This invention relates to the technical field of alternative energy, specifically, methods and apparatus for creating electrical power from some type of alternative energy source to make it available for use in a variety of applications. Through perhaps four different aspects, the invention provides techniques and circuitry that can be used to harvest power at high efficiency from an alternative energy source such as a solar panel, or a sea of strings of panels so that this power can be provided for AC use, perhaps for transfer to a power grid or the like. These four aspects can exist perhaps independently and relate to: 1) controlling electrical power creation with an inverter, 2) operating an inverter at its maximal efficiency even when a solar panel's maximum power point would not be at that level, 3) protecting an inverter, and even 4) providing a system that can react and assure operation for differing components and perhaps even within code limitations or the like.
Renewable electrical energy that is electrical energy created from alternative sources such as those that are environmentally compatible and perhaps sourced from easily undisruptively available sources such as solar, wind, geothermal or the like is highly desirable. Considering, but not limiting, the example of solar power this is almost obvious. For years, solar power has been touted as one of the most promising for our increasingly industrialized society. Even though the amount of solar power theoretically available far exceeds most, if not all, other energy sources (alternative or not), there remain practical challenges to utilizing this energy. In general, solar power remains subject to a number of limitations that have kept it from fulfilling the promise it holds. In one regard, it has been a challenge to implement in a manner that provides adequate electrical output as compared to its cost. The present invention addresses an important aspect of this in a manner that significantly increases the ability to cost-effectively permit solar power to be electrically harnessed so that an AC output may be a cost-effective source of electrical power whether it be provided for internal use or for public consumption, such as feedback to a grid or the like.
Focusing on solar power as it may be applied in embodiments of the invention, one of the most efficient ways to convert solar power into electrical energy is through the use of solar cells. These devices create a photovoltaic DC current through the photovoltaic effect. Often these solar cells are linked together electrically to make a combination of cells into a solar panel or a PV (photovoltaic) panel. PV panels are often connected in series to provide high voltage at a reasonable current. Voltage, current, and power levels may be provided at an individual domestic level, such as for an individual house or the like. Similarly, large arrays of many, many panels may be combined in a sea of panels to create significant, perhaps megawatt outputs to public benefit perhaps as an alternative to creating a new coal burning power plant, a new nuclear power plant, or the like.
Regardless of the nature of the combination, the output (perhaps of a solar cell or a solar panel, or even combinations thereof) is then converted to make the electrical power most usable since the power converters often employed can use high voltage input more effectively. This converted output is then often inverted to provide an AC output as generally exists in more dispersed power systems whether at an individual domestic or even a public level. In a first stage in some systems, namely, conversion of the alternative source's input to a converted DC, conventional power converters sometimes even have at their input handled by an MPPT (maximum power point tracking) circuit to extract the maximum amount of power from one or more or even a string of series connected panels. One problem that arises with this approach, though, is that often the PV panels act as current sources and when combined in a series string, the lowest power panel can limit the current through every other panel. In a second stage in some systems, namely the inversion function to transform the DC into AC, another problem can be that operation of the conversion at maximum power point (MPP) can be somewhat incompatible with or at least suboptimal for an inverter. Prior to the present invention, it was widely seen that it was just an inherent characteristic that needed to be accepted and that the MPP conversion function was so electrically critical that it was generally accepted as a control requirement that made suboptimization at the inverter level merely a necessary attribute that was perhaps inherent in any converted-inverted system. Perhaps surprisingly, prior to this invention, the goal of optimizing both the MPP conversion function while also optimizing the inversion function was just not seen as an achievable or perhaps at least significant goal. The present invention proves that both such goals can not only be achieved, but the result can be an extraordinarily efficient system.
In understanding (and perhaps defending) the perceived paramount nature of an MPP operation, it may be helpful to understand that, in general, solar cells historically have been made from semiconductors such as silicon pn junctions. These junctions or diodes convert sunlight into electrical power. These diodes can have a characteristically low voltage output, often on the order of 0.6 volts. Such cells may behave like current sources in parallel with a forward diode. The output current from such a cell may be a function of many construction factors and, is often directly proportional to the amount of sunlight. The low voltage of such a solar cell can be difficult to convert to power suitable for supplying power to an electric power grid. Often, many diodes are connected in series on a photovoltaic panel. For example, a possible configuration could have 36 diodes or panels connected in series to make 21.6 volts. With the shunt diode and interconnect losses in practice such panels might only generate 15 volts at their maximum power point (MPP). For some larger systems having many such panels, even 15 volts may be too low to deliver over a wire without substantial losses. In addition, typical systems today may combine many panels in series to provide voltages in the 100's of volts in order to minimize the conduction loss between the PV panels and a power converter. Electrically, however, there can be challenges to finding the right input impedance for a converter to extract the maximum power from such a string of PV panels. Naturally, the input usually influences the output. Input variances can be magnified because, the PV panels usually act as current sources and the panel producing the lowest current can sometimes limit the current through the whole string. In some undesirable situations, weak panels can become back biased by the remainder of the panels. Although reverse diodes can be placed across each panel to limit the power loss in this case and to protect the panel from reverse breakdown, there still can be significant variances in the converted output and thus the inverted input. In solar panel systems, problems can arise due to: non-uniformity between panels, partial shade of individual panels, dirt or accumulated matter blocking sunlight on a panel, damage to a panel, and even non-uniform degradation of panels over time to name at least some aspects. These can all be considered as contributing to the perception that a varying inverted input was at least practically inevitable. Just the fact that a series connection is often desired to get high enough voltage to efficiently transmit power through a local distribution to a load, perhaps such as a grid-tied inverter has further compounded the aspect. In real world applications, there is also frequently a desire or need to use unlike types of panels without regard to the connection configuration desired (series or parallel, etc.). All of this can be viewed as contributing to the expectation of inevitability relative to the fact that the inverter input could not be managed for optimum efficiency.
In in previous stat-of-the-art system, acceptable efficiency has been at relatively lower levels (at least as compared to the present invention). For example, in the article by G. R. Walker, J. Xue and P. Sernia entitled “PV String Per-Module Maximum Power Point Enabling Converters” those authors may have even suggested that efficiency losses were inevitable. Lower levels of efficiency, such as achieved through their ‘enhanced’ circuitries, were touted as acceptable. Similarly, two of the same authors, G. R. Walker and P. Sernia in the article entitled “Cascaded DC-DC Converter Connection of Photovoltaic Modules” suggested that the needed technologies would always be at an efficiency disadvantage. These references even include an efficiency vs. power graph showing a full power efficiency of approximately 91%. With the high cost of PV panels operation through such a low efficiency converter it is no wonder that solar power has been seen as not yet readily acceptable for the marketplace. The present invention shows that this need not be true, and that much higher levels of efficiency are in fact achievable.
Another less understood problem with large series strings of PV panels may be with highly varying output voltage, the inverter stage driving the grid my need to operate over a very wide range also lowering its efficiency. It may also be a problem if during periods of time when the inverter section is not powering the grid that the input voltage to this stage may increase above regulatory limits. Or conversely, if the voltage during this time is not over a regulatory limit then the final operational voltage may be much lower than the ideal point of efficiency for the inverter. In addition, there may be start-up and protection issues which add significant cost to the overall power conversion process. Other less obvious issues affecting Balance of System (BOS) costs for a solar power installation are also involved. Thus, what at least one aspect of electrical solar power needs is an improvement in efficiency in the conversion stage of the electrical system. The present invention provides this needed improvement.
As mentioned with respect to the field of invention, the invention includes a variety of aspects, which may be combined in different ways. The following descriptions are provided to list elements and describe some of the embodiments of the present invention. These elements are listed with initial embodiments, however it should be understood that they may be combined in any manner and in any number to create additional embodiments. The variously described examples and preferred embodiments should not be construed to limit the present invention to only the explicitly described systems, techniques, and applications. Further, this description should be understood to support and encompass descriptions and claims of all the various embodiments, systems, techniques, methods, devices, and applications with any number of the disclosed elements, with each element alone, and also with any and all various permutations and combinations of all elements in this or any subsequent application.
In various embodiments, the present invention discloses achievements, systems, and different initial exemplary control functionalities through which one may achieve some of the goals of the present invention. Systems provide for inverter controlled systems of photovoltaic conversion, high efficiency renewable energy creation, inverter protection designs, and even dynamically reactive conversion systems.
Some architectures may combine a PV panel with MPP and even a dual mode power conversion circuitry to make what may be referred to as a Power Conditioner (PC) element. Converters may have a topology such as the initial examples shown in
In embodiments, this invention may permit in inverter to produce its maximum power thereby harvesting more total energy from the overall system. Interestingly, this may exist even while a converter alters its acceptance of alternative power to maintain an MPP. Embodiments may be configured so that the output may be a higher voltage AC output (for example, 400V or more). Additionally, configurations may allow for an easy to administer inverter protection, perhaps even with or without feedback elements.
As mentioned above, the invention discloses a variety of aspects that may be considered independently or in combination with others. Initial understanding begins with the fact that one embodiment of a renewable electrical energy AC power system according to the present invention may combine any of the following concepts and circuits including: an inverter controlled system to at least some extent, a maximal efficiency inverter operational capability, a protected inverter alternative AC energy system, a dynamically reactive photovoltaic system, and an engineered code compliant alternative energy system. Aspects may include a very high efficiency photovoltaic converter, a multimodal photovoltaic converter, slaved systems, and even output voltage and/or output current protected system. Each of these should be understood from a general sense as well as through embodiments that display initial applications for implementation. Some initial benefits of each of these aspects are discussed individually and in combination in the following discussion as well as how each represents a class of topologies, rather than just those initially disclosed.
The DC-DC power converter (4) may have its operation controlled by a capability generally indicated as converter functionality control circuitry (8). As one of ordinary skill in the art should well appreciate, this converter functionality control circuitry (8) may be embodied as true circuitry hardware or it may be firmware or even software to accomplish the desired control and would still fall within the meaning of a converter functionality control circuitry (8). Similarly, the DC-DC power converter (4) should be considered to represent photovoltaic DC-DC power conversion circuitry. In this regard it is likely that hardware circuitry is necessary, however combinations of hardware, firmware, and software should still be understood as encompassed by the circuitry term.
The DC-AC inverter (5) may also have its operation controlled by inverter control circuitry (38) that likewise may be embodied as true circuitry hardware or it may be firmware or even software to accomplish the desired control and would still fall within the meaning of an inverter controlling step or an inverter control circuitry (38).
As illustrated in
Sequencing through the schematic diagram, it can be understood that the DC-DC power converter (4) may act to convert its input and thus provide a converted DC photovoltaic output (6) which may serve as an input to the DC-AC inverter (5) which may be of a variety of designs. This DC-AC inverter (5) may serve as one way to accomplish the step of inverting the DC power into an inverted AC (7) such as a photovoltaic AC power output (7) that can be used by, for example, a power grid (10) through some connection termed an AC power grid interface (9). In this manner the system may create a DC photovoltaic output (6) which may be established as an input to some type of DC-AC inverter (5). This step of inverting an input should be understood as encompassing and creation of any substantially alternating signal from any substantially unidirectional current flow signal even if that signal is not itself perfectly, or even substantially, steady.
As shown in
As illustrated for an electrically serial combination, output may be combined so that their voltages may add whereas their currents may be identical. Conversely, electrically parallel combinations may exist.
As mentioned above, circuitry and systems can be configured to extract as much power as possible from an alternative electrical energy source (1); this is especially applicable for a solar power source or sources where insolation can be variable from source to even adjacent source. Electrically, this may be accomplished by achieving operation to operate at one or more solar cell, panel, or string's maximum power point (MPP) by MPP circuitry or maximum power point tracking (MPPT). Thus, in embodiments, a solar power system according to the invention may include an MPPT control circuit with a power conversion circuit. It may even include range limiting circuitry as discussed later.
This aspect of maximum power point is illustrated by reference to
As one skilled in the art would appreciate, there are numerous circuit configurations that may be employed to derive MPP information. Some may be based on observing short circuit current or open circuit voltage. Another class of solutions may be referred to as a Perturb and Observe (P&O) circuit. The P&O methods may be used in conjunction with a technique referred to as a “hill climb” to derive the MPP. As explained below, this MPP can be determined individually for each source, for adjacent sources, of for entire strings to achieve best operation. Thus a combined system embodiment may utilize individually panel (understood to include any source level) dedicated maximum photovoltaic power point converter functionality control circuitries (16).
Regardless of whether individually configured or not, in one P&O method, an analog circuit could be configured to take advantage of existing ripple voltage on the panel. Using simple analog circuitry it may be possible to derive panel voltage and its first derivative (V′), as well as panel power and its first derivative (P′). Using the two derivatives and simple logic it may be possible to adjust the load on the panel as follows:
There may be numerous other circuit configurations for finding derivatives and logic for the output, of course. In general, a power conditioner (17) may include power calculation circuitry, firmware, or software (21) which may even be photovoltaic multiplicative resultant circuitry (22). These circuitries may act to effect a result or respond to an item which is analogous to (even if not the precise mathematical resultant of a V*I multiplication function) a power indication. This may of course be a V*I type of calculation of some power parameters and the system may react to either raise or lower itself in some way to ultimately move closer to and eventually achieve operation at an MPP level. By provided a capability and achieving the step of calculating a photovoltaic multiplicative power parameter, the system can respond to that parameter for the desired result.
In many traditional systems, such an MPP operation is often performed at a macro level, that is for entire strings or the entire alternative electrical energy source network. As explained herein, this is one aspect that can contribute to less than optimal efficiency. Often many traditional systems derive MPP at a front end or by some control of the DC-AC inverter (5). Thus, by altering the inverter's power acceptance characteristics, an alteration of the current drawn or other parameter, and thus the total power created, can be altered to pull the maximum from the alternative electrical energy sources (1). Whether at the front of the inverter or not, of course, such an alteration would vary the input to the DC-AC inverter (5) and for this reason as well as the fact that insolation varies, it had come to be expected that inverters would always necessarily experience a variation in input and thus the more important goal of operation at an MPP level would not permit operation at the best efficiency input level for the inverter. The present invention shows that this is not true.
Another aspect of the invention is the possibility of the inverter controlling the output of the converter. Traditionally, the inverter has been viewed as a passive recipient of whatever the converter needs to output. In sharp contrast, embodiments of the present invention may involve having the DC-AC inverter (5) control the output of the DC-DC converter (4). As mentioned in more detail below, this may be accomplished by duty cycle switching the DC-AC inverter (5) perhaps through operation of the inverter control circuitry (38). This duty cycle switching can act to cause the output of the DC-DC converter (4)(which itself may have its own operation duty cycle switched to achieve MPP operation) to alter by load or otherwise so that it is at precisely the level the DC-AC inverter (5) wants. As mentioned above, this may be achieved by a direct control input or, for preferred embodiments of the invention may be achieved by simply alter an effect until the converter's DC photovoltaic output (6) and thus the inverter input (29) are as desired. This can be considered as one manner of photovoltaic inverter sourced converting within such a system. With this as but one example of operation, it should be understood that, in general, a control may be considered inverter sourced or derived from conditions or functions or circuitry associated with the DC-AC inverter (5) and thus embodiments of the invention may include inverter sourced photovoltaic power conversion output control circuitry within or associated with the inverter control circuitry (38).
In embodiments, an important aspect of the above control paradigm can be the operation of the inverter to control its own input at an optimal level. For example, it is known that inverter often have a level of voltage input at which the inverter achieves its inverting most efficiently. This is often referred to as the inverter input sweet spot and it is often associated with a specific voltage level for a specific inverter. By providing the action of photovoltaic inverter sourced controlling operation, embodiments may even provide a set point or perhaps substantially constant voltage output as the inverter input (29) and thus embodiments may have a substantially constant power conversion voltage output or may also achieve the step of substantially constant voltage output controlling of the operation of the system. An inverter voltage input set point may be so established, and embodiments may include inverter voltage input set point converter output voltage control circuitry to manage the step of inverter voltage input set point controlling of the operation of the system.
As mentioned above, a surprising aspect of embodiments of the invention may be the fact that inverter input may be maintained independent of and even without regard to a separately maintained MPP level of operation. Thus, inverter optimum input can exist while simultaneously maintaining MPP level of conversion functionality. As but one example, embodiments can include independent inverter operating condition converter output control circuitry or the step of independently controlling an inverter operating condition perhaps through the photovoltaic DC-DC converter or the photovoltaic DC-DC power converter (4). As mentioned above in embodiments, this can be achieved through duty cycle switching of both the photovoltaic DC-DC power converter (4) and the DC-AC inverter (5). In this manner, embodiments may include the step of maximum power point independently controlling the inverter input voltage. For solar panels, systems may have solar panel maximum power point independent inverter input voltage control circuitry (38). This circuitry may be configured for an optimal level and thus embodiments may have solar panel maximum power point independent inverter input optimization photovoltaic power control circuitry. Generally there may be a solar panel maximum power point independent power conversion output or even the step of solar panel maximum power point independently controlling of the operation of the system.
An aspect of operational capability that afford advantage is the capability of embodiments of the invention to accommodate differing operating conditions for various solar sources or panels. As shown in
Further, viewing hot and cold voltages as perhaps the extreme conditions, similarly it can be understood how the system may accommodate varying amount of insolation and thus there may be provided insolation variable adaptive photovoltaic converter control circuitry that can extract MPP—even while maintaining an optimal inverter input—whether a panel is partially shaded, even if relative to an adjacent panel. Systems and their duty cycle switching may be adaptable to the amount of insolation and so the step of converting may be accomplished as insolation variably adaptively converting. This can be significant in newer technology panels such as cadmium-telluride solar panels and especially when combining outputs from a string of cadmium-telluride solar panels which can have broader operating voltages.
Of significant importance is the level of efficiency with which the entire system operates. This is defined as the power going out over the power coming in. A portion of the efficiency gain is achieved by using switching operation of transistor switches, however, the topology is far more significant in this regard. Specifically, by the operation of switches and the like as discussed above, the system can go far beyond the levels of efficiency previously thought possible. It can even provide a substantially power isomorphic photovoltaic DC-DC power conversion and substantially power isomorphic photovoltaic DC-AC power inversion that does not substantially change the form of power into heat rather than electrical energy by providing as high as about 99.2% efficiency. This can be provided by utilizing substantially power isomorphic photovoltaic converter and inverter functionality and a substantially power isomorphic photovoltaic converter and inverter and by controlling operation of the switches so that there is limited loss as discussed above. Such operation can be at levels of from 97, 97.5, 98, 98.5 up to either 99.2 or essentially the wire transmission loss efficiency (which can be considered the highest possible).
The combined abilities to operate the inverter at its most efficient, sweet spot while simultaneously operating the panels at their MPP aids in these efficiency advantages. While in prior art efficiency was sometimes shown to be less than 91%, this combination can accomplish the needed function while operating even above 98% and at levels as high as only those experiencing wire transmission losses. Efficiencies of about 99.2% can be achieved. When connected to a solar panel or an array of solar panels this efficiency difference can be of paramount importance. Embodiments having a constant voltage input to the inverter can thus be considered as having substantially power isomorphic photovoltaic inverter input control circuitry. When embodiments accomplish this through duty cycle switching for the inverter, such embodiments can be considered as having substantially power isomorphic photovoltaic inverter duty cycle control circuitry or as providing the step of substantially power isomorphically duty cycle switching the photovoltaic DC-AC inverter. The ability to set a constant input regardless of MPP needs allows the inverter controller to optimize the input for the inverter and so serve as inverter efficiency optimized converter control circuitry or provide the step of inverter efficiency optimization controlling of the operation of the system. Of course in embodiments where optimization is determined by operating at the point of maximum efficiency, or the sweet spot, the system can be understood as including inverter sweet spot control circuitry or even as inverter sweet spot converter control circuitry (46) when this is accomplished through the converter's output. Generally, it can also be considered as providing the step of inverter sweet spot controlling of the operation of the system. The inverter sweet spot operation capability can also be slaved to other functions (as discussed later) and thus the inverter sweet spot control circuitry can be slaved inverter sweet spot control circuitry or as providing the step of slavedly controlling sweet spot operation of the photovoltaic DC-AC inverter.
Considering the converter (as discussed in more detail in the priority applications), one aspect that contributes to such efficiency is the fact that minimal change of stored energy during the conversion process. As shown in
Also contributing to the overall system efficiency advantage in some embodiments can be the use of electrically connecting panels in a series string so the current through each power conditioner (PC)(17) output may be the same but the output voltage of each PC may be proportional to the amount of power its panel makes together with an MPP per panel capability. Consider the following examples to further disclose the functioning of such series connected embodiments. Examine the circuit of
3V+0.8V=400 volts, where V is the voltage on each full power panel.
Thus, it can be seen that in this embodiment, three of the panels may have 105.3 volts and one may have 84.2 volts.
Further, in
The advantage of this type of a configuration is illustrated from a second example of MPP operation. This example is one to illustrate where one panel is shaded such that it can now only produce 0.5 amps. For the series connected string, the three panels producing 1 amp may completely reverse bias the panel making 0.5 amps causing the reverse diode to conduct. There may even be only power coming from three of the panels and this may total 300 watts. Again for an embodiment circuit of invention, each PC may be producing MPP totaling 350 watts. The voltage calculation would this time be:
3V+0.5V=400 volts
This, in this instance, the three panels may have a voltage of 114.2 volts and the remaining one may have half as much, or 57.1 volts. These are basic examples to illustrate some advantages. In an actual PV string today there may be many PV panels in series. And usually none of them make exactly the same power. Thus, many panels may become back biased and most may even produce less than their individual MPP. As discussed below, such configurations can also be configured to include voltage limits and/or protection perhaps by setting operational boundaries. Importantly, however, output voltage can be seen as proportional to PV panel output power thus yielding a better result to be available to the DC-AC inverter (5) for use in its inversion. Now, when the DC-AC inverter (5) is also able to be operated at its sweet spot, it can efficiently invert the individualized MPP energy pulled from the sea of panels or the like for the overall system efficiency gains mentioned.
An interesting, and perhaps even surprising aspect of the invention is that the DC-AC inverter (5) can be coordinated with the photovoltaic DC-DC converter (4). Embodiments can have inverter coordinated photovoltaic power conversion control circuitry (45) or can provide the step of inverter coordinated converting or inverter coordinated controlling of the operations. As mentioned this can be direct or indirect. As shown in
While in theory or in normal operation the described circuits work fine, there can be additional requirements for a system to have practical function. For example the dual mode circuit (described in more detail in the priority applications) could go to infinite output voltage if there were no load present. This situation can actually occur frequently. Consider the situation in the morning when the sun first strikes a PV panel string with power conditioners (17). There may be no grid connection at this point and the inverter section may not draw any power. In this case the power conditioner (17) might in practical terms increase its output voltage until the inverter would break. The inverter could have overvoltage protection on its input adding additional power conversion components or, the power conditioner may simply have its own internal output voltage limit. For example if each power conditioner (17) could only produce 100 volts maximum and there was a string of ten PCs in series the maximum output voltage would be 1000 volts. This output voltage limit could make the grid-tied inverter less complex or costly and is illustrated in
In the above example of a maximum output current limit, it should be understood that this may also be useful as illustrated in
One more system problem may also be addressed. In solar installations it may occur on rare conditions that a panel or field of panels may be subjected to more than full sun. This may happen when a refractory situation exists with clouds or other reflective surfaces. It may be that a PV source may generate as much as 1.5 times the rated power for a few minutes. The grid tied inverter section must either be able to operate at this higher power (adding cost) or must somehow avoid this power. A power limit in the PC may be the most effective way to solve this problem. In general, protection of the DC-AC inverter (5) can be achieved by the photovoltaic DC-DC converter (4) as an inverter protection modality of the photovoltaic DC-DC power conversion or as inverter protection converter functionality control circuitry. In maintaining inverter sweet spot input, such circuitry can also provide desirable inverter operating conditions, thus embodiments may include photovoltaic inverter operating condition converter functionality control circuitry. There may also be embodiments that have small output voltage (even within an allowed output voltage range). This may accommodate an inverter with a small energy storage capacitor. The output voltage may even be coordinated with an inverter's energy storage capability.
As mentioned above, certain aspect may be slaved to (subservient) or may slave other aspects (dominant). One possible goal in switching for some embodiments may include the maximum power point operation and sweet spot operational characteristics discussed above as well as a number of modalities as discussed below. Some of these modalities may even be slaved such that one takes precedence of one or another at some point in time, in some power regime, or perhaps based on some power parameter to achieve a variety of modalities of operation. There may be photovoltaic duty cycle switching, and such may be controlled by photovoltaic duty cycle switch control circuitry (again understood as encompassing hardware, firmware, software, and even combinations of each). With respect to the DC-AC inverter (5), there may be more generally the slaved photovoltaic power control circuitry (34) mentioned above, slaved inverter operating condition control circuitry, slaved photovoltaic voltage level control circuitry and even the steps of slavedly controlling voltage from the photovoltaic DC-DC converter (4) or slavedly controlling operation of the photovoltaic DC-DC converter (4).
Another aspect of some embodiments of the invention can be protection or operation of components or the DC-AC inverter (5) so as to address abrupt changes in condition. This can be accomplished through the inclusion of soft transition photovoltaic power conversion control circuitry (35) or the step of softly transitioning a photovoltaic electrical parameter or more specifically even softly transitioning a converted photovoltaic power level electrical parameter. Thus, another mode of operation may be to make a value proportional (in its broadest sense) to some other aspect. For example, there can be advantages to making voltage proportional to current such as to provide soft start capability or the like. Thus embodiments may be configured for controlling a maximum photovoltaic output voltage proportional to a photovoltaic output current at at least some times during the process of converting a DC input to a DC output. In general, this may provide soft transition photovoltaic power conversion control circuitry (35). Focusing on voltage and current as only two such parameters, embodiments can include ramped photovoltaic current power conversion control circuitry, ramped photovoltaic voltage power conversion control circuitry, or the steps of ramping (which be linear or may have any other shape) a photovoltaic current level, ramping a photovoltaic voltage level, or the like. One of the many ways in which such soft transition can be accomplished can be by making one parameter proportional to another. For example, embodiments can include photovoltaic output voltage-photovoltaic output current proportional control circuitry (39) or can provide the step of controlling a photovoltaic output voltage proportional to a photovoltaic output current.
Further, embodiments of the system may include duty cycle control or switch operation that can be conducted so as to achieve one or more proportionalities between parameters perhaps such as the initial examples of maximum voltage output and current output or the like. Further, not only can any of the above by combined with any other of the above, but each may be provided in a slaved manner such that consideration of one modality is secondary to or dominant over that of another modality.
As mentioned above one technique of some control activities can be through the use of duty cycle switching or the like. Switches on either or both of the photovoltaic DC-DC power converter (4) or the DC-AC inverter (5) can be controlled in a variable duty cycle mode of operation such that frequency of switching alters to achieve the desired facet. The converter functionality control circuitry (8), perhaps providing the step of maximum photovoltaic power point duty cycle switching of a photovoltaic DC-DC converter, or the inverter control circuitry (38) may serve as photovoltaic duty cycle switch control circuitry. The duty cycle operations and switching can achieve a variety of results, from serving as photovoltaic transformation duty cycle switching, to photovoltaic impedance transformation duty cycle switching, to photovoltaic input control duty cycle switching, to photovoltaic output duty cycle switching, to photovoltaic voltage duty cycle switching, to photovoltaic current duty cycle switching, to soft transition duty cycle switching, to photovoltaic optimization duty cycle switching, to other operations. The photovoltaic inverter duty cycle switch control circuitry (31) may even act to provide the step of maximum photovoltaic voltage determinatively duty cycle switching the DC-AC inverter (5).
A variety of results have been described above. These may be achieved by simply altering the duty cycle of or switches affected by the switches. These can be accomplished based on thresholds and so provide threshold triggered alternative mode, threshold determinative, threshold activation, or threshold deactivation switching photovoltaic power conversion control circuitry. A burst mode of operation perhaps such as when nearing a mode alteration level of operation may be provided and at such times frequency can be halved, opposing modes can be both alternated, and level can be reduced as a change become incipient. This can be transient as well. In these manners burst mode switching photovoltaic power conversion control circuitry and burst mode switching can be accomplished, as well as transient opposition mode photovoltaic duty cycle switch control circuitry and even the step of transiently establishing opposing switching modes.
As discussed in more detail in the priority applications, there may be a variety of modes of operation of a photovoltaic DC-DC power converter (4). These may include modes of increasing and, perhaps alternatively, decreasing photovoltaic load impedance, the output, or otherwise. Systems according to embodiments of the invention may combine inverter aspects with a photovoltaic DC-DC power converter (4) that serves as a multimodal photovoltaic DC-DC power converter perhaps controlled by multimodal converter functionality control circuitry (26) in that it has more than one mode of operation. These modes may include, but should be understood as not limited to, photovoltaic output increasing and photovoltaic output decreasing, among others. In general, the aspect of multimodal activity encompasses at least processes where only one mode of conversion occurs at any one time.
Thus, a power conditioner (17) may provide at least first modality and second modality photovoltaic DC-DC power conversion circuitry, DC-DC power converter, or DC-DC power conversion in conjunction with the inverter capabilities discussed herein. By offering the capability of more than one mode of operation (even though not necessarily utilized at the same time), or in offering the capability of changing modes of operation, the system may accomplish the step of multimodally operating. Similarly, by offering the capability of controlling to effect more than one mode of conversion operation (again, even though not necessarily utilized at the same time), or in controlling to change modes of operation, the system may accomplish the step of multimodally controlling operation of a photovoltaic DC-DC power converter (4) or a DC-AC inverter (5).
Embodiments may include a photovoltaic DC-DC power converter (4) that has even two or more modes of operation and thus may be considered a dual mode power conversion circuit or dual mode converter. The dual mode nature of this circuit may embody a significant benefit and another distinction may be that most DC/DC converters are often intended to take an unregulated source and produce a regulated output. In this invention, the input to the DC/DC converter is regulated either up or down—and in a highly efficient manner—to be at the PV panel MPP. The dual mode nature of the converter may also serve to facilitate an effect caused by the inverter's operation even without a direct connection. Of course, such modes of operation can be adapted for application with respect to the inverter's duty cycle switching as well.
As mentioned above, the PCs and photovoltaic DC-DC power converters (4) may handle individual panels. They may be attached to a panel, to a frame, or separate. Embodiments may have converters physically integral to such panels in the sense that they are provided as one attached unit for ultimate installation. This can be desirable such as when there are independent operating conditions for separate solar sources, and even adjacent solar sources to accommodate variations in insolation, condition, or otherwise. Each panel or the like may achieve its own MPP, and may coordinate protection with all others in a string or the like.
As may be understood, systems can include an aspect of reacting to operational conditions to which elements are subjected. This can occur in a dynamic fashion so that as one condition changes, nearly instantly a reaction to control appropriately is caused. They can also react to installation conditions and can react to the particular elements. This can make installation easier. For example, if connected to differing types of solar panels, differing age or condition elements, differing types of converters, or even differing types of inverters, some embodiments of the invention can automatically act to accommodate the element, to stay within code, or to otherwise act so that regardless of the overall system or the overall dissimilarity, an optimal result can be achieved. Again this dynamically reactive control feature can be configured at either or both the photovoltaic DC-DC power converter (4) or the DC-AC inverter (5). At either location, embodiments can provide dynamically reactive internal output limited photovoltaic power control circuitry (42) it can also provide the step of dynamically reactively controlling an internal output or even dynamically reactively converting. Both of these features, or even any other dynamically reactive capability, can be slaved either dominantly or subserviently. Thus, embodiments of the invention can provide slaved dynamically reactive photovoltaic power control circuitry or the step of slavedly dynamically reactively controlling an aspect of the system. This could include slavedly dynamically reactively controlling an internal output through operation of the photovoltaic DC-DC converter (4).
The aspect of addressing an external as well as an internal output can be helpful to meeting code or other requirements when there is no way to know what type of panel or other component the system is hooked to. In situations where an internal signal (perhaps such as the signal transmitting power from a rooftop collection of panels to a basement inverter grid connection) is not permitted to exceed a specified level of voltage, current, or otherwise needs to meet limitations on existing wiring or circuit breakers or the like, embodiments can provide the dynamically reactive control as code compliant dynamically reactive photovoltaic power control circuitry (41). It may also provide the step of code compliantly dynamically reactively controlling an internal output. This can occur through operation of the photovoltaic DC-DC converter (4), the DC-AC inverter (5), or otherwise. Of course, this code complaint feature can be slaved to take dominance over other features such as MPP activity, sweet spot activity, boundary condition activity, or the like. In this manner embodiments can provide slaved code compliant dynamically reactive photovoltaic power control circuitry or can provide the step of slavedly code compliantly dynamically reactively controlling internal output, perhaps through operation of the photovoltaic DC-DC converter (4) or otherwise. Beyond code compliance, it can be readily understood how the general feature of a dynamically reactive control can act to permit connection to existing or dissimilar sources as well. Thus whether by programming, circuitry, or other configuration, embodiments can provide dynamically multisource reactive photovoltaic power control circuitry (43) or may provide the step of multisource dynamically reactively controlling internal output, perhaps through operation of the photovoltaic DC-DC converter (4). Of course, this can all be accomplished while maintaining the inverter input at an optimum level in appropriate circumstances and thus embodiments can include reactive inverter input optimization photovoltaic power control circuitry.
As the invention becomes more accepted it may be advantageous to permit comparison with more traditional technologies or operating conditions. This can be achieved by simple switch operation whereby traditional modes of operation can be duplicated or perhaps adequately mimicked to permit a comparison. Thus, for a solar focus, embodiments may include a solar power conversion comparator (44) that can compare first and second modes of operation, perhaps the improved mode of an embodiment of the present invention and a traditional, less efficient mode. This comparator may involve indicating some solar energy parameter for each. In this regard, the shunt switch operation disable element may be helpful. From this a variety of difference can be indicated, perhaps: solar power output, solar power efficiency differences, solar power cost differences, solar power insolation utilization comparisons, and the like. Whether through software or hardware or otherwise, embodiments can include an ability to function with a first power capability and a second power capability. These may be traditional and improved capabilities, perhaps such as a traditional power conversion capability and an improved power conversion capability or a traditional power inversion capability and an improved power inversion capability. The inverter control circuitry (38) or the converter functionality control circuitry (8) or otherwise can be configured to achieve either or both of these first and second capabilities. As one example, the inverter can act to achieve an input voltage that would have been seen without the features of the present invention and thus embodiments can provide an off-maximum efficiency inverter input voltage control (47) or may act to provide the step of controlling inverter input voltage off a maximum efficiency level. In instances where the improved embodiment achieves inverter sweet spot operation capability, embodiments may act to compare the steps of traditionally power inverting a DC photovoltaic input and sweet spot input inverting a DC photovoltaic input. Any of these can provide a user any type of output to inform the user for comparison with other systems.
By the above combinations of these concepts and circuitry, at least some of the following benefits may be realized:
The circuitry, concepts and methods of various embodiments of the invention may be broadly applied. It may be that one or more PCs per panel may be used. For example there may be non-uniformities on a single panel or other reasons for harvesting power from even portions of a panel. It may be for example that small power converters may be used on panel segments optimizing the power which may be extracted from a panel. This invention is explicitly stated to include sub panel applications.
This invention may be optimally applied to strings of panels. It may be more economical for example to simply use a PC for each string of panels in a larger installation. This could be particularly beneficial in parallel connected strings if one string was not able to produce much power into the voltage the remainder of the strings is producing. In this case one PC per string may increase the power harvested from a large installation.
This invention is assumed to include many physical installation options. For example there may be a hard physical connection between the PC and a panel. There may be an interconnection box for strings in which a PC per string may be installed. A given panel may have one or more PCs incorporated into the panel. A PC may also be a stand-alone physical entity.
All of the foregoing is discussed at times in the context of a solar power application. As may be appreciated, some if not all aspects may be applied in other contexts as well. Thus, this disclosure should be understood as supporting other applications regardless how applied.
Previously presented definitions of invention, together with newly developed converter intuitive statements of invention from the prior specifications, all now considered as clauses for potential use later, include the following:
A: Converter Intuitive Focused Clauses
As can be easily understood from the foregoing, the basic concepts of the present invention may be embodied in a variety of ways. It involves both solar power generation techniques as well as devices to accomplish the appropriate power generation. In this application, the power generation techniques are disclosed as part of the results shown to be achieved by the various circuits and devices described and as steps which are inherent to utilization. They are simply the natural result of utilizing the devices and circuits as intended and described. In addition, while some circuits are disclosed, it should be understood that these not only accomplish certain methods but also can be varied in a number of ways. Importantly, as to all of the foregoing, all of these facets should be understood to be encompassed by this disclosure.
The discussion included in this application is intended to serve as a basic description. The reader should be aware that the specific discussion may not explicitly describe all embodiments possible; many alternatives are implicit. It also may not fully explain the generic nature of the invention and may not explicitly show how each feature or element can actually be representative of a broader function or of a great variety of alternative or equivalent elements. Again, these are implicitly included in this disclosure. Where the invention is described in device-oriented terminology, each element of the device implicitly performs a function. Apparatus claims may not only be included for the devices and circuits described, but also method or process claims may be included to address the functions the invention and each element performs. Neither the description nor the terminology is intended to limit the scope of the claims that will be included in any subsequent patent application.
It should also be understood that a variety of changes may be made without departing from the essence of the invention. Such changes are also implicitly included in the description. They still fall within the scope of this invention. A broad disclosure encompassing both the explicit embodiment(s) shown, the great variety of implicit alternative embodiments, and the broad methods or processes and the like are encompassed by this disclosure and may be relied upon when drafting the claims for any subsequent patent application. It should be understood that such language changes and broader or more detailed claiming may be accomplished at a later date. With this understanding, the reader should be aware that this disclosure is to be understood to support any subsequently filed patent application that may seek examination of as broad a base of claims as deemed within the applicant's right and may be designed to yield a patent covering numerous aspects of the invention both independently and as an overall system.
Further, each of the various elements of the invention and claims may also be achieved in a variety of manners. Additionally, when used or implied, an element is to be understood as encompassing individual as well as plural structures that may or may not be physically connected. This disclosure should be understood to encompass each such variation, be it a variation of an embodiment of any apparatus embodiment, a method or process embodiment, or even merely a variation of any element of these. Particularly, it should be understood that as the disclosure relates to elements of the invention, the words for each element may be expressed by equivalent apparatus terms or method terms—even if only the function or result is the same. Such equivalent, broader, or even more generic terms should be considered to be encompassed in the description of each element or action. Such terms can be substituted where desired to make explicit the implicitly broad coverage to which this invention is entitled. As but one example, it should be understood that all actions may be expressed as a means for taking that action or as an element which causes that action. Similarly, each physical element disclosed should be understood to encompass a disclosure of the action which that physical element facilitates. Regarding this last aspect, as but one example, the disclosure of a “converter” should be understood to encompass disclosure of the act of “converting”—whether explicitly discussed or not—and, conversely, were there effectively disclosure of the act of “converting”, such a disclosure should be understood to encompass disclosure of a “converter” and even a “means for converting.” Such changes and alternative terms are to be understood to be explicitly included in the description.
Any patents, publications, or other references mentioned in this application for patent or its list of references are hereby incorporated by reference. Any priority case(s) claimed at any time by this or any subsequent application are hereby appended and hereby incorporated by reference. In addition, as to each term used it should be understood that unless its utilization in this application is inconsistent with a broadly supporting interpretation, common dictionary definitions should be understood as incorporated for each term and all definitions, alternative terms, and synonyms such as contained in the Random House Webster's Unabridged Dictionary, second edition are hereby incorporated by reference. Finally, all references listed in any list of references or other information disclosure statement filed with or included in the application are hereby appended and hereby incorporated by reference, however, as to each of the above, to the extent that such information or statements incorporated by reference might be considered inconsistent with the patenting of this/these invention(s) such statements are expressly not to be considered as made by the applicant(s).
Thus, the applicant(s) should be understood to have support to claim and make a statement of invention to at least: i) each of the power source devices as herein disclosed and described, ii) the related methods disclosed and described, iii) similar, equivalent, and even implicit variations of each of these devices and methods, iv) those alternative designs which accomplish each of the functions shown as are disclosed and described, v) those alternative designs and methods which accomplish each of the functions shown as are implicit to accomplish that which is disclosed and described, vi) each feature, component, and step shown as separate and independent inventions, vii) the applications enhanced by the various systems or components disclosed, viii) the resulting products produced by such systems or components, ix) each system, method, and element shown or described as now applied to any specific field or devices mentioned, x) methods and apparatuses substantially as described hereinbefore and with reference to any of the accompanying examples, xi) the various combinations and permutations of each of the elements disclosed, xii) each potentially dependent claim or concept as a dependency on each and every one of the independent claims or concepts presented, and xiii) all inventions described herein. In addition and as to computerized aspects and each aspect amenable to programming or other programmable electronic automation, the applicant(s) should be understood to have support to claim and make a statement of invention to at least: xiv) processes performed with the aid of or on a computer as described throughout the above discussion, xv) a programmable apparatus as described throughout the above discussion, xvi) a computer readable memory encoded with data to direct a computer comprising means or elements which function as described throughout the above discussion, xvii) a computer configured as herein disclosed and described, xviii) individual or combined subroutines and programs as herein disclosed and described, xix) the related methods disclosed and described, xx) similar, equivalent, and even implicit variations of each of these systems and methods, xxi) those alternative designs which accomplish each of the functions shown as are disclosed and described, xxii) those alternative designs and methods which accomplish each of the functions shown as are implicit to accomplish that which is disclosed and described, xxiii) each feature, component, and step shown as separate and independent inventions, and xxiv) the various combinations and permutations of each of the above.
With regard to claims whether now or later presented for examination, it should be understood that for practical reasons and so as to avoid great expansion of the examination burden, the applicant may at any time present only initial claims or perhaps only initial claims with only initial dependencies. The office and any third persons interested in potential scope of this or subsequent applications should understand that broader claims may be presented at a later date in this case, in a case claiming the benefit of this case, or in any continuation in spite of any preliminary amendments, other amendments, claim language, or arguments presented, thus throughout the pendency of any case there is no intention to disclaim or surrender any potential subject matter. Both the examiner and any person otherwise interested in existing or later potential coverage, or considering if there has at any time been any possibility of an indication of disclaimer or surrender of potential coverage, should be aware that in the absence of explicit statements, no such surrender or disclaimer is intended or should be considered as existing in this or any subsequent application. Limitations such as arose in Hakim v. Cannon Avent Group, PLC, 479 F.3d 1313 (Fed. Cir 2007), or the like are expressly not intended in this or any subsequent related matter.
In addition, support should be understood to exist to the degree required under new matter laws—including but not limited to European Patent Convention Article 123(2) and United States Patent Law 35 USC 132 or other such laws—to permit the addition of any of the various dependencies or other elements presented under one independent claim or concept as dependencies or elements under any other independent claim or concept. In drafting any claims at any time whether in this application or in any subsequent application, it should also be understood that the applicant has intended to capture as full and broad a scope of coverage as legally available. To the extent that insubstantial substitutes are made, to the extent that the applicant did not in fact draft any claim so as to literally encompass any particular embodiment, and to the extent otherwise applicable, the applicant should not be understood to have in any way intended to or actually relinquished such coverage as the applicant simply may not have been able to anticipate all eventualities; one skilled in the art, should not be reasonably expected to have drafted a claim that would have literally encompassed such alternative embodiments.
Further, if or when used, the use of the transitional phrase “comprising” is used to maintain the “open-end” claims herein, according to traditional claim interpretation. Thus, unless the context requires otherwise, it should be understood that the term “comprise” or variations such as “comprises” or “comprising”, are intended to imply the inclusion of a stated element or step or group of elements or steps but not the exclusion of any other element or step or group of elements or steps. Such terms should be interpreted in their most expansive form so as to afford the applicant the broadest coverage legally permissible.
Finally, any claims set forth at any time are hereby incorporated by reference as part of this description of the invention, and the applicant expressly reserves the right to use all of or a portion of such incorporated content of such claims as additional description to support any of or all of the claims or any element or component thereof, and the applicant further expressly reserves the right to move any portion of or all of the incorporated content of such claims or any element or component thereof from the description into the claims or vice-versa as necessary to define the matter for which protection is sought by this application or by any subsequent continuation, division, or continuation-in-part application thereof, or to obtain any benefit of, reduction in fees pursuant to, or to comply with the patent laws, rules, or regulations of any country or treaty, and such content incorporated by reference shall survive during the entire pendency of this application including any subsequent continuation, division, or continuation-in-part application thereof or any reissue or extension thereon.
This application is a continuation of, and claims the benefit of and priority to U.S. patent application Ser. No. 15/793,704, filed Oct. 25, 2017 and issuing as U.S. Pat. No. 10,326,283 on Jun. 18, 2019, which is a continuation of, and claims the benefit and priority to Ser. No. 15/094,803, filed Apr. 8, 2016, which is a continuation of, and claims benefit of and priority to, U.S. patent application Ser. No. 13/346,532, filed Jan. 9, 2012, which is a continuation of, and claims benefit of and priority to, U.S. patent application Ser. No. 12/682,882, filed Apr. 13, 2010, and issued as U.S. Pat. No. 8,093,756 on Jan. 10, 2012, which is the National Stage of International Patent Application No. PCT/US2008/060345, filed Apr. 15, 2008, which claims priority to and the benefit of U.S. Provisional Application No. 60/980,157, filed Oct. 15, 2007, and claims priority to and the benefit of U.S. Provisional Application No. 60/982,053, filed Oct. 23, 2007, and claims priority to and the benefit of U.S. Provisional Application No. 60/986,979, filed Nov. 9, 2007, and is a continuation of, and claims benefit of and priority to, International Patent Application No. PCT/US2008/057105, filed Mar. 14, 2008, which claims priority to and the benefit of U.S. Provisional Application No. 60/980,157, filed Oct. 15, 2007, and claims priority to and the benefit of U.S. Provisional Application No. 60/982,053, filed Oct. 23, 2007, and claims priority to and the benefit of U.S. Provisional Application No. 60/986,979, filed Nov. 9, 2007, each said application hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3900946 | Sirtl et al. | Aug 1975 | A |
4127797 | Perper | Nov 1978 | A |
4168124 | Pizzi | Sep 1979 | A |
4218139 | Sheffield | Aug 1980 | A |
4222665 | Tachizawa | Sep 1980 | A |
4249958 | Baudin | Feb 1981 | A |
4274044 | Barre | Jun 1981 | A |
4341607 | Tison | Jul 1982 | A |
4375662 | Baker | Mar 1983 | A |
4390940 | Corbefin et al. | Jun 1983 | A |
4395675 | Toumani | Jul 1983 | A |
4404472 | Steigerwald | Sep 1983 | A |
4409537 | Harris | Oct 1983 | A |
4445030 | Carlson | Apr 1984 | A |
4445049 | Steigerwald | Apr 1984 | A |
4513167 | Brandstetter | Apr 1985 | A |
4528503 | Cole | Jul 1985 | A |
4580090 | Bailey et al. | Apr 1986 | A |
4581716 | Kamiya | Apr 1986 | A |
4619863 | Taylor | Oct 1986 | A |
4626983 | Harada et al. | Dec 1986 | A |
4634943 | Reick | Jan 1987 | A |
4649334 | Nakajima | Mar 1987 | A |
4652770 | Kumano | Mar 1987 | A |
4725740 | Nakata | Feb 1988 | A |
4749982 | Rikuna et al. | Jun 1988 | A |
4794909 | Elden | Jan 1989 | A |
4873480 | Lafferty | Oct 1989 | A |
4896034 | Kiriseko | Jan 1990 | A |
4899269 | Rouzies | Feb 1990 | A |
4922396 | Niggemeyer | May 1990 | A |
5027051 | Lafferty | Jun 1991 | A |
5028861 | Pace et al. | Jul 1991 | A |
5144222 | Herbert | Sep 1992 | A |
5179508 | Lange et al. | Jan 1993 | A |
5270636 | Lafferty | Dec 1993 | A |
5401561 | Fisun et al. | Mar 1995 | A |
5402060 | Erisman | Mar 1995 | A |
5493155 | Okamoto et al. | Feb 1996 | A |
5493204 | Caldwell | Feb 1996 | A |
5503260 | Riley | Apr 1996 | A |
5646502 | Johnson | Jul 1997 | A |
5648731 | Decker et al. | Jul 1997 | A |
5659465 | Flack | Aug 1997 | A |
5669987 | Takehara et al. | Sep 1997 | A |
5689242 | Sims et al. | Nov 1997 | A |
5734258 | Esser | Mar 1998 | A |
5741370 | Hanoka | Apr 1998 | A |
5747967 | Muljadi et al. | May 1998 | A |
5782994 | Mori et al. | Jul 1998 | A |
5801519 | Midya | Sep 1998 | A |
5896281 | Bingley | Apr 1999 | A |
5898585 | Sirichote et al. | Apr 1999 | A |
5923100 | Lukens et al. | Jul 1999 | A |
5932994 | Jo et al. | Aug 1999 | A |
6046401 | McCabe | Apr 2000 | A |
6081104 | Kern | Jun 2000 | A |
6124769 | Igarashi et al. | Sep 2000 | A |
6162986 | Shiotsuka | Dec 2000 | A |
6166527 | Dwelley et al. | Dec 2000 | A |
6180868 | Yoshino et al. | Jan 2001 | B1 |
6181590 | Yamane et al. | Jan 2001 | B1 |
6191501 | Bos | Feb 2001 | B1 |
6218605 | Daily et al. | Apr 2001 | B1 |
6218820 | D'Arrigo et al. | Apr 2001 | B1 |
6219623 | Wills | Apr 2001 | B1 |
6262558 | Weinburg | Jul 2001 | B1 |
6275016 | Ivanov | Aug 2001 | B1 |
6278052 | Takehara et al. | Aug 2001 | B1 |
6281485 | Siri | Aug 2001 | B1 |
6282104 | Kern | Aug 2001 | B1 |
6314007 | Johnson, Jr. et al. | Nov 2001 | B2 |
6331670 | Takehara et al. | Dec 2001 | B2 |
6348781 | Midya et al. | Feb 2002 | B1 |
6351400 | Lumsden | Feb 2002 | B1 |
6369462 | Siri | Apr 2002 | B1 |
6433522 | Siri | Aug 2002 | B1 |
6433992 | Nakagawa et al. | Aug 2002 | B2 |
6441896 | Field | Aug 2002 | B1 |
6448489 | Kimura et al. | Sep 2002 | B2 |
6493246 | Suzui et al. | Dec 2002 | B2 |
6515215 | Mimura | Feb 2003 | B1 |
6545211 | Mimura | Apr 2003 | B1 |
6545868 | Kledzik et al. | Apr 2003 | B1 |
6593521 | Kobayashi | Jul 2003 | B2 |
6600668 | Patel | Jul 2003 | B1 |
6624350 | Nixon et al. | Sep 2003 | B2 |
6636431 | Seki et al. | Oct 2003 | B2 |
6670721 | Lof et al. | Dec 2003 | B2 |
6686533 | Raum et al. | Feb 2004 | B2 |
6686727 | Ledenev et al. | Feb 2004 | B2 |
6696823 | Ledenev et al. | Feb 2004 | B2 |
6703555 | Takabayashi et al. | Mar 2004 | B2 |
6750391 | Bower et al. | Jun 2004 | B2 |
6788033 | Vinciarelli | Sep 2004 | B2 |
6791024 | Toyomura | Sep 2004 | B2 |
6798177 | Liu et al. | Sep 2004 | B1 |
6804127 | Zhou | Oct 2004 | B2 |
6889122 | Perez | May 2005 | B2 |
6914418 | Sung | Jul 2005 | B2 |
6914420 | Crocker | Jul 2005 | B2 |
6920055 | Zeng et al. | Jul 2005 | B1 |
6952355 | Rissio et al. | Oct 2005 | B2 |
6958922 | Kazem | Oct 2005 | B2 |
6984965 | Vinciarelli | Jan 2006 | B2 |
6984970 | Capel | Jan 2006 | B2 |
7019988 | Fung et al. | Mar 2006 | B2 |
7046531 | Zocchi et al. | May 2006 | B2 |
7068017 | Willner et al. | Jun 2006 | B2 |
7072194 | Nayar et al. | Jul 2006 | B2 |
7088595 | Nino | Aug 2006 | B2 |
7091707 | Cutler | Aug 2006 | B2 |
7092265 | Kernahan | Aug 2006 | B2 |
7158395 | Deng et al. | Jan 2007 | B2 |
7193872 | Siri | Mar 2007 | B2 |
7227278 | Realmuto et al. | Jun 2007 | B2 |
7248946 | Bashaw et al. | Jul 2007 | B2 |
7274975 | Miller | Sep 2007 | B2 |
7333916 | Warfield et al. | Feb 2008 | B2 |
7339287 | Jepsen et al. | Mar 2008 | B2 |
7365661 | Thomas | Apr 2008 | B2 |
7471073 | Rettenwort et al. | Dec 2008 | B2 |
7479774 | Wai | Jan 2009 | B2 |
7514900 | Sander et al. | Apr 2009 | B2 |
7596008 | Iwata et al. | Sep 2009 | B2 |
D602432 | Moussa | Oct 2009 | S |
7602080 | Hadar et al. | Oct 2009 | B1 |
7605498 | Ledenev et al. | Oct 2009 | B2 |
7619200 | Seymour et al. | Nov 2009 | B1 |
7619323 | Tan et al. | Nov 2009 | B2 |
7663342 | Kimball et al. | Feb 2010 | B2 |
7719140 | Ledenev et al. | May 2010 | B2 |
7768155 | Fornage | Aug 2010 | B2 |
7786716 | Simburger et al. | Aug 2010 | B2 |
7807919 | Powell | Oct 2010 | B2 |
7834580 | Haines | Nov 2010 | B2 |
7843085 | Ledenev et al. | Nov 2010 | B2 |
7919953 | Porter et al. | Apr 2011 | B2 |
7948221 | Watanabe et al. | May 2011 | B2 |
7962249 | Zhang et al. | Jun 2011 | B1 |
8004116 | Ledenev et al. | Aug 2011 | B2 |
8013472 | Adest et al. | Sep 2011 | B2 |
8018748 | Leonard | Sep 2011 | B2 |
8058747 | Avrutsky et al. | Nov 2011 | B2 |
8093756 | Porter et al. | Jan 2012 | B2 |
8106765 | Ackerson et al. | Jan 2012 | B1 |
8242634 | Schatz et al. | Aug 2012 | B2 |
8264195 | Takehara et al. | Sep 2012 | B2 |
8273979 | Weir | Sep 2012 | B2 |
8304932 | Ledenev et al. | Nov 2012 | B2 |
8314375 | Arditi et al. | Nov 2012 | B2 |
8461811 | Porter et al. | Jun 2013 | B2 |
8473250 | Adest | Jun 2013 | B2 |
8482153 | Ledenev et al. | Jul 2013 | B2 |
8531055 | Adest et al. | Sep 2013 | B2 |
8593103 | Takehara et al. | Nov 2013 | B2 |
8816535 | Adest et al. | Aug 2014 | B2 |
8854193 | Makhota et al. | Oct 2014 | B2 |
8860241 | Hadar et al. | Oct 2014 | B2 |
9042145 | Schill | May 2015 | B2 |
9112379 | Sella et al. | Aug 2015 | B2 |
9366714 | Ledenev et al. | Jun 2016 | B2 |
9368964 | Adest et al. | Jun 2016 | B2 |
9397497 | Ledenev | Jul 2016 | B2 |
9438037 | Ledenev et al. | Sep 2016 | B2 |
9442504 | Porter et al. | Sep 2016 | B2 |
9466737 | Ledenev | Oct 2016 | B2 |
9673630 | Ledenev et al. | Jun 2017 | B2 |
10032939 | Ledenev et al. | Jul 2018 | B2 |
10116140 | Ledenev et al. | Oct 2018 | B2 |
10326282 | Porter et al. | Jun 2019 | B2 |
10326283 | Porter et al. | Jun 2019 | B2 |
10608437 | Ledenev et al. | Mar 2020 | B2 |
10714637 | Ledenev et al. | Jul 2020 | B2 |
10886746 | Ledenev et al. | Jan 2021 | B1 |
10938219 | Porter et al. | Mar 2021 | B2 |
10992238 | Yoscovich et al. | Apr 2021 | B2 |
11121556 | Ledenev | Sep 2021 | B2 |
20010007522 | Nakagawa et al. | Jul 2001 | A1 |
20010032664 | Takehara et al. | Oct 2001 | A1 |
20020038200 | Shimizu et al. | Mar 2002 | A1 |
20020195136 | Takabayashi et al. | Dec 2002 | A1 |
20030035308 | Lynch | Feb 2003 | A1 |
20030036806 | Schienbein | Feb 2003 | A1 |
20030062078 | Mimura | Apr 2003 | A1 |
20030075211 | Makita et al. | Apr 2003 | A1 |
20030117822 | Stamenic et al. | Jun 2003 | A1 |
20030218449 | Ledenev et al. | Nov 2003 | A1 |
20040027112 | Kondo et al. | Feb 2004 | A1 |
20040051387 | Lasseter | Mar 2004 | A1 |
20040085048 | Tateishi | May 2004 | A1 |
20040095020 | Kernahan et al. | May 2004 | A1 |
20040100149 | Lai | May 2004 | A1 |
20040135560 | Kernahan | Jul 2004 | A1 |
20040159102 | Toyomura | Aug 2004 | A1 |
20040164557 | West | Aug 2004 | A1 |
20040175598 | Bliven | Sep 2004 | A1 |
20040207366 | Sung | Oct 2004 | A1 |
20040211456 | Brown | Oct 2004 | A1 |
20050002214 | Deng et al. | Jan 2005 | A1 |
20050068012 | Cutler | Mar 2005 | A1 |
20050077879 | Near | Apr 2005 | A1 |
20050093526 | Notman | May 2005 | A1 |
20050105224 | Nishi | May 2005 | A1 |
20050109386 | Marshall | May 2005 | A1 |
20050116475 | Hibi et al. | Jun 2005 | A1 |
20050121067 | Toyomura | Jun 2005 | A1 |
20050162018 | Realmuto et al. | Jul 2005 | A1 |
20050169018 | Hatai et al. | Aug 2005 | A1 |
20050218876 | Nino | Oct 2005 | A1 |
20050254191 | Bashaw | Nov 2005 | A1 |
20060017327 | Siri et al. | Jan 2006 | A1 |
20060103360 | Cutler | May 2006 | A9 |
20060162772 | Preser et al. | Jul 2006 | A1 |
20060171182 | Siri | Aug 2006 | A1 |
20060174939 | Matan | Aug 2006 | A1 |
20070024257 | Boldo | Feb 2007 | A1 |
20070035975 | Dickerson et al. | Feb 2007 | A1 |
20070044837 | Simburger et al. | Mar 2007 | A1 |
20070069520 | Schetters | Mar 2007 | A1 |
20070111103 | Konishiike et al. | May 2007 | A1 |
20070119718 | Gibson et al. | May 2007 | A1 |
20070133241 | Mumtaz et al. | Jun 2007 | A1 |
20070159866 | Siri | Jul 2007 | A1 |
20070165347 | Wendt et al. | Jul 2007 | A1 |
20070171680 | Perreault et al. | Jul 2007 | A1 |
20070236187 | Wai et al. | Oct 2007 | A1 |
20080036440 | Garmer | Feb 2008 | A1 |
20080062724 | Feng et al. | Mar 2008 | A1 |
20080097655 | Hadar et al. | Apr 2008 | A1 |
20080101101 | Iwata et al. | May 2008 | A1 |
20080111517 | Pfeifer et al. | May 2008 | A1 |
20080123375 | Beardsley | May 2008 | A1 |
20080136367 | Adest et al. | Jun 2008 | A1 |
20080143188 | Adest et al. | Jun 2008 | A1 |
20080144294 | Adest et al. | Jun 2008 | A1 |
20080147335 | Adest et al. | Jun 2008 | A1 |
20080150366 | Adest et al. | Jun 2008 | A1 |
20080164766 | Adest et al. | Jul 2008 | A1 |
20080186004 | Williams | Aug 2008 | A1 |
20080236648 | Klein et al. | Oct 2008 | A1 |
20080238195 | Shaver | Oct 2008 | A1 |
20080247201 | Perol | Oct 2008 | A1 |
20080257397 | Glaser et al. | Oct 2008 | A1 |
20090020151 | Fornage | Jan 2009 | A1 |
20090039852 | Fisehlov et al. | Feb 2009 | A1 |
20090078300 | Ang et al. | Mar 2009 | A1 |
20090114263 | Powell et al. | May 2009 | A1 |
20090120485 | Kikinis | May 2009 | A1 |
20090133736 | Powell et al. | May 2009 | A1 |
20090097655 | Hadar et al. | Jun 2009 | A1 |
20090140715 | Adest et al. | Jun 2009 | A1 |
20090141522 | Adest et al. | Jun 2009 | A1 |
20090145480 | Adest et al. | Jun 2009 | A1 |
20090146505 | Powell et al. | Jun 2009 | A1 |
20090146667 | Adest et al. | Jun 2009 | A1 |
20090146671 | Gazit | Jun 2009 | A1 |
20090147554 | Adest et al. | Jun 2009 | A1 |
20090150005 | Hadar et al. | Jun 2009 | A1 |
20090160258 | Allen et al. | Jun 2009 | A1 |
20090206666 | Sella | Aug 2009 | A1 |
20090207543 | Boniface et al. | Aug 2009 | A1 |
20090218887 | Ledenev et al. | Sep 2009 | A1 |
20090234692 | Powell et al. | Sep 2009 | A1 |
20090237042 | Glovinksi | Sep 2009 | A1 |
20090237043 | Glovinksi | Sep 2009 | A1 |
20090273241 | Gazit et al. | Nov 2009 | A1 |
20090283128 | Zhang et al. | Nov 2009 | A1 |
20090283129 | Foss | Nov 2009 | A1 |
20090284078 | Zhang et al. | Nov 2009 | A1 |
20090284232 | Zhang et al. | Nov 2009 | A1 |
20090284240 | Zhang et al. | Nov 2009 | A1 |
20090284998 | Zhang et al. | Nov 2009 | A1 |
20100001587 | Casey et al. | Jan 2010 | A1 |
20100026097 | Avrutsky et al. | Feb 2010 | A1 |
20100027297 | Avrutsky et al. | Feb 2010 | A1 |
20100038968 | Ledenev et al. | Feb 2010 | A1 |
20100078057 | Karg et al. | Apr 2010 | A1 |
20100085670 | Palaniswami et al. | Apr 2010 | A1 |
20100089431 | Weir | Apr 2010 | A1 |
20100117858 | Rozenboim | May 2010 | A1 |
20100118985 | Rozenboim | May 2010 | A1 |
20100127570 | Hadar et al. | Jun 2010 | A1 |
20100127571 | Hadar et al. | Jun 2010 | A1 |
20100132758 | Gilmore | Jun 2010 | A1 |
20100139732 | Hadar et al. | Jun 2010 | A1 |
20100139734 | Hadar et al. | Jun 2010 | A1 |
20100139743 | Hadar et al. | Jun 2010 | A1 |
20100195361 | Stem | Aug 2010 | A1 |
20100229915 | Ledenev et al. | Sep 2010 | A1 |
20100246230 | Porter et al. | Sep 2010 | A1 |
20100253150 | Porter et al. | Oct 2010 | A1 |
20100308662 | Schatz et al. | Dec 2010 | A1 |
20100327659 | Lisi | Dec 2010 | A1 |
20110005567 | Vandersluis et al. | Jan 2011 | A1 |
20110067745 | Ledenev et al. | Mar 2011 | A1 |
20110095613 | Huang et al. | Apr 2011 | A1 |
20110115300 | Chiang et al. | May 2011 | A1 |
20110127841 | Chiang et al. | Jun 2011 | A1 |
20110160930 | Batten et al. | Jun 2011 | A1 |
20110175454 | Williams et al. | Jul 2011 | A1 |
20110181251 | Porter et al. | Jul 2011 | A1 |
20110193515 | Wu et al. | Aug 2011 | A1 |
20110210611 | Ledenev et al. | Sep 2011 | A1 |
20110316346 | Porter et al. | Dec 2011 | A1 |
20120003251 | Ledenev et al. | Feb 2012 | A1 |
20120043818 | Stratakos et al. | Feb 2012 | A1 |
20120104864 | Porter et al. | May 2012 | A1 |
20120175963 | Adest | Jul 2012 | A1 |
20120212066 | Adest | Aug 2012 | A1 |
20120223584 | Ledenev et al. | Sep 2012 | A1 |
20130271096 | Inagaki | Oct 2013 | A1 |
20140045325 | Ledenev et al. | Jan 2014 | A1 |
20150100257 | Adest et al. | Apr 2015 | A1 |
20150130284 | Ledenev et al. | May 2015 | A1 |
20160156384 | Fabre et al. | Jun 2016 | A1 |
20160226257 | Porter et al. | Aug 2016 | A1 |
20160268809 | Ledenev et al. | Sep 2016 | A1 |
20160329720 | Ledenev et al. | Nov 2016 | A1 |
20160336899 | Ledenev et al. | Nov 2016 | A1 |
20160365734 | Ledenev | Dec 2016 | A1 |
20160380436 | Porter et al. | Dec 2016 | A1 |
20170271879 | Ledenev et al. | Sep 2017 | A1 |
20170373503 | Ledenev | Dec 2017 | A1 |
20180048161 | Porter et al. | Feb 2018 | A1 |
20180374965 | Ledenev et al. | Dec 2018 | A1 |
20190131794 | Ledenev | May 2019 | A1 |
20190296556 | Porter et al. | Sep 2019 | A1 |
20200227920 | Ledenev et al. | Jul 2020 | A1 |
20200321780 | Adest et al. | Oct 2020 | A1 |
20200343388 | Ledenev et al. | Oct 2020 | A1 |
20210066918 | Ledenev et al. | Mar 2021 | A1 |
20210276455 | Ledenev | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
2702392 | Sep 2015 | CA |
2737134 | Oct 2017 | CA |
2942616 | Nov 2019 | CA |
1470098 | Jan 2004 | CN |
101257221 | Sep 2008 | CN |
101904015 | Dec 2010 | CN |
102013853 | Apr 2011 | CN |
0178446 | Jan 1989 | EP |
0383971 | Aug 1990 | EP |
677749 | Oct 1995 | EP |
824273 | Feb 1998 | EP |
964415 | Dec 1999 | EP |
964457 | Dec 1999 | EP |
780750 | Mar 2002 | EP |
1291997 | Mar 2003 | EP |
1388927 | Feb 2004 | EP |
2017948 | Jan 2009 | EP |
2515424 | Oct 2012 | EP |
3176933 | Jun 2017 | EP |
324505 | May 2018 | EP |
3176933 | Aug 2020 | EP |
2212983 | Apr 2021 | EP |
2973982 | May 2021 | EP |
310362 | Sep 1929 | GB |
612859 | Nov 1948 | GB |
1231961 | May 1971 | GB |
424556.9 | Nov 2005 | GB |
2415841 | Jan 2006 | GB |
2419968 | May 2006 | GB |
2421847 | Jul 2006 | GB |
2434490 | Jul 2007 | GB |
280874 | Feb 2017 | IN |
62-256156 | Jul 1987 | JP |
07-302130 | Nov 1995 | JP |
8046231 | Feb 1996 | JP |
2000-174307 | Jun 2000 | JP |
2006020390 | Jun 2004 | JP |
2007058845 | Aug 2007 | JP |
2007-325371 | Dec 2007 | JP |
2011-193548 | Sep 2011 | JP |
2012-60714 | Mar 2012 | JP |
1020070036528 | Mar 2007 | KR |
201037958 | Oct 2010 | TW |
9003680 | Apr 1990 | WO |
9003680 | Apr 1990 | WO |
0217469 | Feb 2002 | WO |
02073785 | Sep 2002 | WO |
03036688 | May 2003 | WO |
2004100344 | Nov 2004 | WO |
2004100348 | Nov 2004 | WO |
2004107543 | Dec 2004 | WO |
2005027300 | Mar 2005 | WO |
2005036725 | Apr 2005 | WO |
2005076445 | Aug 2005 | WO |
2006005125 | Jan 2006 | WO |
2006013600 | Feb 2006 | WO |
2006048688 | May 2006 | WO |
2006048689 | May 2006 | WO |
2006071436 | Jul 2006 | WO |
2006078685 | Jul 2006 | WO |
2006117551 | Nov 2006 | WO |
2006137948 | Dec 2006 | WO |
2007007360 | Jan 2007 | WO |
2007080429 | Jul 2007 | WO |
2007142693 | Dec 2007 | WO |
2008069926 | Jun 2008 | WO |
2008125915 | Oct 2008 | WO |
2008132553 | Nov 2008 | WO |
2008142480 | Nov 2008 | WO |
2008142480 | Nov 2008 | WO |
2009003680 | Jan 2009 | WO |
2009007782 | Jan 2009 | WO |
2009007782 | Jan 2009 | WO |
2009051853 | Apr 2009 | WO |
2009051854 | Apr 2009 | WO |
2009051870 | Apr 2009 | WO |
2009055474 | Apr 2009 | WO |
2009059028 | May 2009 | WO |
2009064683 | May 2009 | WO |
2009072075 | Jun 2009 | WO |
2009072075 | Jun 2009 | WO |
2009072076 | Jun 2009 | WO |
2009072076 | Jun 2009 | WO |
2009072077 | Jun 2009 | WO |
2009073867 | Jun 2009 | WO |
2009073868 | Jun 2009 | WO |
2009075985 | Jun 2009 | WO |
2009114341 | Sep 2009 | WO |
2009118682 | Oct 2009 | WO |
2009118682 | Oct 2009 | WO |
2009118682 | Oct 2009 | WO |
2009118683 | Oct 2009 | WO |
2009118683 | Oct 2009 | WO |
2009118683 | Oct 2009 | WO |
2009136358 | Nov 2009 | WO |
2009136358 | Nov 2009 | WO |
2009140536 | Nov 2009 | WO |
2009140539 | Nov 2009 | WO |
2009140539 | Nov 2009 | WO |
2009140543 | Nov 2009 | WO |
2009140551 | Nov 2009 | WO |
2010014116 | Feb 2010 | WO |
2010062662 | Jun 2010 | WO |
2010065043 | Jun 2010 | WO |
2010262410 | Jun 2010 | WO |
2010002960 | Jul 2010 | WO |
2010120315 | Oct 2010 | WO |
2011049985 | Apr 2011 | WO |
2011110933 | Sep 2011 | WO |
2012024538 | Feb 2012 | WO |
2012024540 | Feb 2012 | WO |
2012100263 | Jul 2012 | WO |
2014143021 | Sep 2014 | WO |
Entry |
---|
Power Article, Aerospace Systems Lab, Washington University, St. Louis, MO; estimated at Sep. 2007; 3 pages. |
U.S. Appl. No. 11/333,005, filed Jan. 17, 2006, First Named Inventor Gordon E. Presher, Jr. |
Quan, Li; Wolfs, P; “An Analysis of the ZVS Two-inductor Boost Converter Under Variable Frequency Operation,” IEEE Transactions on Power Electronics, Central Queensland University, Rockhamton, Qld, AU; vol. 22, No. 1, Jan. 2007; pp. 120-131. Abstract only, 1 page. |
Rajan, Anita; “Maximum Power Point Tracker Optimized for Solar Powered Cars;” Society of Automotive Engineers, Transactions, v 99, n Sect 6,1990, Abstract only, 1 page. |
Reimann, T, Szeponik, S; Berger, G; Petzoldt, J; “A Novel Control Principle of Bi-directional DC-DC Power Conversion,” 28th Annual IEEE Power Electroncis Specialists Conference, St. Louis, MO Jun. 22-27, 1997; vol. 2, Abstract only, 1 page. |
Rodriguez, C; “Analytic Solution to the Photovoltaic Maximum Power Point Problem;” IEEE Transactions of Power Electronics, vol. 54, No. 9, Sep. 2007, 7 pages. |
Roman, E et al; “Intelligent PV Module for Grid-Connected PV Systems;” IEEE Transactions of Power Electronics, vol. 53, No. 4, Aug. 2006, 8 pages. |
Russell, M.C. et al; “The Massachusetts Electric Solar Project: A Pilot Project to Commercialize Residential PC Systems,” Photovoltaic Specialists Conference 2000; Conference Record of the 28th IEEE; Abstract Only, 1 page. |
SatCon Power Systems, PowerGate Photovoltaic 50kW Power Converter System; Spec Sheet; Jun. 2004, 2 pages. |
Schekulin, Dirk et al; “Module-integratable Inverters in the Power-Range of 100-400 Watts,” 13th European Photovoltaic Solar Energy Conference, Oct. 23-27, 1995; Nice, France; p. 1893-1896. |
Shimizu, et al; “Generation Control Circuit for Photovoltaic Modules,” IEEE Transactions on Power Electronics; vol. 16, No. 3, May 2001. 8 pages. |
Siri, K; “Study of System Instability in Current-mode Converter Power Systems Operating in Solar Array Voltage Regulation Mode,” Dept. of Electrical and Electronic Systems, Aerospace Corp., El Segundo, CA; Feb. 6-10, 2000 in New Orleans, LA, 15th Annual IEEE Applied Power Electronics Conference and Exposition, Abstract only, 1 page. |
solar-electric.com; Northern Arizona Wind & Sun, All About MPPT Solar Charge Controllers; Nov. 5, 2007, 4 pages. |
Takahashi, I. et al; “Development of a Long-life Three-phase Flywheel UPS Using an Electrolytic Capacitorless Converter-inverter,” 1999 Scripta Technica, Electr. Eng. Jpn, 127(3); 6 pages. |
United States Provisional Application filed Dec. 6, 2006, U.S. Appl. No. 60/868,851, first named Inventor: Adest. |
United States Provisional Application filed Dec. 6, 2006, U.S. Appl. No. 60/868,893; First Named Inventor: Adest. |
United States Provisional Application filed Dec. 7, 2006, U.S. Appl. No. 60/868,962; First Named Inventor: Adest. |
United States Provisional Application filed Mar. 26, 2007, U.S. Appl. No. 60/908,095; First Named Inventor: Adest. |
United States Provisional Application filed May 9, 2007, U.S. Appl. No. 60/916,815; First Named Inventor: Adest. |
United States Provisional Application filed Nov. 15, 2007, U.S. Appl. No. 60/986,979; First Named Inventor: Ledenev. |
United States Provisional Application filed Oct. 15, 2007, U.S. Appl. No. 60/980,157; First Named Inventor: Ledenev. |
United States Provisional Application filed Oct. 23, 2007, U.S. Appl. No. 60/982,053; First Named Inventor: Porter. |
Walker, G.R. et al; “Cascaded DC-DC Converter Connection of Photovoltaic Modules,” IEEE Transactions of Power Electronics, vol. 19, No. 4, Jul. 2004, 10 pages. |
Walker, G.R. et al; “PV String Per-Module Power Point Enabling Converters,” School of Information Technology and Electrical Engineering; The University of Queensland, presented at the Australasian Universities Power Engineering Conference, Sep. 28-Oct. 1, 2003 in Christchurch; AUPEC2003; 6 pages. |
Wang, Ucilia; Greentechmedia; “National semi casts solarmagic;” www.greentechmedia.com; Jul. 2, 2008; 3 pages. |
Xue, John, “PV Module Series String Balancing Converters,” Supervised by Geoffrey Walker, Nov. 6, 2002 University of Queensland, School of Information Technology and Electrical Engineering; 108 pages. |
Yuvarajan, S; Dachuan, Yu; Shanguang, Xu; “A Novel Power Converter for Photovoltaic Applications,” Journal of Power Sources, Sep. 3, 2004; vol. 135, No. 1-2, pp. 327-331. |
Feuermann, D. et al., Reversible low solar heat gain windows for energy savings. Solar Energy vol. 62, No. 3, pp. 169-175, 1998. |
Román, E., et al. Experimental results of controlled PV module for building integrated PV systems; Science Direct Solar Energy, vol. 82, Issue 5, May 2008, pp. 471-480. |
Linares, L., et al. Improved Energy Capture in Series String Photovoltaics via Smart Distributed Power Electronics Proceedings APEC 2009: 24th Annual IEEE Applied Power Electronics Conference. Washington, D.C., Feb. 2009; 7 pages. |
Chen, J., et al. Buck-Boost PWM Converters Having Two Independently Controlled Switches, IEEE Power Electronics Specialists Conference, Jun. 2001, vol. 2, 6 pages. |
Chen, J., et al. A New Low-Stress Buck-Boost Converter for Universal-Input PFC Applications, IEEE Applied Power Electronics Conference, Feb. 2001; 7 pages. |
Walker, G. et al. Photovoltaic DC-DC Module Integrated Converter for Novel Cascaded and Bypass Grid Connection Topologies—Design and Optimisation, 37th IEEE Power Electronics Specialists Conference / Jun. 18-22, 2006, Jeju, Korea; 7 pages. |
Esram, T., Chapman, P.L., “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” Energy Conversion, IEEE Transactions, Vo. 22, No. 2, pp. 439-449, Jun. 2007. |
Knaupp, W. et al., Operation of A 10 kW PV facade with 100 W AC photovoltaic modules, 25th PVSC; May 13-17, 1996; Washington, D.C.; 4 pages. |
Schoen.T. J. N., BIPV overview & getting PV into the marketplace in the Netherlands, The 2nd World Solar Electric Buildings Conference: Sydney Mar. 8-10, 2000; 15 pages. |
Stern M., et al. Development of a Low-Cost Integrated 20-kW-AC Solar Tracking Subarray for Grid-Connected PV Power System Applications—Final Report, National Renewable Energy Laboratory, Jun. 1998; 41 pages. |
Verhoeve, C.W.G., et al., Recent Test Results of AC-Module inverters, Netherlands Energy Research Foundation ECN, 1997; 3 pages. |
International Application No. PCT/US08/57105, International Preliminary Report on Patentability, dated Dec. 13, 2010; 44 pages. |
International Application No. PCT/US08/70506 corrected International Preliminary Report on Patentability, dated Jun. 25, 2010; 12 pages. |
International App. No. PCT/US09/41044, Search Report dated Jun. 5, 2009; 3 pages. |
International App. No. PCT/US09/41044, Written Opinion dated Jun. 5, 2009; 13 pages. |
International App. No. PCT/US08/79605, Search Report dated Feb. 3, 2009; 3 pages. |
International App. No. PCT/US08/79605, Written Opinion dated Feb. 3, 2009; 6 pages. |
International App. No. PCT/US08/80794, Search Report dated Feb. 23, 2009; 3 pages. |
International App. No. PCT/US08/80794, Written Opinion dated Feb. 23, 2009; 7 pages. |
National Semiconductor News Release—National semiconductor's SolarMagic Chipset Makes Solar Panels “Smarter” May 2009; 3 pages. |
SM3320 Power Optimizer Specifications; SolarMagic Power Optimizer, Apr. 2009; 2 pages. |
U.S. Appl. No. 16/028,188, filed Jul. 5, 2018. First Named Inventor: Ledenev. |
U.S. Appl. No. 15/164,806, filed May 25, 2016. First Named Inventor: Ledenev. Corrected Notice of Allowability dated Jun. 25, 2018. 2 pages. |
U.S. Appl. No. 15/213,193, filed Jul. 18, 2016. First Named Inventor: Ledenev. Notice of Allowance dated Jul. 6, 2018. 12 pages. |
U.S. Appl. No. 15/262,916, filed Sep. 12, 2016. First Named Inventor: Porter. Office Action dated Jul. 27, 2018. 8 pages. |
Chinese Patent Application No. 201380076592.9. English Translation of the 4th Notification of Office Action, dated Jul. 18, 2018. 2 pages. |
U.S. Appl. No. 16/028,188, filed Jul. 5, 2018. First Named Inventor: Ledenev. Filing Receipt dated Aug. 8, 2012. 3 pages. |
U.S. Appl. No. 15/793,704, filed Oct. 25, 2017. First Named Inventor: Porter. Office Action dated Sep. 17, 2018. 10 pages. |
U.S. Appl. No. 15/094,803, filed Apr. 8, 2016. First Named Inventor: Porter. Restriction Requirement dated Sep. 10, 2018. 6 pages. |
U.S. Appl. No. 16/028,188, filed Jul. 5, 2018. First Named Inventor: Ledenev. Updated Filing Receipt dated Sep. 21, 2018. 3 pages. |
European Patent Application No. 17150670.2. Office Action dated Sep. 10, 2018. 7 pages. |
U.S. Appl. No. 15/213,193, filed Jul. 18, 2016. Corrected Notice of Allowability dated Oct. 5, 2018. 2 pages. |
Canadian Patent Application No. 2942616, First Named Inventor: Ledenev. Requisition by the Examiner dated Sep. 21, 2018. 5 pages. |
European Patent Application No. 08732274.9. Communcation/Office Action dated Nov. 13, 2018. 4 pages. |
Japanese Patent Application No. 2016-160797. Penultimate office action dated Oct. 31, 2018. 3 pages. |
Indian Patent Application No. 3419/KOLNP/2015, filed Oct. 14, 2015. Examination Report dated Dec. 28, 2018. 9 pages. |
Chinese Patent Application No. 201380076592.9. Notice of Decision of Granting Patent Right for Invention dated Jan. 10, 2019. |
U.S. Appl. No. 15/612,892, filed Jun. 2, 2017. First Named Inventor: Ledenev. Office Action dated Dec. 4, 2018. 17 pages. |
U.S. Appl. No. 15/262,916, filed Sep. 12, 2016. Notice of Allowance dated Feb. 1, 2019. 8 pages. |
U.S. Appl. No. 15/793,704, filed Oct. 25, 2017. First Named Inventor: Porter. Notice of Allowance dated Feb. 27, 2019. |
U.S. Appl. No. 15/094,803, filed Apr. 8, 2016, first named inventor: Porter. Office Action dated May 2, 2019. 9 pages. |
U.S. Appl. No. 15/679,745, filed Aug. 17, 2017. First Named Inventor: Ledenev. Office Action dated May 8, 2019. 23 pages. |
Canadian Patent Application No. 2942616, First Named Inventor: Ledenev. Notice of Allowance dated Apr. 8, 2019. 1 page. |
U.S. Appl. No. 15/262,916, filed Sep. 12, 2016. Corrected Notice of Allowability dated May 21, 2019. 2 pages. |
European Patent Application No. 08796302.1, Office Action dated May 13, 2019. 3 pages. |
European Patent Application No. 08732274.9. Communcation/Office Action dated May 22, 2019. 3 pages. |
European Patent Application No. 17150670.2. Summons to Attend Oral Proceedings and Preliminary Opinion dated Apr. 8, 2019. 13 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior: Meir Adest; Junior Party: Anatoli Ledenev.; 13 pages. |
Linear Technology Specification Sheet, LTC3440, Micropower Synchronous Buck-Boost DC/DC Converter © Linear Technology Corporation 2001. 20 pages. |
Linear Technology Specification Sheet, LTC3443, High Current Micropower 600kHz Synchronous Buck-Boost DC/DC Converter © Linear Technology Corporation 2004. 16 pages. |
Linear Technology Specification Sheet, LTC3780, High Efficiency Synchronous, 4-Switch Buck-Boost Controller © Linear Technology Corporation 2005. 30 pages. |
Andersen, G., et al. Current Programmed Control of a Single Phase Two-Switched Buck-Boost Power Factor Correction Circuit. Aalbord University of Energy Technology, Denmark. © 2001 IEEE. 7 pages. |
Andersen, G., et al. Utilizing the free running Current Programmed Control as a Power Factor Correction Technique for the two switch Buck-Boost converter. Aalborg University, Institute of Energy Technology. © 2004 IEEE. 7 pages. |
Caricchi, F., et al. 20 kW Water-Cooled Prototype of a Buck-Boost Bidreictional DC-DC Converter Topology for Electrical Vehicle Motor Drives. University of Rome, “La Sapienza”. © 1995 IEEE. 6 pages. |
Caricchi, F., et al. Prototype of Innovative Wheel Direct Drive with Water-Cooled Axial-Flux PM Motor for Electric Vehicle Applications. University of Rome, “La Sapienza”. © 1996 IEEE. 7 pages. |
Caricchi, F., et al. Study of Bi-Directional Buck-Boost Converter Topologies for Application in Electrical Vehicle Motor Drives. University of Rome, “La Sapienza”. © 1998 IEEE. 7 pages. |
Chomsuwan, K., et al. Photovoltaic Grid-Connected Inverter Using Two-Switch Buck-Boost Converter. Ncational Science and Technology Development Agency, Thailand. © 2002 IEEE. 4 pages. |
Zhou, P. & Phillips, T., Linear Technology Advertisement, Design Notes. Industry's First 4-Switch Buck-Boost Controller Achieves Highest Efficiency Using a Single Inducutor. © 2005 Linear Technology Corporation. 2 pages. |
Enslin, J. H. R., Maximum Power Point Tracking: A Cost Saving Necessity In Solar Energy Systems. Department of Electrical Engineering University of Pretoria, South Africa. © 1990 IEEE 5 pages. |
Gaboriault, M., et al., A High Efficiency, Non-Inverting, Buck-Boost DC-DC Converter. Allegro Microsystems. © 2004 IEEE. 5 pages. |
Hua, et al. Comparative Study of Peak Power Tracking Techniques for Solar Storage System. Department of Electrical Engineering, National Yunlin University of Science and Technology. © 1998 IEEE. 7 pages. |
Kjaer, et al. A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules. IEEE Transactions on Industry Applications, vol. 41, No. 5, Sep./Oct. 2005. 15 pages. |
Micrel, MIC2182 High Efficiency Synchronous Buck Controller. Apr. 22, 2004. 28 pages. |
Midya, P., et al. Buck or Boost Tracking Power Converter. IEEE Power Electronics Letteres, vol. 2, No. 4, Dec. 2004. 4 pages. |
Decker, D.K. Methods for Utilizing Maximum Power From a Solar Array. JPL Quarterly Technical Review. vol. 2, No. 1, Apr. 1972. 12 pages. |
Roy, et al. Battery Charger using Bicycle. EE318 Electronic Design Lab Project, EE Dept, IIT Bombay, Apr. 2006. 14 pages. |
Sullivan, C. et al. A High-Efficiency Maximum Power Point Tracker for Photovoltaic Arrays in a Solar-Powered Race Vehicle. University of California, Berkeley. © 1993 IEEE. 7 pages. |
Viswanathan, K., et al. Dual-Mode Control of Cascade Buck-Boost PFC Converter. 2004 35th Annual IEEE Power Electronics Specialists Conference. 7 pages. |
Walker, Geoffrey R. (2000) Evaluating MPPT converter topologies using a MATLAB PV model. In Krivda, Anrej (Ed.) AUPEC 2000: Innovation for Secure Power, Queensland University of Technology, Brisbane, Australia, pp. 138-143. |
Zhang, P., et al. Hardware Design Experiences in ZebraNet. Department of Electrical Engineering, Princeton University. © 2004. 12 pages. |
Mohan, Ned. Excerpt from Power electronics: converters, applications, and design. © 1989, 1995. 2 pages. |
Bower, et al. “Certification of Photovoltaic Inverters: The Initial Step Toward PV System Cerlilication” © 2002 IEEE. 4 pages. |
NFPA Article 690 Solar Photovoltaic Systems, 70 National Electrical Code 70-545-90-566 (2005); 16 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior: Meir Adest; Junior Party: Anatoli Ledenev; Second Declaration of Eric A. Seymour dated Sep. 23, 2016; 108 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior: Meir Adest; Junior Party: Anatoli Ledenev; Declaration of Eric A. Seymour dated Sep. 9, 2016; 32 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior: Meir Adest; Junior Party: Anatoli Ledenev; Declaration of Marc E. Herniter in Support of Motion 1, dated Sep. 9, 2016. 38 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior: Meir Adest; Junior Party: Anatoli Ledenev; Declaration of Marc E. Herniter in Support of Motion 2, dated Sep. 9, 2016. 24 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior: Meir Adest; Junior Party: Anatoli Ledenev; Declaration Redeclaration entered Jun. 30, 2016. 6 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior: Meir Adest; Junior Party: Anatoli Ledenev; Adest List of Proposed Motions dated Jul. 20, 2016. 5 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior: Meir Adest; Junior Party: Anatoli Ledenev Ledenev List of Proposed Motions dated Jul. 20, 2016. 16 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior: Meir Adest; Junior Party: Anatoli Ledenev; Ledenev Motion 4 dated Sep. 9, 2016. 29 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior: Meir Adest; Junior Party: Anatoli Ledenev; Ledenev Motion 7 dated Sep. 23, 2016. 32 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior: Meir Adest; Junior Party: Anatoli Ledenev; Ledenev Motion 8 dated Sep. 26, 2016. 4 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior: Meir Adest; Junior Party: Anatoli Ledenev; Adest Motion 1 dated Sep. 9, 2016. 37 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior: Meir Adest; Junior Party: Anatoli Ledenev; Adest Motion 2 dated Sep. 9, 2016. 33 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior: Meir Adest; Junior Party: Anatoli Ledenev; Adest Opposition 8 dated Oct. 3, 2016. 10 pages. |
U.S. Appl. No. 13/430,388, filed Mar. 26, 2012. First Named Inventor: Adest. |
U.S. Appl. No. 11/950,271, filed Dec. 4, 2007. First Named Inventor: Adest. |
Linear Technology, LTC3780, High Efficiency, Synchronous, 4-Switch Buck-Boost Controller, (c) Linear Technology 2005. 28 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Ledenev Opposition 1, filed Nov. 14, 2016. 36 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Adest Opposition 4, filed Nov. 14, 2016. 36 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Adest Opposition 7, filed Nov. 14, 2016. 39 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Order Denying Request to Waive Board 122 and SO 122.6, entered Dec. 20, 2016. 6 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Order Granting Ledenev Miscellaneous Motion 8, entered Dec. 20, 2016. 4 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Adest Reply 1, filed Dec. 23, 2016. 25 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Ledenev Reply 4, filed Dec. 23, 2016. 29 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Ledenev Reply 7, filed Dec. 23, 2016. 28 pages. |
International Application Publication No. 2008/125915A3, published Oct. 23, 2008. Applicant: SolarEdge Technologies. Abstract and Search Report. 4 pages. |
International Application Publication No. 2008/132551 A3, published Nov. 6, 2008. Applicant: SolarEdge Technologies. Abstract and Search Report. 7 pages. |
International Application Publication No. 2008/142480A3, published Nov. 27, 2008. Applicant: SolarEdge Technologies. Abstract and Search Report. 5 pages. |
U.S. Appl. No. 62/385,032, filed Sep. 8, 2016. First Named Inventor: Anatoli Ledenev. |
U.S. Appl. No. 15/262,916, filed Sep. 12, 2016. First Named Inventor: Robert M. Porter. |
U.S. Appl. No. 14/550,574, filed Nov. 21, 2014. First Named Inventor: Anatoli Ledenev. |
International Application No. PCT/US13/032410, filed Mar. 15, 2013. First Named Inventor: Anatoli Ledenev. |
U.S. Appl. No. 15/213,193, filed Jul. 18, 2016. First Named Inventor: Anatoli Ledenev. |
Japanese Patent Application No. 2016-500068, international filing date: Mar. 15, 2013, Office Action dated Sep. 30, 2016, dated Oct. 4, 2016. 8 pages. |
U.S. Appl. No. 15/219,149, filed Jul. 25, 2016. First named Inventor: Anatoli Ledenev. |
U.S. Appl. No. 15/219,149, filed Jul. 25, 2016. First Named Inventor: Ledenev. Office Action dated Mar. 3, 2017. 14 pages. |
Canadian Patent Application No. 2737134, filed Mar. 14, 2008. First Named Inventor: Ledenev. Notice of Allowance dated Feb. 13, 2017. 1 page. |
Reissue U.S. Appl. No. 15/469,087, filed Mar. 24, 2017. First Named Inventor: Ledenev. |
European Patent Application No. 138//614; Extended European Search Report dated Nov. 7, 2016. 8 pages. |
U.S. Appl. No. 15/219,149, filed Jul. 25, 2016. Applicant Initiated Interview Summary. Interview date Apr. 4, 2017. 1 page. |
Japanese Patent Application No. 2016-500068, international filing date: Mar. 15, 2013, Office Action dated Mar. 13, 2017 dated Mar. 15, 2016. English Translation of the Official Action. 8 pages. |
U.S. Appl. No. 15/612,892, filed Jun. 2, 2017. First Named Inventor: Ledenev. |
U.S. Appl. No. 15/679,745, filed Aug. 17, 2017. First Named Inventor: Ledenev. |
Chinese Patent Application No. 201310162669.6, 5th Notification of Office Action dated Mar. 20, 2017. 6 pages. |
Chinese Patent Application No. 201310162669.6, Decision of Rejection dated Sep. 7, 2017. 8 pages. |
Chinese Patent Application No. 201310162669.6, First Office Action dated Nov. 25, 2014. 6 pages. |
Chinese Patent Application No. 201310162669.6, Search Report dated Nov. 25, 2014. 2 pages. |
Chinese Patent Application No. 201310162669.6, Second Notification of Office Action dated Jul. 17, 2015. 8 pages. |
Chinese Patent Application No. 201310162669.6, Third Notification of Office Action dated Jan. 14, 2016. 7 pages. |
Chinese Patent Application No. 201310162669.6, Fourth Notification of Office Action dated Aug. 17, 2016. 7 pages. |
Canadian Patent Application No. 2702392, Office Action dated Jul. 31, 2014. 2 pages. |
Canadian Patent Application No. 2702392, Office Action dated Sep. 26, 2013. 2 pages. |
European Patent Application No. 08796302.1, Office Action dated Jun. 28, 2016. 4 pages. |
German Patent No. DE4032569A1, published Apr. 16, 1992. Translated from GooglePatent. 7 pages. |
Chinese Application No. 201380076592.9, Second Notification of Office Action dated Jul. 28, 2017. 9 pages. |
Chinese Application No. 201380076592.9 filed Mar. 15, 2013. First Notification of Office Action and Search Report dated Nov. 28, 2016. 11 pages. |
U.S. Appl. No. 15/219,149, filed Jul. 25, 2016. First Named Inventor: Ledenev. Notice of Allowance and Applicant Initiated Interview Summary dated Apr. 26, 2017. 14 pages. |
U.S. Appl. No. 15/181,174, filed Jun. 13, 2016. First Named Inventor: Ledenev: Office Action dated Oct. 10, 2017. 12 pages. |
European Application No. 17150670.2. Extended European Search Report dated Apr. 7, 2017. 13 pages. |
U.S. Appl. No. 15/469,087, filed Mar. 24, 2017. First Named Inventor: Ledenev. Applicant-Initiated Interview Summary dated Oct. 20, 2017. 4 pages. |
Japanese Patent Application No. 2016-500068. Final rejection dated Sep. 29, 2017. English Translation. 7 pages. |
Japanese Patent Application No. 2016-160797. Rejection dated Sep. 29, 2017. 10 pages. |
U.S. Appl. No. 15/793,704, filed Oct. 25, 2017. First Named Inventor: Porter. |
Japanese Laid-Open Publication No. 2007-325371. Abstract only. 1 page. |
U.S. Appl. No. 15/164,806, filed May 25, 2016. First Named Inventor: Anatoli Ledenev. Ex Parte Quayle Action dated Dec. 12, 2017. 8 pages. |
U.S. Appl. No. 15/213,193, filed Jul. 18, 2016. First Named Inventor: Ledenev. Office Action dated Jan. 19, 2018. 15 pages. |
Vazquez, et al., The Tapped-Inductor Boost Converter. © 2007 IEEE. 6 pages. |
European Patent Application No. 17150670.2. Office Action dated Jan. 29, 2018. 9 pages. |
Chinese Patent Application No. 201380076592.9. English Translation of the 3rd Notification of Office Action, dated Feb. 7, 2018. 13 pages. |
U.S. Appl. No. 15/164,806, filed May 25, 2016. Notice of Allowance dated Mar. 9, 2018. 8 pages. |
U.S. Appl. No. 15/164,806, filed May 25, 2016. Corrected filing receipt mailed Mar. 14, 2018. 3 pages. |
Japanese Patent Application No. 2016-160797. Rejection dated Mar. 27, 2018. 13 pages. |
European Application No. 17209600, Extended European Search Report dated Apr. 10, 2018. 6 pages. |
U.S. Appl. No. 15/164,806, filed May 25, 2016. Corrected Notice of Allowance dated May 10, 2018. 4 pages. |
Solar Sentry Corp., Protecting Solar Investment “Solar Sentry's Competitive Advantage”, 4 pages estimated as Oct. 2008. |
Anon Source; International Symposium on Signals, Circuits and Systems, Jul. 12-13, 2007; Iasi, Romania Publisher: Institute of Electrical and Electroncis Engineers Computer Society; Abstract. 1 page. |
Bascope, G.V.T.; Barbi, I; “Generation of a Family of Non-isolated DC-DC PWM Converters Using New Three-state Switching Cells;” 2000 IEEE 31st Annual Power Electronics Specialists Conference in Galway, Ireland; vol. 2, Abstract. 1 page. |
Bower, et al. “Innovative PV Micro-Inverter Topology Eliminates Electrolytic Capacitors for Longer Lifetime,” 1-4244-0016-3-06 IEEE p. 2038 (2006); 4 pages. |
Cambridge Consultants, Interface Issue 43, Autumn 2007; 21 pages. |
Case, M.J.; “Minimum Component Photovoltaic Array Maximum Power Point Tracker,” Vector (Electrical Engineering), Jun. 1999; Abstract. 1 page. |
Tse, K.K.et al. “A Novel Maximum Power Point Tracking Technique for PV Panels;” Dept. of Electronic Engineering, City Univerisity of Hong Kong; Source: PESC Record—IEEE Annual Power Electronics Specialists Conference, v 4, 2001, p. 1970-1975, Jun. 17-21, 2001; Abstract. 1 page. |
Cuadras, A; Ben Amor, N; Kanoun, O; “Smart Interfaces for Low Power Energy Harvesting Systems,” 2008 IEEE Instrumentation and Measurement Technology Conference May 12-15, 2008 in Victoria, BC Canada; Abstract. 1 page. |
Dallas Semiconductor; Battery I.D. chip from Dallas Semiconductor monitors and reports battery pack temperature, Bnet World Network, Jul. 10, 1995; 1 page. |
De Doncker, R. W.; “Power Converter for PV-Systems,” Institute for Power Electrical Drives, RWTH Aachen Univ. Feb. 6, 2006; 18 pages. |
De Haan, S.W.H., et al; Test results of a 130W AC module, a modular solar AC power station, Photovoltaic Energy Conversion, 1994; Conference Record of the 24th IEEE Photovoltaic Specialists Conference Dec. 5-9, 1994; 1994 IEEE First World Conference. Abstract, 1 page. |
Dehbonei, Hooman; Corp author(s): Curtin University of Technology, School of Electrical and Computer Engineering; 2003; Description: xxi, 284 leaves; ill.; 31 cm. Dissertation: Thesis. Abstract; 1 page. |
Jung, D; Soft Switching Boost Converter for Photovoltaic Power Generation System, 2008 13th International Power Electronics and Motion Control Conference (EPE-PEMC 2008); 5 pages. |
Duan, Rouo-Yong; Chang, Chao-Tsung; “A Novel High-efficiency Inverter for StAMPT-alone and Grid-connected Systems,” 2008 3rd IEEE Conference on Industrial Electronics and Applications in Singapore, Jun. 3-5, 2008; Article No. 4582577. Abstract. 3 pages. |
Duncan, Joseph, A Global Maximum Power Point Tracking DC-DC Converter, Massachussetts Institute of Technology, Dept. of Electrical Engineering and Computer Science Dissertation; Jan. 20, 2005; 80 pages. |
Edelmoser, K. H. et al.; High Efficiency DC-to-AC Power Inverter with Special DC Interface; Professional Paper, ISSN 0005-1144, Automatika 46 (2005) 3-4, 143-148 6 pages. |
Enrique, J.M.; Duran, E; Sidrach-de-Cadona, M; Andujar, JM; “Theoretical Assessment of the Maximum Power Point Tracking Efficiency of Photovoltaic Facilities with Different Converter Topologies;” Source: Solar Energy 81, No. 1 (2007); 31 (8 pages). |
Enslin, J.H.R.; “Integrated Photovoltaic Maximum PowerPoint Tracking Converter;” Industrial Electronics, IEEE Transactions on vol. 44, Issue 6, Dec. 1997, pp. 769 773. |
Ertl, H; Kolar, J.W.; Zach, F.C.; “A Novel Multicell DC-AC Converter for Applications in Renewable Energy Systems;” IEEE Transactions on Industrial Electronics, Oct. 2002; vol. 49, Issue 5, Abstract. 1 page. |
Esmaili, Gholamreza; Application of Advanced Power Electronics in Renewable Energy Sources and Hygrid Generating Systems, Ohio State University, Graduate Program in Electrical and Computer Engineering, 2006, Dissertation. 169 pages. |
Gomez, M; “Consulting in the solar power age,” IEEE-CNSV: Consultants' Network of Silicon Valley, Nov. 13, 2007; 30 pages. |
Guo, G.Z.; “Design of a 400W, 1 Omega, Buck-boost Inverter for PV Applications,” 32nd Annual Canadian Solar Energy Conference, Jun. 10, 2007; 18 pages. |
Hashimoto et al; “A Novel High Performance Utility Interactive Photovoltaic Inverter System,” Department of Electrical Engineering, Tokyo Metropolitan University, 1-1 Miinami-Osawa, Hachioji, Tokyo, 192-0397, Japan; pp. 2255-2260, © 2000. |
Ho, Billy M.T.; “An Integrated Inverter with Maximum Power Tracking for Grid-Connected PV Systems;” Department of Electronic Engineering, City University of Hong Kong; Conference Proceedings, 19th Annual IEEE Applied Power Electronics Conference and Exposition, Feb. 22-26, 2004; p. 1559-1565. |
http://www.solarsentry.com; Protecting Your Solar Investment, 2005, Solar Sentry Corp. 1 page. |
Hua, C et al; “Control of DC-DC Converters for Solar energy System with Maximum Power Tracking,” Department of Electrical Engineering; National Yumin University of Science & Technology, Taiwan; vol. 2, Nov. 9-14, 1997 pp. 827-832. |
International Application filed Apr. 15, 2008, Serial No. PCT/US08/60345; First Named Inventor: Porter. 87 pages. |
International Application filed Jul. 18, 2008, Serial No. PCT/US08/70506; First Named Inventor: Schatz. 137 pages. |
International Application filed Mar. 14, 2008, Serial No. PCT/US08/57105; 90 pages. |
International Application filed Oct. 10, 2008, Serial No. PCT/US08/79605; 46 pages. |
International Application No. PCT/US08/57105, International Search Report dated Jun. 25, 2008; 5 pages. |
International Application No. PCT/US08/57105, Written Opinion dated Jun. 25, 2008; 42 pages. |
International Application No. PCT/US08/60345, International Search Report dated Aug. 18, 2008; 1 page. |
International Application No. PCT/US08/60345, Written Opinion dated Aug. 18, 2008; 10 pages. |
International Application No. PCT/US08/70506, International Search Report dated Sep. 26, 2008; 4 pages. |
International Application No. PCT/US08/70506, Written Opinion dated Sep. 26, 2008; 7 pages. |
Joo, Hyuk Lee; “Soft Switching Multi-Phase Boost Converter for Photovoltaic System,” Power Electronics and Motion Control Conference, 2008 EPE-PEMC 2008. 13th Sep. 1, 2008. Abstract only. 1 page. |
Kaiwei, Yao, Mao, Ye; Ming, Xu; Lee, F.C.; “Tapped-inductor Buck Converter for High-step-down DC-DC Conversion,” IEEE Transactions on Power Electronics, vol. 20, Issue 4, Jul. 2005; Abstract. 1 page. |
Kang, F et al; Photovoltaic Power Interface Circuit Incorporated with a Buck-boost Converter and a Full-bridge Inverter, doi:10 1016-j.apenergy.2004.10.009 2 pages. |
Kern G; “SunSine (TM)300: Manufacture of an AC Photovoltaic Module,” Final Report, Phases I & II, Jul. 25, 1995-Jun. 30, 1998; National Renewable Energy Laboratory, Mar. 1999; NREL-SR-520-26085; 33 pages. |
Kretschmar, K et a.; “An AC Converter with a Small DC Link Capacitor for a 15kW Permanent Magnet Synchronous Integral Motor,Power Electronics and Variable Speed Drive,” 1998;7th International Conference; Conf. Publ. No. 456; Sep. 21-23, 1998; 4 pages. |
Kroposki, H. Thomas and Witt, B & C; “Progress in Photovoltaic Components and Systems,” National Renewable Energy Laboratory, May 1, 2000; NREL-CP-520-27460; 7 pages. |
Kuo, J.-L.; “Duty-based Control of Maximum Power Point Regulation for Power Converter in Solar Fan System with Battery Storage,” Proceedings of the Third IASTED Asian Conference, Apr. 2, 2007, Phuket, Thialand, pp. 163-168. |
Lim, Y.H. et al; “Simple Maximum Power Point Tracker for Photovoltaic Arrays,” Electronics Letters May 25, 2000; vol. 36, No. 11. 2 pages. |
Linear Technology Specification Sheet, LTM4607, estimated as Nov. 14, 2007; 24 pages. |
Matsuo, H et al; Novel Solar Cell Power Supply System using the Multiple-input DC-DC Converter; Telecommunications Energy Conference, 1998; INTELEC, 20th International, pp. 797-802. |
Mutoh, Nobuyoshi, “A Controlling Method for Charging Photovoltaic Generation Power Obtained by a MPPT Control Method to Series Connected Ultra-electric Double Layer Capacitors;” Intelligent Systems Department, Faculty of Engineering, Graduate School of Tokyo; 39th IAS Annual Meeting (IEEE Industry Applications Society); v 4, 2004, Abstract. 1 page. |
Mutoh, Nobuyoshi; A Photovoltaic Generation System Acquiring Efficiently the Electrical Energy Generated with Solar Rays,; Graduate School of Tokyo, Metropolitan Institute of Technology; Source: Series on Energy and Power Systems, Proceedings of the Fourth IASTED International Conference on Power and Energy Systems, Jun. 28-30, 2004; Abstract. 1 page. |
Nishida, Yasuyuki, “A Novel Type of Utility-interactive Inverter for Photovoltaic System,” Conference Proceedings, IPEMC 2004; 4th International Power and Electronics Conference, Aug. 14-16, 2004; Xian Jiaotong University Press, Xian, China; Abstract. 1 page. |
Oldenkamp, H. et al; AC Modules: Past, Present and Future, Workshop Installing the Solar Solution; Jan. 22-23, 1998; Hatfield, UK; 6 pages. |
Jung, et al. DC-Link Ripple Reduction of Series-connected Module Integrated Converter for Photovoltaic Systems. International Conference of Power Electronics—ECCE Asia May 30-Jun. 2, 2011. 4 pages. |
U.S. Appl. No. 13/503,011, filed Apr. 19, 2012. First Named Inventor: Anatoli Ledenev. Notice of Allowance dated Jun. 29, 2016; 15 pages. |
U.S. Appl. No. 13/934,102, filed Jul. 2, 2013. First Named Inventor: Anatoli Ledenev. Notice of Allowance dated Jun. 30, 2016.; 11 pages. |
U.S. Appl. No. 13/254,666, filed Sep. 2, 2011. First Named Inventor: Robert M. Porter. Notice of Allowance dated Jul. 14, 2016; 11 pages. |
U.S. Appl. No. 15/181,174, filed Jun. 13, 2016. First Named Inventor: Anatoli Ledenev. |
U.S. Appl. No. 15/094,803, filed Apr. 8, 2016. First Named Inventor: Robert M. Porter. |
U.S. Appl. No. 15/164,806, filed May 25, 2016. First Named Inventor: Anatoli Ledenev. |
Japanese Application No. 2004-046358, published Sep. 2, 2005. Filed Feb. 23, 2004. First Named Inventor: Yoshitake Akira. Abstract only. 1 page. |
Japanese Application No. 06-318447, filed Dec. 21, 1994. First Named Inventor: Tanaka Kunio. Abstract only. 1 page. |
European Application No. 0677749A3, filed Apr. 13, 1995. First Named Inventor: Takehara. Abstract only, 2 pages. |
U.S. Appl. No. 13/254,666, filed Sep. 2, 2011. First Named Inventor: Robert M. Porter. |
International Patent Application Publication No. 2009/007782A4, published Jan. 15, 2009. Applicant: SolarEdge Ltd. Abstract and Claims only. 5 pages. |
International Patent Application Publication No. 2009/072075A3, published Jun. 11, 2009. Applicant: SolarEdge Ltd. Abstract and Search Report. 4 pages. |
European Patent Application No. EP0964457A3, published May 24, 2006. Applicant: Canon Kabushiki Kaisha. Abstract and Search Report. 4 pages. |
European Patent Application No. EP0978884A3, published Mar. 22, 2000. Applicant: Canon Kabushiki Kaisha. Abstract and Search Report. 4 pages. |
European Patent Application No. EP1120895A3, published May 6, 2004. Applicant: Murata Manufacturing Co., Ltd. Abstract and Search Report. 3 pages. |
Japanese Patent No. 05003678A, published Jan. 8, 1993. Applicant: Toshiba F EE Syst KK, et al. Abstract only. 1 page. |
Japanese Patent No. 6035555A, published Feb. 10, 1994. Applicant: Japan Storage Battery Co. Ltd. Abstract only. 1 page. |
Japanese Patent No. 06141261A, published May 20, 1994. Applicant: Olympus Optical Co. Ltd. Abstract only. 1 page. |
Japanese Patent No. 7026849A, published Jan. 27, 1995. Applicant: Sekisui House Ltd. Abstract only. 1 page. |
Japanese Patent No. 07222436A, published Aug. 18, 1995. Applicant: Meidensha Corp. Abstract only. 1 page. |
Japanese Patent No. 08033347A, published Feb. 2, 1996. Applicant: Hitachi Ltd et al. Abstract only. 1 page. |
Japanese Patent No. 08066050A, published Mar. 8, 1996. Applicant: Hitachi Ltd. Abstract only. 1 page. |
Japanese Patent No. 08181343A, published Jul. 12, 1996. Applicant: Sharp Corp. Abstract only. 1 page. |
Japanese Patent No. 8204220A, published Aug. 9, 1996. Applicant Mistubishi Electric Corp. Abstract only. 1 page. |
Japanese Patent No. 09097918A, published Apr. 8, 1997. Applicant Canon Inc. Abstract only. 1 page. |
Japanese Patent No. 056042365A, published Apr. 20, 1981. Applicant: Seiko Epson Corp. Abstract only. 1 page. |
Japanese Patent No. 60027964A, published Feb. 13, 1985. Applicant: NEC Corp. Abstract only. 1 page. |
Japanese Patent No. 60148172A, published Aug. 5, 1985. Applicant: Seikosha Co. Ltd. Abstract only. 1 page. |
Japanese Patent No. 62154121A, published Jul. 9, 1987. Applicant: Kyocera Corp. Abstract only. 1 page. |
Japanese Patent No. 2000020150A, published Jan. 21, 2000. Applicant: Toshiba Fa Syst Eng Corp et al. Abstract only. 1 page. |
Japanese Patent No. 2002231578A, published Aug. 16, 2002. Applicant: Meidensha Corp. Abstract only. 1 page. |
Japanese Patent No. 07058843A, published Mar. 3, 1995. Applicant: Matsushita Electric Ind. Co. Ltd. Abstract only. 1 page. |
Japanese Patent Application No. 2007104872A, published Apr. 19, 2007. Applicant: Ebara Densan Ltd. Abstract only. 1 page. |
Japanese Patent Application No. 2007225625A, filed Sep. 6, 2007. Applicant: Ahei Toyoji et al. Abstract only. 1 page. |
Japanese Patent Application No. 2001086765A, filed Mar. 30, 2001. Applicant: Powerware Corp. Abstract only. A page. |
Korean Patent Application No. 102005-7008700, filed May 13, 2005. Applicant: Exar Corporation. Abstract only. 2 pages. |
Korean Patent Application No. 102004-0099601, filed Dec. 1, 2004. Applicant: Lee, Seong Ryong. Abstract only. 2 pages. |
Korean Patent Application No. 102007-0036528, filed Apr. 13, 2007. Applicant: Industry-Academic Coop Foundation of Kyungnam Univ. Abstract only. 2 pages. |
International Application Publication No. WO2006/013600A3, published Feb. 9, 2006. Applicant: Universita Degli Studi DiRoma “La Sapienza”. Abstract and Search Report. 5 pages. |
International Application Publication No. 2006/048689A3, published May 11, 2006. Applicant: Enecsys Ltd. Abstract and Search Report. 7 pages. |
International Application Publication No. 2009/140551 A3, published Nov. 19, 2009. Applicant: National Semiconductor Corp. Abstract and Search Report. 3 pages. |
International Application Publication No. 2009/140543A3, published Nov. 19, 2009. Applicant: National Semiconductor Corp. Abstract and Search Report. 4 pages. |
International Application Publication No. 2009/140536A3, published Nov. 19, 2009. Applicant: National Semiconductor Corp. Abstract and Search Report. 4 pages. |
Japanese Patent No. 09148613A, filed Jun. 6, 1997. Applicant: Sanyo Electric Co Ltd. Abstract only. 1 page. |
International Application Publication No. 2010/062662A3, published Jun. 3, 2010. Applicant: Tigo Energy, Inc. Abstract and Search Report. 4 pages. |
International Application Publication No. 2009/114341A3, published Sep. 17, 2009. Applicant: Tigo Energy, Inc. Abstract and Search Report. 3 pages. |
International Application Publication No. 2009/075985A3, published Jun. 18, 2009. Applicant: Tigo Energy, Inc. Abstract and Search Report. 4 pages. |
International Application Publication No. 2009/064683A3, published May 22, 2009. Applicant: Tigo Energy, Inc. Abstract and Search Report. 3 pages. |
International Application Publication No. 2009/059028A3, published May 7, 2009. Applicant: Tigo Energy, Inc. Abstract and Search Report. 3 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Sep. 8, 2016 Hearing Transcript with Changes. 18 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Exhibit 2014—Adest et al., U.S. Appl. No. 13/430,388, Amendment submitted Jan. 14, 2016. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Exhibit 2027—Deposition Transcript of Marc E. Herniter, dated Oct. 14, 2016. 246 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Third Declaration of Eric A. Seymour, executed Nov. 14, 2016. 27 pages. |
Maranda, et al. Optimiazation of the Master-Slave Inverter System for Grid-Connected Photovoltaic Plants, Energy Convers. Mgmt, vol. 39, No. 12, pp. 1239-1246, 1998. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Exhibit 2033—Deposition Transcript of Marc E. Herniter, dated Dec. 14, 2016. 109 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Exhibit 1009—U.S. Appl. No. 12/329,525: EFS Acknowledgement Receipt, Drawings, Abstract, Claims, Specification, Declaration, Application Data Sheet, and Transmittal as filed Dec. 12, 2005; Petition and Application Data Sheet dated Apr. 12, 2013; and Filing Receipt and Petition Decision dated Apr. 19, 2013. 59 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Exhibit 1014: Claim chart—Comparing Count 1 to U.S. Appl. No. 60/908,095. 2 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Exhibit 1015: Declaration of Marc E. Herniter dated Nov. 14, 2016. 22 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Exhibit 1016: Declaration of Marc E. Herniter dated Nov. 21, 2016. 25 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Exhibit 1018: Datasheet, SW 280-290 Mono Black Sunmodule Plus, retrieved Nov. 21, 2016 from http://www.solar-world-usa.com/˜/media/www/files/datasheets/series/sunmodule-plus-mono-black-5-busbar-datasheet.pdf?la=en. 2 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Ledenev Notice of Filing of Continuation Applications dated Aug. 23, 2017. 3 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Second Supplemental Order Authorizing Ledenev Motion 7 dated Sep. 13, 2016. 5 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Supplemental Order Authorizing Motions dated Aug. 5, 2016. 6 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Ledenev First Supplemntal Notice of Related Proceedings dated Aug. 12, 2017. 3 pages. |
Patent Interference No. 106,054(JTM), declared Jun. 1, 2016. Senior Party: Meir Adest; Junior Party: Anatoli Ledenev; Ledenev Notice of Filing of Reissue Application dated Apr. 4, 2017. 3 pages. |
TwentyNinety.com/en/about-us/, printed Aug. 17, 2010; 2 pages. |
International Patent Application No. PCT/US08/60345. International Prelimianry Report on Patentability dated Aug. 30, 2010; 24 pages. |
U.S. Appl. No. 61/252,998, filed Oct. 19, 2009, entitled Solar Module Circuit with Staggered Diode Arrangement; First Named Inventor: Ledenev; 55 pages. |
U.S. Appl. No. 12/682,882; Nonfinal Office Action dated Sep. 27, 2010; First Named Inventor: Porter; 18 pages. |
U.S. Appl. No. 12/682,882; Examiner's Interview Summary dated Oct. 20, 2010; dated Oct. 26, 2010; 4 pages. |
U.S. Appl. No. 12/738,068; Examiner's Interview Summary dated Oct. 20, 2010; 2 pages. |
U.S. Appl. No. 12/738,068; Nonfinal Office Action dated Nov. 24, 2010; 8 pages. |
U.S. Appl. No. 12/682,559; Nonfinal Office Action dated Dec. 10, 2010; 12 pages. |
European Patent Application No. 07 873 361.5 Office Communication dated Jul. 12, 2010 and applicant's response dated Nov. 22, 2010; 24 pages. |
International Patent Application No. PCT/US2008/079605. International Preliminary Report on Patentability dated Jan. 21, 2011; 7 pages. |
Parallel U.S. Appl. No. 12/738,068; Examiner's Interview Summary dated Feb. 3, 2011; 2 pages. |
Parallel U.S. Appl. No. 12/682,882; Examiner's Interview Summary dated Feb. 9, 2011; 4 pages. |
Parallel U.S. Appl. No. 12/682,559; Examiner's Interview Summary dated Feb. 10, 2011; 3 pages. |
International Patent Application No. PCT/US2010/053253. International Search Report and International Written Opinion of the International Searching Authority dated Feb. 22, 2011; 13 pages. |
Parallel U.S. Appl. No. 12/682,559; Final Office Action dated Mar. 3, 2011; 13 pages. |
U.S. Appl. No. 12/738,068; Notice of Allowance dated Feb. 24, 2011; 25 pages. |
U.S. Appl. No. 12/955,704; Nonfinal Office Action dated Mar. 8, 2011; 7 pages. |
U.S. Appl. No. 12/682,882; Final Office Action dated May 13, 2011; 17 pages. |
U.S. Appl. No. 12/995,704; Notice of allowance dated Jul. 19, 2011; 5 pages. |
International Application No. PCT/US09/41044; International Preliminary Reporton Patentability dated Jul. 6, 2011; 14 pages. |
U.S. Appl. No. 12/682,882; Notice of allowance dated Sep. 9, 2011; 9 pages. |
U.S. Appl. No. 12/682,559; Nonfinal office action dated Sep. 23, 2011; 10 pages. |
U.S. Appl. No. 13/275,147; Nonfinal office action dated Dec. 29, 2011; 10 pages. |
U.S. Appl. No. 13/059,955; Nonfinal office action dated Jan. 23, 2012; 9 pages. |
International Application No. PCT/US10/53253; International Preliminary Reporto n Patentability dated Jan. 25, 2012; 37 pages. |
U.S. Appl. No. 12/682,559; Notice of allowance dated Apr. 17, 2012; 9 pages. |
International Application No. PCT/US08/80794; International Preliminary Report on Patentability dated May 8, 2012; 7 pages. |
U.S. Appl. No. 13/078,492; Nonfinal office action dated May 16, 2012, 10 pages. |
U.S. Appl. No. 13/192,329; Final office action dated Jun. 13, 2012; 13 pages. |
CN Patent Application No. 200880121101.7; office action dated Sep. 26, 2011; 6 pages. |
CN Patent Application No. 200880121101.7; office action dated Jun. 11, 2012; 3 pages. |
U.S. Appl. No. 13/192,329; Notice of Allowance dated Jul. 30, 2012; 5 pages. |
International Application No. PCT/2012/022266, International Search Report dated Jul. 24, 2012; 5 pages. |
International Application No. PCT/2012/022266, Written Opinion of the International Searching Authority dated Jul. 24, 2012; 16 pages. |
Related U.S. Appl. No. 13/275,147; Final office action dated Aug. 24, 2012; 16 pages. |
Related Chinese Patent Application No. 200880121009.0, Office Action dated Aug. 31, 2012; 12 pages. |
Related U.S. Appl. No. 13/059,955; Final office action dated Sep. 27, 2012; 11 pages. |
Parallel SG Patent Application No. 201107477-0; written opinion dated Nov. 27, 2012; 12 pages. |
Parallel JP Patent Application No. 2010-529991; office action dated Dec. 14, 2012, 7 pages. |
Parallel JP Patent Application No. 2010-529986; office action dated Mar. 5, 2013, 3 pages. |
Related U.S. Appl. No. 13/078,492; Notice of Allowance dated Apr. 24, 2013, 10 pages. |
Related U.S. Appl. No. 13/275,147; Notice of Allowance dated Jun. 3, 2013, 17 pages. |
Related CN Patent Application No. 200880121101.7; Notice of Allowance dated Feb. 17, 2013, 3 pages. |
Related Chinese Patent Application No. 200880121009.0, Office Action dated May 31, 2013, 7 pages. |
Parallel JP Patent Application No. 2010-529991; office action dated Sep. 5, 2013, 6 pages. |
U.S. Appl. No. 13/308,517, filed Nov. 3, 2011, First Named Inventor: Meir Adest. |
U.S. Appl. No. 14/550,574, filed Nov. 21, 2014. First Named Inventor: Ledenev. Notice of Allowance dated Jun. 6, 2016; 12 pages. |
Miwa, et al. High Efficiency Power Factor Correction Using Interleaving Techniques, (c) 1992 Laboratory for Electromagnetic and Electronic Systems, Massachusetts Institute of Technology. 12 pages. |
U.S. Appl. No. 16/440,843, filed Jun. 13, 2019. First Named Inventor: Porter. |
All pleadings, orders, exhibits, and any and all other documents in Interference No. 106,112, declared May 31, 2019. All documents available at the USPTO's Interference Portal. |
European Patent Application No. 13877614, Communication/Office Action dated Nov. 7, 2019. 4 pages. |
U.S. Appl. No. 16/440,843, filed Jun. 13, 2019. First Named Inventor: Porter. Filing Receipt dated Jun. 21, 2019. 4 pages. |
Indian Patent Application No. 1568/NOLNP/2010. Official Communication from the Office dated Oct. 16, 2019. 4 pages. |
European Patent Application No. 17150670.2, Communcation/Office Action dated Nov. 8, 2019. 4 pages. |
European Patent Application No. 17150670.2, Communication re: Intention to Grant dated Dec. 5, 2019. 38 pages. |
European Patent Application No. 08796302.1, Communication pursuant to Article 94(3) EPC, dated Dec. 4, 2019. 4 pages. |
European Patent Application No. 13877614, Communication/Office Action dated Oct. 31, 2019. 3 pages. |
Interference No. 106,054, declared Jun. 1, 2016. Judgment—Bd. R. 127(a) entered Dec. 31, 2019. 4 pages. |
Iterference No. 106,054, declared Jun. 1, 2016. Decision on Motions entered Dec. 31, 2019. 37 pages. |
U.S. Appl. No. 15/679,745, filed Aug. 17, 2017, first named Inventor: Ledenev. Notice of Allowance dated Feb. 12, 2020. |
European Patent Application No. 17209600.0, Communication pursuant to Article 94(3) EPC, dated Feb. 7, 2020. 5 pages. |
U.S. Appl. No. 15/679,745, filed Aug. 17, 2017, first named Inventor: Ledenev. Issue Notification dated Feb. 12, 2020. 1 page. |
U.S. Appl. No. 16/028,188, filed Jul. 5, 2018, first named inventor: Ledenev. Ex Parte Quayle Action dated Mar. 13, 2020. 6 pages. |
Interference No. 106,112, declared May 31, 2019. Decision on Motions entered Mar. 25, 2020. 37 pages. |
Interference No. 106,112, declared May 31, 2019. Judgment entered Mar. 25, 2020. 4 pages. |
U.S. Appl. No. 16/028,188, filed Jul. 5, 2018. First Named Inventor: Ledenev. Issue Notification dated Jun. 24, 2020. 1 page. |
European Patent Application No. 17150670.2, Intent to Grant dated Jul. 30, 2020. 2 pages. |
U.S. Appl. No. 16/925,236, filed Jul. 9, 2020. First Named Inventor: Ledenev. Filing Receipt dated Jul. 23, 2020. 4 pages. |
U.S. Appl. No. 17/036,630, filed Sep. 29, 2020. First Named Inventor: Ledenev. Filing Receipt dated Oct. 20, 2020, 2020. 4 pages. |
U.S. Appl. No. 16/440,843, filed Jun. 13, 2019. First Named Inventor: Porter. Notice of Allowance dated Oct. 8, 2020. 9 pages. |
U.S. Appl. No. 16/834,639, filed Mar. 30, 2020. First Named Inventor: Ledenev. Ex Parte Quayle Action dated Oct. 14, 2020. 7 pages. |
U.S. Appl. No. 16/172,524, filed Oct. 26, 2018. First Named Inventor: Ledenev. Office Action dated Sep. 2, 2020. 8 pages. |
European Patent Application No. 13877614.1. Dated Sep. 25, 2020 Communication Under Rule 71 (3) EPC. 6 pages. |
U.S. Appl. No. 17/036,630, filed Sep. 29, 2020. First Named Inventor: Ledenev. Notice of Allowance dated Nov. 18, 2020. 9 pages. |
U.S. Appl. No. 17/036,630, filed Sep. 29, 2020. First Named Inventor: Ledenev. Updated Filing Receipt dated Nov. 3, 2020. 4 pages. |
U.S. Appl. No. 17/036,630, filed Sep. 29, 2020. First Named Inventor: Ledenev. |
U.S. Appl. No. 17/063,669, filed Oct. 5, 2020. First Named Inventor: Ledenev. |
U.S. Appl. No. 17/063,669, filed Oct. 5, 2020. First Named Inventor: Ledenev. Filing Receipt dated Nov. 25, 2020 4 pages. |
U.S. Appl. No. 16/834,639, filed Mar. 30, 2020. First Named Inventor: Ledenev. |
U.S. Appl. No. 16/172,524, filed Oct. 26, 2018. First Named Inventor: Ledenev. Notice of Allowance dated Jan. 11, 2021. 8 pages. |
European Patent Application No. 08732274.9 dated Oct. 15, 2020. Communication under Rule 91(3) EPC. 52 pages. |
U.S. Appl. No. 16/834,639, filed Mar. 30, 2020. First Named Inventor: Ledenev. Notice of Allowance dated Feb. 2, 2021. 10 pages. |
U.S. Appl. No. 17/063,669, filed Oct. 5, 2020. Filing Receipt dated Jan. 13, 2021.4 pages. |
U.S. Appl. No. 17/036,630. Issue Notification dated Dec. 16, 2020. 1 pages. |
U.S. Appl. No. 17/063,669, filed Oct. 5, 2020. First Named Inventor: Ledenev. Ex Parte Quayle Action dated Feb. 10, 2021. 6 pages. |
U.S. Appl. No. 16/834,639, filed Mar. 30, 2020. Updated Notice of Allowance and Interview Summary dated Feb. 24, 2021. 3 pages. |
U.S. Appl. No. 16/440,843, filed Jun. 13, 2019, First Named Inventor: Porter. Issue Notification dated Feb. 10, 2021. 1 page. |
U.S. Appl. No. 16/028,188, filed Jul. 5, 2018. First Named Inventor: Ledenev. Corrected Notice of Allowability dated Jun. 10, 2020. 2 pages. |
U.S. Appl. No. 16/834,639, filed Mar. 30, 2020. Notice of Allowance dated Mar. 12, 2021. 17 pages. |
European Patent Application No. 08732274.9, Decision to Grant a European Patent Pursuant to Article 97(1) EPC dated Mar. 12, 2021. 2 pages. |
SolarEdge System Design and the National Electrical Code, Revisoin 1. Apr. 4, 2011. John Berdner. (c)2011. 10 pages. |
U.S. Appl. No. 16/172,524, filed Oct. 26, 2018. First Named Inventor: Ledenev. Corrected Notice of Allowability dated Mar. 18, 2021. 7 pages. |
U.S. Appl. No. 17/011,931, filed Nov. 18, 2020. Filing Receipt dated Apr. 16, 2021. 4 pages. |
European Patent Application No. 13877614.1. Decision to Grant a European Patent dated Apr. 9, 2021. 2 pages. |
U.S. Appl. No. 16/172,524, filed Oct. 26, 2018. First Named Inventor: Ledenev. Corrected Notice of Allowability dated Apr. 21, 2021. 2 pages. |
U.S. Appl. No. 16/172,524, filed Oct. 26, 2018. First Named Inventor: Ledenev. Issue Notification dated Apr. 28, 2021. 2 pages. |
U.S. Appl. No. 16/172,524, filed Oct. 26, 2018. First Named Inventor: Ledenev. Notice of Allowance dated Jun. 28, 2021. 8 pages. |
U.S. Appl. No. 16/834,639, filed Mar. 30, 2020. First Named Inventor: Ledenev. Corrected Notice of Allowability dated Jun. 28, 2021. 2 pages. |
U.S. Appl. No. 16/834,639, filed Mar. 30, 2020. First Named Inventor: Ledenev. Issue Notification dated Jun. 30, 2021. 1 page. |
U.S. Appl. No. 17/063,669, filed Oct. 5, 2020. First Named Inventor: Ledenev. Corrected Notice of Allowability dated Jun. 28, 2021. 2 pages. |
U.S. Appl. No. 17/063,669, filed Oct. 5, 2020. First Named Inventor: Ledenev. Issue Notification dated Jun. 30, 2021. 1 page. |
European Patent Application No. 17209600.0, Communication pursuant to Article 94(3) EPC, dated Sep. 14, 2021, 4 pages. |
U.S. Appl. No. 16/295,236, filed Jul. 9, 2020. First Named Inventor: Anatoli Ledenev. Office Action dated Sep. 24, 2021. 10 pages. |
U.S. Appl. No. 17/321,329, filed May 14, 2021. First Named Inventor: Ledenev. Notice of Publication of Application dated Sep. 2, 2021. 1 page. |
U.S. Appl. No. 16/172,254, filed Oct. 26, 2018. Issue Notification dated Aug. 25, 2021. 1 page. |
Number | Date | Country | |
---|---|---|---|
20190296555 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
60980157 | Oct 2007 | US | |
60986979 | Nov 2007 | US | |
60982053 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15793704 | Oct 2017 | US |
Child | 16439430 | US | |
Parent | 15094803 | Apr 2016 | US |
Child | 15793704 | US | |
Parent | 13346532 | Jan 2012 | US |
Child | 15094803 | US | |
Parent | 12682882 | US | |
Child | 13346532 | US | |
Parent | PCT/US2008/057105 | Mar 2008 | US |
Child | 12682882 | US |