks that connect the tunnel volumes of adjacent greenhouses: each reservoir tunnel begins or ends in a heat exchanger bank of 1500 PVC tubes with an inner diameter D0=4.8 cm and an outer diameter D1=5.0 cm. The tubes have a pitch of a=2 along {circumflex over (z)} and a pitch of b=1.25 along ŷ: the distance between the centers of the tubes within a row along {circumflex over (z)} is aD1 and the distance between tube rows along ŷ is bD1. There are 30 layers of tubes so that the height of the tube bank is 186.3 cm. The tube bank may be arranged in an inline or staggered configuration and angled slightly to allow condensed water to drain into the reservoir from the preceding greenhouse as shown in
Although PVC has a low thermal conductivity (k01=0.0019 W cm−1° C.−1, 1000 times less than aluminum), the heat transfer is dominated by the conductivity through the air on either side of the 1 mm tube wall so that the conductivity through the tube wall only reduces the total heat transfer coefficient by 10%.
The simulation begins with nighttime operation at 7 pm when the reservoir tunnels are vented to the remainder of the greenhouse volume and the heat exchanger entry and exit ports are closed. Between 7 pm and 9 pm the greenhouse cooling system is idle and the temperature gradually decreases while the relative humidity rises as heat is conducted through the walls and roof. To control the nighttime increase in relative humidity, 10% or the reservoir lanes—denoted as the R2 lanes or reservoirs—are devoted to dehumidifying the air at night and during the morning. The R2 lanes have optionally empty reservoirs and no droplet system plumbing and the tunnels are always open to the greenhouse volume. Hence they cannot be used to cool the air during the day and part of these lanes may even be cultivated. Between 9 pm and 10 am the ports to the heat exchangers on the R2 lanes are opened and greenhouse air is pulled through the heat exchangers to dehumidify the air. During this period the airflow in the R2 heat exchanger tubes is maintained at a constant velocity of 6 m s−1.
The remaining 90% of the reservoir lanes, denoted as R1 lanes, contain fully operational reservoirs and droplet systems. Between 1 am and 9:30 am these lanes are discharging reservoir heat to the cool outside air. The tunnels are closed off from the greenhouse and the droplet system is activated at a constant flow rate of 300 cm3 s−1 of droplets per m2 of reservoir area. Fans pull air through the heat exchanger tubes at the variable rate of vx=0.58(Tr−To)m s−1 where Tr is the reservoir temperature and To is the outdoor temperature (° C.). The maximum air velocity in the heat exchanger tubes for the R1 reservoirs is 5.98 m s−1 at 6:35 am.
Between 9:30 am and 7 pm the greenhouses are running in daytime operation: the vents to the R1 tunnels are opened, the heat exchanger ports are closed, and the droplet system is operated at a constant flow rate of 100 cm3 s−1 per m2 of reservoir area to transfer incoming solar heat to the reservoirs. During this period fans pull greenhouse air across the open tunnels at 2.5 m s−1 to continuously cool the greenhouse air.
Sugarcane plants are grown on the cultivated regions in the model at a very high density of 5 plants m−2. Each plant has an average green mass of 6 kg so that the biomass density is 300 tonnes ha−1 of cultivated area. The optimal average daily temperature for sugarcane has a range that extends to 35° C. so that sugarcane is an ideal candidate for the greenhouse system. A second notable candidate is corn with an optimal average daily temperature that extends to 33° C.
The transpiration E of sugarcane grown at high density within the greenhouse significantly affects the greenhouse climate and therefore the requirements of the cooling system. It is given by the relation1 E=gVPD where g is the leaf conductance and VPD is the vapor pressure deficit:
Pw is the saturation vapor pressure, Pa1 is one atmosphere, and RH is the relative humidity. The biological properties of greatest relevance to the greenhouse cooling system are contained in the model of the leaf conductance g. The conductance g combines the stomatal conductance gS, the cuticle conductance gC for leaf regions outside the stomata, and the boundary layer conductance gBL that accounts for the air velocity next to the leaves.1 In general gS>>gC and the air is circulated through the plants at 2 m s−1 in the model so that gBL may be neglected,1 hence g≈gS. The stomatal conductance gS depends upon both light intensity and CO2 concentration; for sugarcane gS reaches a maximum of 0.85 mol m−2 s−1 in the afternoon,1 where these units refer to moles of air per leaf area. If the CO2 concentration is held fixed within the greenhouse and the average leaf area is 600 cm2 per plant,2 then gS is modeled as proportional to the insolation, reaching a maximum of 0.51 mol s−1 per plant at 1 pm in the afternoon for CO2 at the ambient concentration. In the simulation the CO2 concentration is assumed to be double the ambient concentration; this reduces the stomatal conductance and transpiration by 28%.3
When the heat ΔQ is introduced into a partial volume or voxel Va of greenhouse air, the increase in air temperature ΔTa is modeled by the mass and specific heat capacity of the air, plants, and top layer of soil contained within Va:
ΔQ=(VaρaCpa+mpCpp+msCps)ΔTa (2)
In Eq. (2) ρa is the density of air, Cpa is the specific heat capacity of air, mp is the mass of the plants within Va, Cpp is the specific heat capacity of the plants, m is the mass of the top 10 cm a pp s of soil, and Cps is the specific heat capacity of the soil. The volume V=2A1ha of the representative greenhouse voxel used for the simulation includes A1=1 m2 of cultivated area, A1=1 m2 of reservoir area, and the average height ha of the air column within the greenhouse over the cultivated area and tunnels if the tunnels are closed (7.8 m), or the full height of the air column if the tunnels are open to the greenhouse air (8.8 m). The heat transfer through the surface of the reservoirs is neglected compared to the heat transfer to the reservoirs from the droplet system. The model assigns mp=30 kg, Cp=1.24 J K−1 g−1, ms=190 kg, and Cps=0.92 J K−1 g−1.
Heat that enters the greenhouse by insolation or by net conduction through the walls and roof must be removed by the heat exchangers. Because the heat is only removed from the greenhouse during the night and morning, the incoming heat during the day must be stored in the reservoirs and to a lesser extent in the mass of the soil and plants in order to control the air temperature inside the greenhouse.
During the day the solar insolation above the greenhouse is 8.0 kWh m−2 or 28.8 MJ m−2. Opaque panels deployed on the roof above the reservoir lanes shade 37.5% of the greenhouse and reduce the insolation that enters the greenhouse to 18.0 MJ m−2 while still allowing the full light intensity to reach the plants. If 55% of these panels are solar panels with an efficiency of 20% and coupled to battery storage, then it will be shown below that the solar panels will generate enough electricity to operate the greenhouse cooling system. The average insolation versus time that enters the greenhouse is modeled as the half cosine curve dQs/dt=I0 cos [π(t−13)/12] between sunrise at 7 am and sunset at 7 pm, where t is the time in hours for a 24-hour clock and I0=654 W m−2.
The most critical parameter for operating the greenhouse cooling system is the minimum outside temperature during a 24-hour period. In the model the minimum temperature is 16° C. at 7 am and the maximum temperature is 38° C. at 3 pm. Between 6:08 am and 3:52 pm the temperature follows a cosine curve; at all other times the temperature decreases linearly from the afternoon until the morning. The temperature difference ΔT between the greenhouse air and outside air transfers heat by conduction through the walls and roof at the rate QC=UAΔT where A is the total area of the walls and roof with U=1.4 W ° C.−1 m−2.
During the day the heat exchanger ports are blocked and the reservoir tunnels are vented allowing the greenhouse air to be circulated by fans between the tunnel airspace and the greater greenhouse volume. The simulation calculates the heat and mass transfer during a small time step Δt (typically 1.5 minutes) into the representative voxel Va of greenhouse air.
During Δt solar insolation transfers the heat ΔQS into the greenhouse and the additional heat ΔQC is transferred into the greenhouse by conduction through the walls and roof. The reservoir droplet dispensing system is activated to provide cool water droplets pumped from the reservoir to transfer the incoming heat into the reservoir or into the air as latent heat. The simulation uses the relations for the heat and mass transfer from a falling droplet, described in detail near the end of this section, to calculate the signed quantities for the total heat ΔQr and mass ΔMr transferred to the falling droplets—and therefore to the reservoir—within a representative voxel during Δt. When ΔMr<0 latent heat is transferred from the droplets to the air increasing the humidity. The humidity is also increased by the transpiration ΔMTr>0 from the plants. Generally ΔMr>0 during the day so that the droplet system dehumidifies the air, counteracting the transpiration from the plants.
The change in humidity is calculated from the mixing fraction Xa: the grams of water per gram of dry air. The mixing fraction Xa, the greenhouse temperature Ta, and the reservoir temperature Tr each change during Δt by the amounts:
In these expressions we have introduced the additional parameters ρw and Cpw for the density and specific heat capacity of water, and Hv for the heat of vaporization of water.
When the reservoirs are discharged at night and during the morning the tunnels are not vented and the heat exchanger ports are open so that the air volume in the tunnels and heat exchanger tubes forms a separate system from the remainder of the greenhouse volume. The simulation follows a small tunnel voxel of air moving through the tunnel and additionally a much smaller tube voxel of air moving through a single heat exchanger tube to calculate the heat and mass transfer at each position x along the tunnel-tube volume. The air velocities vT through the tunnel and vx through the tubes are related by the relative cross sectional areas of the tunnel and tubes: vx=3.684vT.
Within the tunnel volume over the reservoir surface the simulation follows a lamina of moving air or tunnel voxel with volume VT=hΔW ΔZ1 and velocity vT from the beginning of the tunnel at the exit of the previous heat exchanger until the end of the tunnel at the entrance of the next heat exchanger. The quantity h=2 m is the height of the tunnel air space above the reservoir surface through which the droplets fall, ΔZ1=1 m is a unit width for a “1 m lane” of reservoir surface, and ΔW=5 cm is the length of the tunnel voxel in the direction of airflow. Cool saturated air enters the beginning of the tunnel and the droplet flow rate is set sufficiently high so that the air at the end of the tunnel is at or near the reservoir temperature and is saturated or nearly saturated.
The time step for the tunnel simulation has the duration dt=ΔW/VT where dt<<Δt. During each time step warm water droplets pumped from the reservoir enter the tunnel voxel from the droplet system and transfer both latent and sensible heat into the voxel air. The amount of sensible and latent heat transferred by the droplet system is calculated using the relations given at the end of this section and depend upon the flow rate and temperature of the droplets and upon the tunnel air temperature and humidity. The temperature TaT of the tunnel voxel is incremented after each time step by dTaT=dQSen/(VTρaCpa) where dQSen is the heat transferred by convection from the reservoir droplets to the voxel air during dt. The tunnel voxel mixing fraction is incremented by dXaT=−dMr/(VTρa) where −dMr is the mass of water vapor transferred from the droplets to the voxel air during dt. dQLat=−HvdMr is the latent heat transferred to the tunnel voxel by the droplets during dt by evaporation (dQLat>0) or by condensation (dQLat<0).
At the end of the tunnel the latent heat QLat and sensible heat QSen accumulated in the tunnel voxel over the width of a 1 m wide lane of reservoir surface enters the heat exchanger tubes above this lane during the period dt so that the reservoir temperature decreases during Δt by the amount:
Within the heat exchanger tube the simulation follows a cylindrical lamina of air or tube voxel with volume V=πD02ΔL/4 where ΔL=1.5 cm is the length of the tube voxel. Each time step for the heat exchanger tube simulation has the duration dt=ΔL/vx<<Δt. Heat is conducted through the sides of the tube to the outside air; this heat transfer must also account for water condensing within the tube voxel as the air temperature drops.
We first calculate the total heat transfer coefficient hc. This coefficient has 3 contributions which represent the sum of the resistances to the heat flow out of the tube4:
The first term accounts for the heat transfer across the boundary layer of the air stream flowing within the tube with heat transfer coefficient h0. The second term accounts for the thermal conductivity k01 through the wall of the tube. The third term accounts for the heat transfer across the boundary layer of the outside air stream flowing past the tube bank with heat transfer coefficient h1.
For the heat transfer within the tube, h0=Nu0D0/ka where ka is the thermal conductivity for air and Nu0 is the Nusselt number. The Reynolds number is given by Re0=D0vxρa/μa where μa is the viscosity of air. For Re0>2300 the flow of air through the tube is turbulent; the airflow is generally turbulent for the conditions of the simulation. For turbulent or laminar flow Nu0 is given in terms of Re0 and the Prandtl number Pr=Cpaμa/ka by the following expressions5:
Note that the temperature loss through the tube for turbulent flow is only a weak function of velocity: although the residence time of air within a section of length ΔL is dt=ΔL/vx the heat transfer coefficient is proportional to vx0.8.
The thermal conductivity k01 through the tube wall was discussed earlier. The Nusselt number Nu1 for the cross flow of outside air past the tube is given by5:
where Re1=Dhv1ρa/μa and v1 is the velocity of the outside air within the tube bank. The heat transfer coefficient for the outside airflow is h1=Nu1D1/ka. The airflow is turbulent for Re1>10,000; the flow is generally turbulent for the model.
When the heat ΔQw is transferred out of the tube voxel air through the walls of the tube during dt the temperature drops and water condenses, releasing sensible heat ΔQm back into the tube voxel air. The magnitude of the temperature drop ΔT of the tube voxel air during the time dt must account for both sources of heat:
ρaCpaVxΔT=ΔQw−ΔQm (8)
In Eq. 8 the quantities ΔT, ΔQw, and ΔQm are positive magnitudes. If To is the outside temperature and T, X are the temperature and mixing fraction of the tube voxel air, then:
where the voxel is exposed to the tube wall area A=πD0ΔL. Eqs. (8) and (9) may be solved for ΔT:
In the simulation the derivative dX/dT is set to zero if the relative humidity is less than 99.9% because there is no condensation. Otherwise dX/dT is calculated from the vapor pressure for saturated air. It may be shown (starting from Eq. 22) that:
where Pa1 is the pressure at 1 atm and Pw is the vapor pressure of saturated air at the tube voxel temperature. For 10° C.<T<40° C. the saturated vapor pressure is given by the following cubic polynomial where Pw is in Pascals:
Pw(T)=480.2+71.09T−0.352T2+0.0722T3 (12)
Eq. (12) also yields the derivative dPw/dT for Eq. (11).
The pressure drop through a tube of length L for turbulent flow is given by4:
where the friction factor f is given approximately by the Blasius formula4: f=0.791/Re01/4. Once the pressure drop is known the power requirement for vanaxial fans to pull the air through the heat exchanger bank may be calculated from6:
Outside fans above the heat exchanger pull air upwards through the tube bank at an average “empty” velocity ve: the velocity of the air before entering the tube bank. If the average change in temperature of the air after crossing the tube bundle is ΔTTB then heat is removed from the tube bank by the cross flow of outside air at the rate vcLΔZ1ρaCpaΔTTB per meter of tube bank width. Equating this loss to the rate of loss of reservoir heat to the tunnel air per meter of greenhouse length yields the rise in outside air temperature as the air crosses the tube bank:
where δQr/Δt is the rate of reservoir heat loss for a 1 m wide lane of reservoir surface. This temperature change is 0.7° C. or less during the 24 hour cycle. When the heat transfer is calculated in the simulation from a single tube the outside temperature To is increased by half a degree at the surface of the tube to account approximately for the average rise in air temperature as the outside air flows past the tube bundle: this is the effective To used in Eqs. (9) and (10).
The heat exchanger tube bank design was described earlier with definitions for the pitch a along {circumflex over (z)} and the pitch b along ŷ. The pressure drop across the tube bank is given by Martin and Gnielinski7:
where NR is the number of tube rows, v1=vea/(a−1) is the air velocity in the narrowest cross section, and ξ is a dimensionless constant that depends upon a and b. The Reynolds number Re1 for this geometry is calculated from the velocity v1 and the outer tube diameter D1. The constant ξ is given by7:
In the simulation the outside empty velocity and the inner tube velocity are chosen to be equal (ve=vx). The power requirements for maintaining the airflow through the heat exchanger tube bundle and for maintaining the outside airflow across the bundle are calculated from Eqs. 13, 14, 16 and 17. The power required to pump the water to maintain the reservoir flow is given by8:
The energy cost to operate the greenhouse over a 24-hour cycle is 2.32 MWh per cultivated hectare: 0.92 MWh to operate the pumps to maintain the reservoir flow and 1.40 MWh to operate the fans inside and outside of the greenhouse to discharge the reservoir heat and dehumidify the air. If 20% efficient solar panels coupled with battery storage are deployed to shade part of the reservoirs by covering 10% of the total roof area, then the panels will provide enough electrical power to operate the greenhouse cooling system under the insolation conditions assumed in the model so that the greenhouses may be deployed off the grid.
This discussion ends with a calculation of the heat and mass transfer between the air and a single falling droplet of water. This calculation is one of the foundations for the theoretical model and simulation of the cooling system. The droplet is assumed to be spherical with diameter D and uniform temperature Tw (well-mixed); it is falling with velocity v. In general the droplet is not at terminal velocity so that a numerical integration of the heat and mass transfer is required over the time that the droplet is in the air. The air is at temperature Ta with a mixing fraction Xa. At the surface of the droplet the air is saturated (relative humidity RH=100%) with mixing fraction Xs. The fluid properties for the air surrounding the droplet that are used to calculate the dimensionless variables are calculated at the average temperature Tf=(Ta+Tw)/2.
The convective heat transfer to the droplet is given by:
where hc is the convective heat transfer coefficient for the droplet (J s−1 cm−2° C.−1). The heat transfer coefficient for a falling spherical droplet is obtained from4:
This equation may be written to express the dimensionless number definitions for the Nusselt number Nu, Reynolds number Re, and Prandtl number Pr as Nu=0.2+0.6 Re1/2 Pr1/3.
The signed mass transfer to the droplet, due to condensation or evaporation, is given by:
where hm is the mass transfer coefficient (g s−1 cm−2). The mixing fraction Xs at the surface of the droplet may be expressed in terms of the vapor pressure of water in saturated air at the temperature of the droplet:
where Ma is the gram molecular weight of air, Mw is the gram molecular weight of water, Pa1 is the air pressure at one atmosphere, and Pw is the vapor pressure of water in saturated air at the temperature of the droplet.
The mass transfer coefficient is obtained from a relation similar in form to Eq. (20)4:
where Λaw (cm2 s−1) is the binary mass transfer coefficient between air and water. Λaw is strongly temperature dependent and calculated from4:
where p is the pressure (atm), T is the temperature in Kelvin, pca and pcw are the critical pressures for air and water, and where Tca and Tcw are the critical temperatures for air and water.
When the droplet exchanges mass with the air in Eq. 21 it exchanges latent heat: the droplet cools or heats and the surrounding air gains or loses humidity. For the case of convective heating in Eq. 19 the droplet exchanges sensible heat and the surrounding air changes temperature. Neglecting radiative heat loss, which is on the order of one percent of the heat transfer from Eqs. 19 and 21, the rate of change of the droplet temperature is:
Both the heat and the mass transfer coefficients depend upon the Reynolds number, which in turn depends upon the velocity of the droplet. The falling droplet accelerates due to the net force of gravity and drag against the air. The equation of motion is:
where C is the dimensionless drag coefficient. These coefficients have been tabulated for different drop diameters9; for a 1 mm diameter droplet C=0.67. At terminal velocity v(∞) the acceleration is zero and we obtain:
For a 1 mm droplet the terminal velocity is 403 cm/s corresponding to Re=269. The product Pr2/3 Re=214<5×104 so that Eq. 20 remains valid at all times.4 In general Eq. 26 must be integrated numerically in small time steps dt. To compute the droplet velocity for each time step we may use the following explicit integration:
In conclusion, this invention describes a method and apparatus to convectively cool an unventilated greenhouse while conserving substantially all of the water, potentially extending agriculture into regions where fresh water and arable land are scarce and providing a means to sequester CO2 into biomass without displacing farmland or regions of high biodiversity. The invention uses the low ambient temperature during the late night and morning to minimize the energy requirement for the cooling system. While the invention has been described with reference to some specific embodiments, it will be understood by those skilled in the art that changes may be made and equivalents may be substituted while remaining within the scope of the invention. Therefore it is intended that the invention not be limited to the particular embodiments discussed, but that the invention will include any embodiment falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3669184 | Franzreb | Jun 1972 | A |
4567732 | Landstrom | Feb 1986 | A |
4869070 | Assaf | Sep 1989 | A |
8915015 | Augspurger | Dec 2014 | B1 |
20080271367 | Huhta-Koivisto | Nov 2008 | A1 |
20090158647 | Kleinwaechter | Jun 2009 | A1 |
20100126062 | Houweling | May 2010 | A1 |
20150066215 | Buduri | Mar 2015 | A1 |
20160057943 | Im | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
1598314 | Nov 2005 | EP |
Entry |
---|
Machine translation of EP-1598314-A1 (Year: 2021). |
Number | Date | Country | |
---|---|---|---|
20210076576 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62733086 | Sep 2018 | US |