Converting pump messages in new pump protocol to standardized dataset messages

Information

  • Patent Grant
  • 11923076
  • Patent Number
    11,923,076
  • Date Filed
    Tuesday, May 24, 2022
    a year ago
  • Date Issued
    Tuesday, March 5, 2024
    2 months ago
Abstract
Various techniques for facilitating communication with and across a clinical environment and a cloud environment are described. For example, a method for converting infusion pump messages having one format into standardized dataset messages having another format is described. When a connectivity adapter in the clinical environment detects a new pump protocol, the connectivity adapter may generate a message converter that can convert pump messages into standardized dataset messages. The message converter can be used to convert pump messages into standardized dataset messages. The standardized dataset messages may include information additional data or metadata not included in the pump messages.
Description
TECHNICAL FIELD

This disclosure relates to the field of clinical messaging, and particularly to techniques for facilitating clinical messaging within and across various network environments.


BACKGROUND

Modern medical care often involves the use of medical infusion pumps to deliver fluids and/or fluid medicine to patients. Infusion pumps permit the controlled delivery of fluids to a patient and provide flexible yet controlled delivery schedules. Infusion pumps can communicate with a server configured to manage the infusion statuses of the individual infusion pumps.


SUMMARY

Various techniques for facilitating communication with and across a clinical environment and a cloud environment are described herein. These techniques may include converting pump messages into standardized dataset messages (also referred to herein simply as “messages”), merging the messages into a cache, transmitting the messages to a cloud server, detecting network outages, clearing an outbound queue, detecting missing messages, authenticating a connectivity adapter for cloud access, providing a segmented data structure, among others. These and other embodiments are described in greater detail below with reference to FIGS. 1-13. Although many of the examples are described in the context of a hospital environment including infusion pumps, the techniques described herein can be applied to any network environment including other medical devices (e.g., patient care monitors configured to display blood pressure, heart rate, blood oxygenation, and the like), or non-medical devices, or any combination thereof.





BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments described herein are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which like references indicate similar elements.



FIG. 1 is a block diagram of an example clinical environment and an example cloud environment in accordance with aspects of the present disclosure.



FIG. 2 is a block diagram illustrating components of a clinical environment in accordance with aspects of the present disclosure.



FIG. 3 is a schematic diagram illustrating components of an infusion pump and a connectivity adapter of a clinical environment in accordance with aspects of the present disclosure.



FIG. 4 is a block diagram illustrating components of a cloud environment in accordance with aspects of the present disclosure.



FIG. 5 is a schematic diagram illustrating components of a data flow manager of a cloud environment in accordance with aspects of the present disclosure.



FIG. 6 is a flow diagram illustrating an example method for clearing an outbound queue in accordance with aspects of the present disclosure.



FIG. 7 is a flow diagram illustrating an example method for detecting missing messages in accordance with aspects of the present disclosure.



FIG. 8 is a flow diagram illustrating an example method for merging messages into a cache in accordance with aspects of the present disclosure.



FIG. 9 is a flow diagram illustrating an example method for converting a pump message to a standardized dataset message in accordance with aspects of the present disclosure.



FIG. 10 is a schematic diagram illustrating an example method for authenticating a connectivity adapter using an authentication proxy in accordance with aspects of this disclosure.



FIG. 11 is a flow diagram illustrating an example method for authenticating a connectivity adapter using an authentication proxy in accordance with aspects of this disclosure.



FIG. 12 is a block diagram illustrating a segmented data structure in accordance with aspects of the present disclosure.



FIG. 13 is a flow diagram illustrating an example method for moving data nodes in a segmented data structure in accordance with aspects of this disclosure.





DETAILED DESCRIPTION

Overview of Example Network Environment



FIG. 1 illustrates network environment 100 in which clinical environment 102 communicates with cloud environment 106 via network 104. The clinical environment 102 may include one or more healthcare facilities (e.g., hospitals). The components of the clinical environment 102 are described in greater detail below with reference to FIG. 2. The network 104 may be any wired network, wireless network, or combination thereof. In addition, the network 104 may be a personal area network, local area network, wide area network, over-the-air broadcast network (e.g., for radio or television), cable network, satellite network, cellular telephone network, or combination thereof. For example, the network 104 may be a publicly accessible network of linked networks such as the Internet. For example, the clinical environment 102 and the cloud environment 106 may each be implemented on one or more wired and/or wireless private networks, and the network 104 may be a public network (e.g., the Internet) via which the clinical environment 102 and the cloud environment 106 communicate with each other. The cloud environment 106 may be a cloud-based platform configured to communicate with multiple clinical environments. The cloud environment 106 may include a collection of services, which are delivered via the network 104 as web services. The components of the cloud environment 106 are described in greater detail below with reference to FIG. 4.


Components of Clinical Environment



FIG. 2 illustrates the clinical environment 102, which includes one or more clinical IT systems 202, one or more infusion pumps 204, and one or more connectivity adapters 206. Further, the clinical environment 102 may be configured to provide cloud user interfaces 208 (e.g., generated and provided by the cloud environment 106). The clinical IT system 202 may include a hospital infusion system (HIS) designed to manage the facilities' operation, such as medical, administrative, financial, and legal issues and the corresponding processing of services. The HIS can include one or more electronic medical record (EMR) or electronic health record (EHR) systems, as well. The infusion pump 204 is a medical device configured to deliver medication to a patient. The connectivity adapter 206 is a network component configured to communicate with other components of the clinical environment 102 and also communicate with the cloud environment 106 on behalf of the other components of the clinical environment 102. In one embodiment, all messages communicated between the clinical environment 102 and the cloud environment 106 pass through the connectivity adapter 206. In some cases, the connectivity adapter 206 is a network appliance with limited storage space (e.g., memory and/or persistent storage). The cloud user interfaces 208 may be provided to a user in the clinical environment 102 via a browser application, desktop application, mobile application, and the like. The user may access status reports and other data stored in the cloud environment 106 via the cloud user interfaces 208.


The components 202-208 illustrated in FIG. 2 may communicate with one or more of the other components in the clinical environment 102. For example, each of the clinical IT system 202 and the infusion pump 204 may communicate with the connectivity adapter 206 via physical local area network (LAN) and/or virtual LAN (VLAN). Although not shown in FIG. 2, the clinical environment 102 may include other medical devices and non-medical devices that facilitate the operation of the clinical environment 102.


Overview of Messaging in the Clinical Environment



FIG. 3 illustrates the messages received, stored, and transmitted by the connectivity adapter 206 in the clinical environment 102. As shown in FIG. 3, the infusion pump 204 may include motor controller unit (MCU) 204A and communications engine (CE) 204B. Although not shown in FIG. 3, the infusion pump 204 may include one or more memories and storage media configured to store various instructions, parameters, and/or messages. The connectivity adapter 206 may include transformation worker 206A, device status manager 206B, cache 206C, and outbound queue 206D. The MCU 204A may generate and send messages to the CE 204B for storage and transmission to the connectivity adapter 206. In some cases, the messages are each associated with a message identifier (ID). In some embodiments, the MCU 204A is a very small processor (e.g., 12 Mhz) and the CE 204B is a more powerful processor (e.g., 400 Mhz). Pump messages sent to the connectivity adapter 206 generated by the MCU 204A may be transformed into a standardized dataset message (e.g., message format used by the connectivity adapter 206 to communicate with the cloud environment 106, also referred to herein simply as “messages”). In some embodiments, the standardized dataset format may allow multiple messages to be merged into a single standard dataset message that includes all the information included in the multiple messages. For example, a pump message that indicates the start of an infusion and another pump message that indicates the presence of an air-in-line alarm may occupy different locations within the standardized dataset message. Even though the start-of-infusion message was generated long before the air-in-line-alert message, they may be transmitted together packaged in the standardized dataset message without having to worry about having incomplete information about the infusion pump 204 at any given moment or having to request older messages that have been lost or become unavailable. The device status manager 206B processes the transformed messages provided by the transformation worker 206A and merges the data included in the transformed messages into the cache 206C, which represents the current state of the infusion pump 204. For example, the cache 206C may include all of the current parameter values (or to the extent available to the connectivity adapter 206) at the infusion pumps connected to the connectivity adapter 206 (e.g., power status, infusion status, battery status, network status, infusion start time, volume to be infused, volume infused, dose, and the like). Although not shown in FIG. 3, the clinical IT system 202 may maintain the identities of the patients assigned to the individual infusion pumps 204 and other data that the connectivity adapter 206 may utilize in order to merge the messages from the pump into the cache 206C. For example, the client IT system 202 may send instructions for programming the infusion pump 204 for initiating an infusion on a patient, and the instructions may include identifiers such as an infusion ID and a patient ID. Upon receiving a pump message containing the infusion ID, the connectivity adapter 206 can use the infusion ID to determine that the pump message relates to the patient having the patient ID (even when the pump message does not include the patient ID) based on the prior instructions received from the client IT system 202. The connectivity adapter 206 can then add the information included in the pump message to the cache 206C along with the patient ID.


The device status manager 206B also sends the transformed messages to the outbound queue 206D for transmission to the cloud environment 106. The messages stored in the outbound queue 206D may be associated with one or more message IDs. For example, a message can be associated with a single message ID corresponding to the original pump message. In another example, a message can include data from multiple pump messages and therefore include multiple message IDs. The messages transmitted from the outbound queue 206D to the cloud environment 106 may be stored in the cloud environment 106 for providing reports and other data to a client (e.g., via the cloud user interfaces 208) and/or for compliance purposes. Additional details regarding the messaging in the clinical environment 102 are provided below.


Components of Cloud Environment



FIG. 4 illustrates the cloud environment 106, which includes drug library manager (DLM) 402, report manager 404, device manager 406, data flow manager (DFM) 408, cloud manager (CM) 410, data analyzer (DA) 412, and database 414.


The DLM 402 may provide a set of features and functions involved in the creation and management of drug libraries for use with infusion pumps. These drug libraries may provide user-defined settings for pump configuration and drug infusion error reduction.


The report manager 404 may provide various reporting capabilities for clinically relevant infusion data which users can choose to use for further analysis, such as tracking and trending of clinical practices.


The device manager 406 may oversee and manage the maintenance of infusion pumps, providing users the capability to view and manage asset and operational data. For example, the device manager 406 may schedule drug library and software updates for infusion pumps.


The DFM 408 may facilitate storing, caching, and routing of data between compatible infusion pumps 204, connectivity adapters 206, cloud services (e.g., infusion pump management software including modules 402-414 of FIG. 4), and external systems. For example, the DFM may store infusion and operational data received from infusion pumps, store and cache infusion pump drug libraries and software images, convert and route network messaging between the cloud environment 106 and the clinical environment 102, convert and route medication order information from a hospital information system to an infusion pump (e.g., auto-programming or smart-pump programming), and/or convert and route alert information and infusion events from infusion pumps to hospital information systems (e.g., alarm/alert forwarding, and auto-documentation, or infusion documentation).


The CM 410 may serve as a general-purpose computing platform for the other modules illustrated in FIG. 4. Functionally, the CM 410 may be similar to Microsoft Windows® or Linux® operating systems as it provides the following services: networking, computation, user administration and security, storage, and monitoring.


The DA 412 may provide data analytics tools for generating user interfaces and reports based on the data generated and/or received by the other modules illustrated in FIG. 4.


The database 414 may store data generated and/or received by the modules 402-412 of the cloud environment 106. Although not illustrated in FIG. 4, the cloud environment may provide other resources such as processors, memory, disk space, network, etc. The modules 402-412 may be hardware components configured to perform one or more of the techniques described herein. Alternatively, the modules 402-412 may be implemented using software instructions stored in physical storage and executed by one or more processors. Although illustrated as separate components, the modules 402-412 may be implemented as one or more hardware components (e.g., a single component, individual components, or any number of components), one or more software components (e.g., a single component, individual components, or any number of components), or any combination thereof.


In some embodiments, the cloud environment 106 can be implemented using a commercial cloud services provider (e.g., Amazon Web Services®, Microsoft Azure®, Google Cloud®, and the like). In other embodiments, the cloud environment can be implemented using network infrastructure managed by the provider and/or developer of the modules 402-412 shown in FIG. 4. In some embodiments, the features and services provided by one or more of the modules 402-412 may be implemented on one or more hardware computing devices as web services consumable via one or more communication networks. In further embodiments, one or more of the modules 402-412 are provided by one or more virtual machines implemented in a hosted computing environment. The hosted computing environment may include one or more rapidly provisioned and released computing resources, such as computing devices, networking devices, and/or storage devices.


Overview of Messaging in the Cloud Environment



FIG. 5 illustrates the messages received, stored, and transmitted by the cloud environment 106. As shown in FIG. 5, the DFM 408 may include cache 408A and outbound queue 408B. The cache 408A may store the current state of the infusion pump 204. For example, the cache 408A may include all of the current parameter values (or to the extent available to the DFM 408) at the infusion pump 204 (e.g., power status, infusion status, battery status, network status, infusion start time, volume to be infused, volume infused, dose, and the like). In some cases, the current state stored in the cache 408A is identical to the current state stored in the cache 206C. In other cases, the current state stored in the cache 408A includes additional information not stored in the cache 206C, or vice versa. For example, the DFM 408 may have access to data sources not accessible (or readily accessible) by the connectivity adapter 206, and the DFM 408 may have obtained additional data prior to merging the message and the additional data into the cache 408A. In another example, due to a network outage, the connectivity adapter 206 may have been able to update its own cache 206C but unable to transmit the relevant messages to the DFM 408. In such a case, the cloud cache 408A may include less information than the connectivity adapter cache 206C. The outbound queue 408B may include messages to be transmitted to the clinical environment 102. For example, the outbound queue 408B can include command messages (e.g., instructions to update the security settings on the connectivity adapter 206), request messages (e.g., requests for missing messages for logging purposes), etc. In other examples, the outbound queue 408B may include log requests, drug library updates, software updates, security updates, and the like. In some embodiments, the items in the outbound queue 408B are less time-sensitive than the items in the outbound queue 206D. The process of detecting and requesting missing messages from the clinical environment 102 is described in greater detail below with reference to FIG. 7. In some cases, the data stored in the cache 408A may be copied or moved to the database 414.


Generation and Transmission of Pump Messages


Referring back to FIG. 3, when there is an event at the infusion pump 204 (e.g., the device has been powered on, infusion has been started or finished, an alarm condition has been satisfied, etc.), the MCU 204A generates a message indicative of such an event and transmits the message to the CE 204B. Upon receiving one or more messages from the MCU 204A, the CE 204B packages the messages received so far into a pump message (e.g., according to a protocol specific to the infusion pump 204) and transmits the pump message to the connectivity adapter 206. For example, if multiple messages have been received from the MCU 204A since the most recent pump message transmitted to the connectivity adapter 206, the CE 204B may merge the information included in the multiple messages into a single pump message in accordance with the pump protocol. The pump message transmitted to the connectivity adapter 206 may be reflective of the current state of the infusion pump 204 at the time the pump message is transmitted to the connectivity adapter 206. In some embodiments, the infusion pumps 204 do not have Internet access and communicate only with the connectivity adapter 206 (e.g., to ensure that Internet connection is not needed for any clinical operations). In other embodiments, the infusion pumps 204 may communicate with network entities other than the connectivity adapter 206 (e.g., the cloud environment 106 via the Internet).


The infusion pump 204 may store its current and prior states (e.g., days, months, or years of messages received from the MCU 204A or transmitted by the CE 204B) in data store (not shown) located within the infusion pump 204. As discussed further below, the connectivity adapter 206 may process requests from the DFM 408 for pump messages. For example, the DFM 408 may request messages from the infusion pump 204 when the DFM 408 realizes that it is missing one or more pump message. Pump messages can be missed by the DFM 408 during network outages, or other disruptions to network traffic. In such situations, as will be discussed in greater detail below, the DFM 408 can request the missing pump messages from the connectivity adapter 206. The messages from the infusion pump 204 may include one or more parameters. Some of those parameters may be data fields that are overwritten as the parameters are updated. Other parameters are linked lists that include a sequence of past parameter values. For example, fields may be used for statuses such as power status, infusion status, and the like, and linked lists may be used for alerts, ruleset violations, and the like.


Connecting Infusion Pumps to Connectivity Adapter


In the event that the connection between the infusion pump 204 and the connectivity adapter 206 is terminated or otherwise unavailable, the MCU 204A may continue to generate messages and the CE 204B may continue to merge such additional messages into the most current state of the infusion pump 204. Once the connection between the infusion pump 204 and the connectivity adapter 206 is re-established, the CE 204B may transmit a single pump message (or multiple pump messages) that reflects all of the messages received from the MCU 204A during the time of lost connectivity. For example, if the CE 204B, during the time of lost connectivity, received a message that indicates that the power status changed to “on” and subsequently received another message that indicates that the infusion status changed to “on,” the CE 204B may generate a pump message that has two key-value pairs, “power status=on” and “infusion status=on.” In other cases, these messages may be transmitted to the connectivity adapter 206 as separate pump messages.


In some embodiments, when the infusion pump 204 is turned on after being off for a period of time, or upon the connection between the infusion pump 204 and the connectivity adapter 206 being re-established, the infusion pump 204 sends all of the available, unsent messages or data to the connectivity adapter 206. In some cases, such an approach may overload the internal network of the clinical environment 102 (e.g., if 500 infusion pumps 204 came back online after being offline for weeks). Thus, in some cases, the connectivity adapter 206 may deliberately reject such pump messages to reduce the network load, and have the infusion pumps 204 re-send the pump messages at a later time. The infusion pumps 204 may adopt a schedule for re-sending rejected pump messages that further reduces the network load (e.g., exponential back-offs where each retry is performed after a longer wait period, randomization where the back-offs are not strictly exponential and include random temporal variations, a combination of exponential back-offs and randomization, etc.).


By analyzing the pump messages received from the infusion pump 204, the connectivity adapter 206 may determine that it has missed one or more messages that it should have received (e.g., due to older data being overwritten in the pump message). For example, if the connectivity adapter 206 receives a pump message that indicates that the power state of the infusion pump 204 has gone from “sleep” to “on,” where the information in the cache 206C indicates that the most recent power state of the infusion pump 204 was “on.” By comparing the pump message and the information in the cache 206C, the connectivity adapter 206 can determine that it must have missed a pump message that indicates that the power state of the infusion pump 204 was changed from “on” to “sleep.” In some cases, the connectivity adapter 206 requests these missing messages from the infusion pump 204 immediately. In other cases, the connectivity adapter 206 requests these missing messages at a later time (e.g., when the network activity is light or below a threshold). In some cases, the connectivity adapter 206 determines missing pump messages based on message IDs that are not in sequence. For example, pump messages may include message IDs that are sequential (such that one pump message generated immediately subsequently to another pump message has a message ID that immediately follows the message ID of said another message in a predetermined sequence of numbers or identifiers). In such a case, upon processing pump messages having message IDs 100050 and 100055 in a row, the connectivity adapter 206 may determine that pump messages having message IDs 100051-100054 were deleted, overwritten, or lost.


Transformation of Pump Messages


The transformation worker 206A receives the pump messages and converts it to a standardized message format (e.g., standardized dataset messages used for transmitting information within and across the clinical environment 102 and the cloud environment 106). In some embodiments, the standardized dataset message can be a collection or envelope of messages that are each a key-value pair. For example, the standardized dataset message may include one key-value pair that says “message ID=100015,” another key-value pair that says “power status=on,” and another key-value pair that says “volume to be infused=5 mL.” In some cases, the standardized dataset message may include one or more keys having no value or having default values (e.g., “alarm count=0,” or “battery status=unknown”). Depending on the pump protocol associated with the pump message, the same information may be located in different parts of the pump message. The transformation worker 206A identifies the data included in the pump messages based on the pump protocol and places the data into the appropriate locations of a standardized dataset message. For example, based on the pump protocol, the transformation worker 206A extracts the power state of the infusion pump 204 and places the power state information in the standardized dataset message, which also includes information other than the power state. For example, all parameters or key-value pairs in the standardized dataset message other than those specified by the pump message may be set to default values. In some cases, such parameters or key-value pairs are left blank. Similarly, when requests are sent to the infusion pump 204, the transformation worker 206A transforms the standardized dataset message into a pump message understood by the infusion pump 204. In some embodiments, the transformation worker 206A may be implemented using a ruleset engine. In one embodiment, using a ruleset engine advantageously does not require the transformation worker 206A to be rebooted when a new infusion pump or a new pump protocol is added. For example, the ability to be able to translate pump messages in a new pump protocol can be implemented as a configuration file that can be added to the connectivity adapter 206, where the configuration file allows the transformation worker 206A to be able to receive and process pump messages in the new pump protocol. Once the configuration file is added to the connectivity adapter 206, the transformation worker 206A can begin transforming such pump messages into the standardized dataset messages for further processing by the device status manager 206B. In some cases, if the transformation worker 206A does not recognize a pump message or the protocol used by the pump message or otherwise cannot process the pump message, the transformation worker 206A stores the pump message in the connectivity adapter 206 and transforms the pump message upon the transformation mapping for the pump protocol becoming available.


The transformation worker 206A may further include hints in the header of the standardized dataset message. The hints indicate to the device status manager 206B which portions of the standardized dataset message contain new information and should thus be accessed by the device status manager 206B and merged into the cache 206C. Based on the hints, the device status manager 206B can refrain from having to process the entire standardized dataset message generated by the transformation worker 206A. For example, the standardized dataset message may have a hierarchical tree structure having five categories of pump parameters, where each category includes multiple pump parameters or sub-categories having multiple parameters. If only a parameter in one of the categories includes new information, the transformation worker 206A may set a binary flag associated with that category to 1 and the binary flags associated with the remaining categories to 0 to indicate that the four categories do not include any new information. A given standardized dataset message may include a single hint indicating the location of the single piece of new information. Alternatively, the standardized dataset message may include multiple hints indicating the multiple locations where new information is provided.


Caching in Connectivity Adapter


The device status manager 206B takes the message received from the transformation worker 206A and “merges” the message into the cache 206C. Merging a message into the cache may include updating the data stored in the cache 206C based on the information included in the message. In some cases, the message may include information that prompts the device status manager 206B to access additional information from other databases or sources and adding such additional information to the cache 206C. For example, based on the infusion ID provided in the message, the device status manager 206B may access the identity of the patient associated with the infusion pump having the infusion ID and store that information in the cache 206C. As another example, the device status manager 206B may access the clinical IT system 202 or the cloud environment 106 for additional information that can be stored in the cache 206C. Accordingly, information from multiple data sources may be merged into the cache 206C in response to the pump messages received from the infusion pump 204. In yet another example, in the event that the information needed by the device status manager 206B is in the cloud environment 106 (e.g., the pump message references a drug library that is not yet stored in the clinical environment 102), the device status manager 206B merges the message into the cache 206C and places the message in the outbound queue 206D without accessing the cloud environment 106 (e.g., to make the message more complete based on the information in the cloud environment 106). In such a case, the DFM 408 may, upon receiving the message, access the necessary information, fill in the missing information in the message, and merge the message into the cache 408A. In some cases, the device status manager 206B may add information to the message (e.g., facility ID, account ID, etc.) before (or after) merging the message into the cache 206C.


The cache 206C may store the current state of the individual infusion pumps 204 configured to communicate with the connectivity adapter 206. As additional messages are received from the infusion pumps 204, the device status manager 206B updates the current state stored in the cache 206C to reflect the changes made by the messages from the infusion pumps 204. In some embodiments, the device status manager 206B determines whether the message received from the transformation worker 206A is a live message or an historical message. A live message includes messages that are transmitted to the connectivity adapter 206 based on a new event at the infusion pump 204. An historical message includes messages that are transmitted to the connectivity adapter 206 based on a prior event at the infusion pump 204. Historical messages may be transmitted at the request of the connectivity adapter 206. The device status manager 206B is configured to merge the message into the cache 206C upon determining that the message is a live message (and alternatively, refrain from merging the message into the cache 206C upon determining that the message is an historical message). The cache 206C may be implemented using an in-memory cache (e.g., Redis) or other storage devices.


In some cases, the messages sent to the cloud environment 106 are copies of the current state of the infusion pump 204 stored in the cache 206C at the time the messages are sent to the cloud environment 106. In other cases, the messages sent to the cloud environment 106 may not include all the parameters included in the current state of the infusion pump 204 stored in the cache 206C. For example, the messages sent to the cloud environment 106 only includes information that might not be stored in the cloud environment 106. In some cases, the device status manager 206B does not include in the message transmitted to the cloud environment 106 at least some of the information in the cache 206C if such information is otherwise available to the cloud environment 106. In another example, the message may include a log request, which is not intended to reflect the current state of an infusion pump. Such a log request may include a flag that indicates that the message is a log request and a parameter identifying the requested information.


Outbound Queues


Once a message has been merged into the cache 206C, the device status manager 206B adds the message to the outbound queue 206D for transmission to the cloud environment 106. In some embodiments, the device status manager adds the message to the outbound queue 206D regardless of whether the connectivity adapter 206 is connected to the cloud environment 106. The connectivity adapter 206 may include a separate outbound queue for transmitting messages to the clinical IT system 202.


The connectivity adapter 206 may include a service that picks up the messages stored in the outbound queue 206D and tries to route them to the appropriate endpoints. Such a service may determine whether the connectivity adapter 206 is connected to the cloud environment 106 or not. As will be further described below, such a service may determine whether the messages in the outbound queue 206D should be kept in the outbound queue 206D or removed from the outbound queue 206D.


Network Outages


The clinical environment 102 may be designed such that clinical functions of the clinical environment 102 continue to operate normally even during Internet outages or loss of connectivity to the cloud environment 106. Thus, in some embodiments, clinical functions do not rely on connectivity to the cloud environment 106 or information to be requested and received from the cloud environment 106. However, in some cases, the messages stored in the outbound queue 206D may be held in the outbound queue 206D (e.g., in the event of network jitter or momentary loss of connection) or removed from the outbound queue 206D (e.g., in the event of prolonged outage or after the outbound queue 206D becomes full) during an Internet or network outage.


For example, upon determining that the connection to the cloud environment 106 has been terminated or otherwise become unavailable, the connectivity adapter 206 may determine whether the outbound queue 206D includes any messages to be transmitted to the cloud environment 106 and discard one or more of the messages from the outbound queue 206D. For example, in the event of a prolonged outage, there may be a large number of messages in the outbound queue 206D, which may overload the network. For example, the large number of messages in the outbound queue 206D may delay transmission of time-sensitive alerts and may even include messages that are no longer relevant due to the length of the network outage. To prevent such issues, some of the messages in the outbound queue 206D may be removed without transmitting them to the cloud environment 106. In such cases, the cloud environment 106 will request those “missing” messages at a later time. In some embodiments, the messages in the outbound queue are discarded based on time (e.g., after being in the outbound queue for a specific amount of time). Alternatively, the determination of whether to discard one or more messages may be based on the size of the outbound queue. For example, the outbound queue may be fixed in size, and the oldest message is discarded upon a new message being added to the outbound queue that is full. For example, the messages may be discarded based on a first-in first-out (FIFO) manner. In some cases, the connectivity adapter 206 starts removing messages from the outbound queue 206D only after the outbound queue 206D reaches a threshold message size.


Outbound Queue Clearing Method


With reference now to FIG. 6, an example outbound queue clearing method 600 will be described. Since the connectivity adapter 206 does not have unlimited resources, during a network outage, the connectivity adapter 206 cannot let unsent messages pile up in the outbound queue 206D indefinitely. Further, as discussed above, having to send old messages that have been in the outbound queue 206D for a long time and no longer relevant may reduce network performance and interfere with transmission of messages that are more relevant. The example method 600 may be carried out, for example, by the connectivity adapter 206 of FIG. 3 (or one or more components thereof). The method 600 illustrates an example algorithm that may be programmed, using any suitable programming environment or language, to create machine code capable of execution by a CPU or microcontroller. Various embodiments may be coded using assembly, C, OBJECTIVE-C, C++, JAVA, or other human-readable languages and then compiled, assembled, or otherwise transformed into machine code that can be loaded into read-only memory (ROM), erasable programmable read-only memory (EPROM), or other recordable memory that is coupled to the CPU or microcontroller and then executed by the CPU or microcontroller. For example, when the method 600 is initiated, a set of executable program instructions stored on one or more non-transitory computer-readable media (e.g., hard drive, flash memory, removable media, etc.) may be loaded into memory (e.g., random access memory or “RAM”) of a computing device of the clinical environment 102 and/or the cloud environment 106. The executable instructions may then be executed by a hardware-based computer processor (e.g., a central processing unit or “CPU”) of the computing device. In some embodiments, the method 600 or portions thereof may be implemented on multiple processors, serially or in parallel. For convenience, the steps of the example method 600 are described as being performed by the connectivity adapter 206.


At block 602, the connectivity adapter 206 transmits one or more messages to the cloud environment 106. As discussed above, the transmitted messages may be processed by the DFM 408 in the cloud environment 106 and merged into the cloud cache 408A.


At block 604, the connectivity adapter 206 detects a network outage. For example, the connectivity adapter 206 may detect the outage based on not having received during a specific time window an acknowledgement of receipt of a message transmitted to the cloud environment 106. In some other cases, the connectivity adapter 206 may detect the outage based on its ping receiver not receiving any pings from the cloud environment 106 during a specific time window. In yet other cases, the connectivity adapter 206 may detect the outage based on receiving a message that the connection to the cloud environment 106 has been terminated. In some cases, the connectivity adapter 206 does not determine whether there is a network outage and tries to transmit a given message to the cloud environment 106 until an acknowledgement signal is received for the receipt of the given message. In such cases, the given message may remain in the outbound queue 206D until the message is successfully transmitted to the cloud environment 106 or otherwise removed from the outbound queue 206D (e.g., as discussed with reference to block 606).


At block 606, the connectivity adapter 206 clears stale messages from the outbound queue 206D. For example, stale messages may include messages associated with a pump event that is older than a threshold amount of time. In another example, stale messages may include messages that have been in the outbound queue 206D for more than a threshold amount of time. In some cases, the threshold amount of time may be pump-specific or pump-event-type-specific. For example, time-sensitive events may have a shorter threshold amount of time. In yet another example, a stale message may include a message that has been in the outbound queue 206D for the longest period of time (e.g., first in). In some cases, the connectivity adapter 206 may not clear or remove messages from the outbound queue 206D unless the outbound queue 206D is full.


At block 608, the connectivity adapter 206 determines whether the connectivity adapter 206 is connected to the cloud environment 106. Upon determining that the connectivity adapter 206 is not connected to the cloud environment 106, the connectivity adapter 206 proceeds to block 606 to clear any stale messages in the outbound queue 206D. Upon determining that the connectivity adapter 206 is connected to the cloud environment 106, the connectivity adapter 206 proceeds to block 610.


At block 610, the connectivity adapter 206 transmits any remaining messages received during the network outage and still stored in the outbound queue 206D (e.g., not deleted as stale).


In the method 600, one or more of the blocks shown in FIG. 6 may be removed (e.g., not performed) and/or the order in which the method 600 is performed may be switched. In some embodiments, additional blocks may be added to the method 600. The embodiments of the present disclosure are not limited to or by the example shown in FIG. 6, and other variations may be implemented without departing from the spirit of this disclosure.


Missing Messages


In some embodiments, each message generated by the MCU 204A is associated with a unique message ID. In other embodiments, each pump message generated by the CE 204B is associated with a unique message ID. In yet other embodiments, each standardized dataset message generated by the transformation worker is associated with a unique message ID. These message IDs may follow a predetermined sequence, and based on one or more combinations of these message IDs, the DFM 408 processing the messages from the connectivity adapter 206 may determine whether one or more messages are missing (e.g., have been generated but not received by the DFM 408). For example, upon determining that a message having a message ID of 10010 was immediately followed by a message having a message ID of 10016, the DFM 408 may determine that messages having message IDs 10011-10015 were not received and therefore missing. In some cases, the DFM 408 may be aware of periodic or scheduled messages expected to be received from the connectivity adapter 206. Upon determining that such messages were not received according to the schedule, the DFM 408 may request such messages from the connectivity adapter 206.


Upon determining that the DFM 408 is missing one or more events or messages, the DFM 408 may generate a request for such messages and store the request in the outbound queue 408B for transmission to the connectivity adapter 206. In some embodiments, the request is in the standardized dataset format and includes a flag having a value indicating that the request is a log retrieval request and not live data. A single log retrieval request may identify multiple messages to be requested from the infusion pump 204. Upon receiving the log retrieval requests from the cloud environment 106, the connectivity adapter 206 may transform the requests to one or more messages in the pump protocol and send to the infusion pump 204. Alternatively, the connectivity adapter 206 may throttle the requests based on the network load or condition of the clinical environment 102.


Missing Message Detection Method


With reference now to FIG. 7, an example missing message detection method 700 will be described. The example method 700 may be carried out, for example, by the DFM 408 of FIG. 5 (or one or more components thereof). The method 700 illustrates an example algorithm that may be programmed, using any suitable programming environment or language, to create machine code capable of execution by a CPU or microcontroller. Various embodiments may be coded using assembly, C, OBJECTIVE-C, C++, JAVA, or other human-readable languages and then compiled, assembled, or otherwise transformed into machine code that can be loaded into read-only memory (ROM), erasable programmable read-only memory (EPROM), or other recordable memory that is coupled to the CPU or microcontroller and then executed by the CPU or microcontroller. For example, when the method 700 is initiated, a set of executable program instructions stored on one or more non-transitory computer-readable media (e.g., hard drive, flash memory, removable media, etc.) may be loaded into memory (e.g., random access memory or “RAM”) of a computing device of the clinical environment 102 and/or the cloud environment 106. The executable instructions may then be executed by a hardware-based computer processor (e.g., a central processing unit or “CPU”) of the computing device. In some embodiments, the method 700 or portions thereof may be implemented on multiple processors, serially or in parallel. For convenience, the steps of the example method 700 are described as being performed by the DFM 408.


At block 702, the DFM 408 receives messages from the connectivity adapter 206. As discussed above, the messages may reflect the current state of the infusion pumps 204 connected to the connectivity adapter 206 and may be in the standardized dataset format.


At block 704, the DFM 408 detects missing messages. For example, the DFM 408 may detect one or more missing messages based on missing message IDs (i.e. after receiving a message with a message ID that does not immediately follow the message ID of the immediately prior message).


At block 706, the DFM 408 generates a request for the missing messages for transmission to the connectivity adapter 206. For example, the DFM 408 may wait until the number of missing messages reaches a threshold number (e.g., for a single pump or for a single connectivity adapter), and request the missing messages in bulk (e.g., under a single request). The generated request may be added to the outbound queue 408B.


At block 708, the DFM 408 transmits the request to the connectivity adapter 206. Upon receiving the request, the connectivity adapter 206 may generate a corresponding request for the requested messages for transmission to the infusion pump 204.


In the method 700, one or more of the blocks shown in FIG. 7 may be removed (e.g., not performed) and/or the order in which the method 700 is performed may be switched. In some embodiments, additional blocks may be added to the method 700. The embodiments of the present disclosure are not limited to or by the example shown in FIG. 7, and other variations may be implemented without departing from the spirit of this disclosure.


Merging Messages into Cloud Cache


The DFM 408 may merge the messages received from the connectivity adapter 206 into the cache 408A. In some cases, the DFM 408 merges a message into the cache 408A upon determining that the current time is within a threshold time period from the time associated with the message. For example, the DFM 408 may determine that a message associated with an alert generated 5 hours ago was received too late for the message to be merged into the cache 408A and refrain from merging the message into the cache 408A. In some embodiments, all data stored in the cloud cache 408A are received from the connectivity adapter 206, and the cloud cache 408A does not include any data that is not in the connectivity adapter 206 or was not previously processed by the connectivity adapter 206. In other embodiments, the cloud cache 408A stores drug library information, software update information, and the like that may not be in the connectivity adapter cache 206C. In some embodiments, the DFM 408 pre-processes a portion of the data stored in the cache 408A and/or pre-generates user interface data that may be requested by the clinical environment 102 and stores them in the cache 408A for faster access.


Message Merging and Caching Method


With reference now to FIG. 8, an example message merging and caching method 800 will be described. The example method 800 may be carried out, for example, by the DFM 408 of FIG. 5 (or one or more components thereof). The method 800 illustrates an example algorithm that may be programmed, using any suitable programming environment or language, to create machine code capable of execution by a CPU or microcontroller. Various embodiments may be coded using assembly, C, OBJECTIVE-C, C++, JAVA, or other human-readable languages and then compiled, assembled, or otherwise transformed into machine code that can be loaded into read-only memory (ROM), erasable programmable read-only memory (EPROM), or other recordable memory that is coupled to the CPU or microcontroller and then executed by the CPU or microcontroller. For example, when the method 800 is initiated, a set of executable program instructions stored on one or more non-transitory computer-readable media (e.g., hard drive, flash memory, removable media, etc.) may be loaded into memory (e.g., random access memory or “RAM”) of a computing device of the clinical environment 102 and/or the cloud environment 106. The executable instructions may then be executed by a hardware-based computer processor (e.g., a central processing unit or “CPU”) of the computing device. In some embodiments, the method 800 or portions thereof may be implemented on multiple processors, serially or in parallel. For convenience, the steps of the example method 800 are described as being performed by the DFM 408.


At block 802, the DFM 408 receives a message from the connectivity adapter 206. As discussed above, the message may reflect the current state of the infusion pump 204 connected to the connectivity adapter 206 and may be in the standardized dataset format.


At block 804, the DFM 408 merges the message into the cache 408A. In some cases, the DFM 408 determines whether the message is relevant to any potential UI generation requests (e.g., may be used to generate a UI provided to the clinical environment 102). Based on determining that the message is relevant to a potential UI generation request, the DFM 408 may merge the message into the cache 408A. Alternatively, based on determining that the message is not relevant to a potential UI generation request, the DFM 408 may refrain from merging the message into the cache 408A and merge the message into a database (e.g., database 414). In other embodiments, the DFM 408 may merge the message into the cache 408A, and remove the information included in the message from the cache 408A to the database 414 based on a determination that the message is not relevant to a potential UI generation request (e.g., after a specific time window).


At block 806, the DFM 408 receives a request to generate a user interface (e.g., from the clinical environment 102). The user interface data to be generated may be based on information previously provided by the connectivity adapter 206 (e.g., pump status, infusion status, power status, etc.).


At block 808, the DFM 408 accesses the cache 408A for information to be used for generating the user interface. For example, the information may include the current state of a single infusion pump, multiple infusion pumps in communication with a single connectivity adapter at a single facility, multiple infusion pumps in communication with multiple connectivity adapters at a single facility, multiple infusion pumps at multiple facilities, or any combination thereof.


At block 810, the DFM 408 provides the information accessed from the cache 408A to other services such as the report manager 404 or the device manager 406. Such services may generate the user interface and transmit the generated user interface to the clinical environment 102 (e.g., for presentation via the cloud user interface 208). In some cases, the requested user interface data are pre-generated by such services and stored in the cache 408A. In such cases, the such services can simply access and transmit the user interface data stored in the cache 408A to the clinical environment 102 or update the user interface data stored in the cache 408A before transmitting them to the clinical environment 102.


In the method 800, one or more of the blocks shown in FIG. 8 may be removed (e.g., not performed) and/or the order in which the method 800 is performed may be switched. In some embodiments, additional blocks may be added to the method 800. The embodiments of the present disclosure are not limited to or by the example shown in FIG. 8, and other variations may be implemented without departing from the spirit of this disclosure.


Pump Message Conversion Method


With reference now to FIG. 9, an example pump message conversion method 900 connectivity adapter 206 of FIG. 3 (or one or more components thereof). The method 900 illustrates an example algorithm that may be programmed, using any suitable programming environment or language, to create machine code capable of execution by a CPU or microcontroller of the connectivity adapter 206. Various embodiments may be coded using assembly, C, OBJECTIVE-C, C++, JAVA, or other human-readable languages and then compiled, assembled, or otherwise transformed into machine code that can be loaded into read-only memory (ROM), erasable programmable read-only memory (EPROM), or other recordable memory of connectivity adapter 206 that is coupled to the CPU or microcontroller and then executed by the CPU or microcontroller. For example, when the method 900 is initiated, a set of executable program instructions stored on one or more non-transitory computer-readable media (e.g., hard drive, flash memory, removable media, etc.) may be loaded into memory (e.g., random access memory or “RAM”) of a computing device of the clinical environment 102 and/or the cloud environment 106. The executable instructions may then be executed by a hardware-based computer processor (e.g., a central processing unit or “CPU”) of the computing device. In some embodiments, the method 900 or portions thereof may be implemented on multiple processors, serially or in parallel. For convenience, the steps of the example method 900 are described as being performed by the transformation worker 206A.


At block 902, the transformation worker 206A detects a new type of infusion pump that uses a new pump protocol. For example, the transformation worker 206A may check the device ID or protocol ID associated with the infusion pump and determine that the device ID or protocol ID does not match a predetermined list of device IDs or protocol IDs.


At block 904, the transformation worker 206A generates a connector (e.g., a software module or a set of computer executable instructions) for converting messages in the new pump protocol to the standardized dataset messages. For example, the transformation worker 206A may download a new configuration file that can be used to implement the connector from the cloud environment 106. Alternatively, the transformation worker 206A may access the parameters included in a message in the new pump protocol and compare the parameters to the parameters in a standardized dataset message to generate a mapping between the two sets of parameters.


At block 906, the transformation worker 206A adds the connector between one or more infusion pumps using the new pump protocol. For example, the transformation worker 206A may add the protocol ID to the list of mappings that the transformation worker 206A is configured to perform. The transformation worker 206A may add the protocol ID to the list of mappings that the transformation worker 206A checks for upon receiving a pump message.


At block 908, the transformation worker 206A converts a message from the infusion pump using the new pump protocol to a standardized dataset message using the connector.


At block 910, the transformation worker 206A processes the converted message. For example, the transformation worker 206A may send the message to the device status manager 206B to be merged into the cache 206C and/or added to the outbound queue 206D.


In the method 900, one or more of the blocks shown in FIG. 9 may be removed (e.g., not performed) and/or the order in which the method 900 is performed may be switched. In some embodiments, additional blocks may be added to the method 900. The embodiments of the present disclosure are not limited to or by the example shown in FIG. 9, and other variations may be implemented without departing from the spirit of this disclosure.


Cloud Authentication Via Proxy



FIG. 10 illustrates a computing environment 1000 including user device 1002, the clinical environment 102 including the connectivity adapter 206, and the cloud environment 106 including authentication system 1004 and authentication proxy 1006. As shown in FIG. 10, the authentication system 1004 may be configured to authenticate users based on login requests from the user devices 1002, and provide cloud services to user devices 1002 that are successfully authenticated. In such cases, the user device 1002 may own user accounts created by the authentication system 1004 and provide the login credentials for the user accounts each time accessing the cloud services provided by the cloud environment 106.


In some cases, the connectivity adapter 206 may be a network appliance and may lack the capability of managing and maintaining its own user account. In such cases, the connectivity adapter 206 may send an authentication request to the authentication proxy 1006 (e.g., via a connection such as a secured and authenticated Web Socket connection or another other TCP connection), and the authentication proxy 1006 may provide login credentials to the authentication system 1004 on behalf of the connectivity adapter 206 and receive a security token that can be used by the connectivity adapter 206 to generate a signed request. The connectivity adapter 206 may send the signed request to the authentication system 1004 (e.g., using HTTP), just as the authenticated user devices 1002 do in FIG. 10. In some cases, the connection between the connectivity adapter 206 and the authentication proxy 1006 utilize a different communications protocol (e.g., WebSocket) than the connection between the connectivity adapter 206 and the authentication system 1004 (e.g., HTTP). By using the authentication proxy 1006, the connectivity adapter can utilize the cloud services provided by the cloud environment 106 without having to manage user accounts or login credentials. The authentication proxy 1006 may maintain one or more user accounts per clinical environment account.


Connectivity Adapter Authentication Method


With reference now to FIG. 11, an example connectivity adapter authentication method 1100 will be described. The example method 1100 may be carried out, for example, by the authentication proxy 1006 of FIG. 10. The method 1100 illustrates an example algorithm that may be programmed, using any suitable programming environment or language, to create machine code capable of execution by a CPU or microcontroller. Various embodiments may be coded using assembly, C, OBJECTIVE-C, C++, JAVA, or other human-readable languages and then compiled, assembled, or otherwise transformed into machine code that can be loaded into read-only memory (ROM), erasable programmable read-only memory (EPROM), or other recordable memory that is coupled to the CPU or microcontroller and then executed by the CPU or microcontroller. For example, when the method 1100 is initiated, a set of executable program instructions stored on one or more non-transitory computer-readable media (e.g., hard drive, flash memory, removable media, etc.) may be loaded into memory (e.g., random access memory or “RAM”) of a computing device of the clinical environment 102 and/or the cloud environment 106. The executable instructions may then be executed by a hardware-based computer processor (e.g., a central processing unit or “CPU”) of the computing device. In some embodiments, the method 1100 or portions thereof may be implemented on multiple processors, serially or in parallel. For convenience, the steps of the example method 1100 are described as being performed by the authentication proxy 1006.


At block 1102, the authentication proxy 1006 receives an authentication request from the connectivity adapter 206 via a secured and authenticated Web Socket connection. For example, the Web Socket connection may be the connection via which the connectivity adapter 206 transmits messages to the cloud environment 106.


At block 1104, the authentication proxy 1006 identifies the login credentials of a user account to be used for authenticating the connectivity adapter 206. For example, the authentication proxy 1006 may identify the user account based on one or more identifiers associated with the clinical environment 102. In some embodiments, the clinical environment 102 is associated with a one or more identifiers and has multiple regions, healthcare systems, and facilities therein.


At block 1106, the authentication proxy 1006 transmits the login credentials to the authentication system 1004, and at block 1108, the authentication proxy 1006 receives a security token from the authentication system 1004.


At block 1110, the authentication proxy 1006 transmits the security token to the connectivity adapter 206, and at block 1112, the authentication proxy 1006 causes the connectivity adapter 206 to transmit a signed request to the authentication system using HTTP.


In the method 1100, one or more of the blocks shown in FIG. 11 may be removed (e.g., not performed) and/or the order in which the method 1100 is performed may be switched. In some embodiments, additional blocks may be added to the method 1100. The embodiments of the present disclosure are not limited to or by the example shown in FIG. 11, and other variations may be implemented without departing from the spirit of this disclosure.


Data Segmentation



FIG. 12 shows a block diagram illustrating a segmented data structure 1200 including an account data node 1202, which includes region data nodes 1204 and 1206. The region data node 1204 includes system data node 1208, and the region data node 1206 includes system data nodes 1210 and 1212. The system data node 1208 includes facility data node 1214. As shown in FIG. 12, facility data node that used to belong to the system data node 1208 has been moved to the system data node 1210, which further includes facility data node 1218. The system data node 1212 includes facility data node 1220. As shown in FIG. 12, the facility data node includes infusion pumps 1218A, 1218B, 1218C, etc. The account data node 1202 corresponds to an account generated for each unique entity that may own, oversee, and/or manage one or more healthcare facilities (e.g., hospital facilities) in one or more healthcare systems (e.g., a network of hospitals) in one or more regions (e.g., geographical divisions including multiple networks of hospitals). For example, the clinical environment 102 may correspond to any of a facility, system, region, or account.


In some embodiments, the data generated by the infusion pumps 204 and/or the connectivity adapters 206 at the individual facilities may be tagged with the facility ID and the account ID, since those two identifiers may be permanent. For example, the connectivity adapter 206 may receive a message from the infusion pump 204, convert the message into a standardized dataset message, and inject one or more tags into the standardized dataset message by adding or setting one or more corresponding key-value pairs (e.g., facilityID=F0293, accountID=A29847, etc.) in the standardized dataset message. On the other hand, as the facilities are restructured and moved around within the enterprise structure, the data corresponding to the facilities may be assigned a different system ID or region ID. For example, in the example of FIG. 12, the facility data node 1216 has been moved from the system data node 1208 to system data node 1210 (e.g., representative of a change in the boundary between two regions), the data generated at the facility corresponding to the facility data node 1216, while still belonging to the facility data node 1216 and account data node 1202, no longer belongs to the system data node 1208 and region data node 1204, and instead belongs to the system data node 1210 and region data node 1206. Thus, by tagging the messages prior to transmitting them to the cloud environment 106 with immutable IDs (e.g., facility ID and account ID) and not IDs that may or may not change in the future, the connectivity adapter 206 facilitates security control, access, filtering, and reporting of such data. Further, as a result, the infusion pumps 204 need not be aware or keep track of the facility to which they are connected, since any messages or other data generated by the infusion pumps 204 will be appropriately tagged by the connectivity adapter 206 to which they are connected. For example, if an infusion pump is moved from one facility to another, the infusion pump can simply start sending messages to the connectivity adapter 206 at the new facility without worrying about the change in facility, since any new data generated by the infusion pump at the new facility will be tagged with the new facility ID by the new connectivity adapter 206. Further, by allowing the facilities to be moved across systems and regions, the segmented data structure 1200 allows facilities having one characteristic to be decoupled from other facilities having another characteristic (e.g., EHR vendor A vs. EHR vendor B, pump type X vs. pump type Y, etc.).


In some embodiments, data generated by the infusion pumps and/or connectivity adapters may include a facility ID and an account ID as immutable (permanent) IDs, and may include one or more mutable IDs such as a region ID and a system ID. The IDs associated with the data generated in a given facility may reflect the structural associations at the time of generation (old structure). When the facility is later restructured (new structure), the new structure is used in connection with the data (e.g., for reporting the data) and the prior mutable IDs may be ignored or updated as needed. Thus, data records are tagged based on the structure (e.g., account, region, system, facility) at the time that the data records are created. When the structure is subsequently modified, the system can (i) continue to use the data records as tagged at the time of creation despite the changes, (ii) update the mutable IDs to reflect the modified structure, and use the data records with the immutable IDs and updated mutable IDs, (iii) use the data records with only the immutable IDs (e.g., ignoring the mutable IDs), or (iv) use the data records with the immutable IDs and any mutable IDs that still reflect the modified structure.


Segmented Data Restructuring Method


With reference now to FIG. 13, an example segmented data restructuring method 1300 will be described. The example method 1300 may be carried out, for example, by the connectivity adapter 206 of FIG. 3 (or one or more components thereof) or the cloud environment 106 of FIG. 5 (or one or more components thereof). The method 1300 illustrates an example algorithm that may be programmed, using any suitable programming environment or language, to create machine code capable of execution by a CPU or microcontroller. Various embodiments may be coded using assembly, C, OBJECTIVE-C, C++, JAVA, or other human-readable languages and then compiled, assembled, or otherwise transformed into machine code that can be loaded into read-only memory (ROM), erasable programmable read-only memory (EPROM), or other recordable memory that is coupled to the CPU or microcontroller and then executed by the CPU or microcontroller. For example, when the method 1300 is initiated, a set of executable program instructions stored on one or more non-transitory computer-readable media (e.g., hard drive, flash memory, removable media, etc.) may be loaded into memory (e.g., random access memory or “RAM”) of a computing device of the clinical environment 102 and/or the cloud environment 106. The executable instructions may then be executed by a hardware-based computer processor (e.g., a central processing unit or “CPU”) of the computing device. In some embodiments, the method 1300 or portions thereof may be implemented on multiple processors, serially or in parallel. For convenience, the steps of the example method 1300 are described as being performed by the connectivity adapter 206 and/or the cloud environment 106.


At block 1302, the connectivity adapter 206 receives a message from an infusion pump 204 at a facility (e.g., hospital).


At block 1304, the connectivity adapter 206 adds an account ID and a facility ID to the message received from the infusion pump 204. In some cases, the message from the infusion pump 204 may be converted to a standardized dataset message, and the account ID and facility ID may be added to the standardized dataset message. In some embodiments, the connectivity adapter 206 determines one or more IDs described herein (e.g., account ID, facility ID, region ID, system ID, etc.) associated with the infusion pump 204 by checking one or more indicators in a priority order. For example, the connectivity adapter 206 may determine a given indicator associated with the infusion pump 204 and access a database of facility IDs (or other IDs) to determine whether any of the facility IDs are associated with the determined indicator associated with the infusion pump 204. The indicator may be one or more of (i) the network port via which the infusion pump 204 is connected to the connectivity adapter 206 (e.g., pumps associated with Facility A may connect via Port 9292, pumps associated with Facility B may connect via Port 9293, etc.), (ii) location data associated with the infusion pump 204, (iii) the Internet Protocol (IP) address associated with the infusion pump 204, (iv) the name associated with the infusion pump 204, (v) the Media Access Control (MAC) address associated with the infusion pump 204, (vi) the Wi-Fi access point associated with the infusion pump 204, and (vii) the serial number associated with the infusion pump 204. If the connectivity adapter 206 determines, after checking one or more of the indicators, that the facility ID (or another ID) cannot be found in the database, the connectivity adapter 206 may add a default facility ID to the message received from the infusion pump 204 at block 1304, indicating that the pump message originated from an infusion pump not associated with a known facility.


In some embodiments, one or more of the indicators described herein are checked in a specific priority order. For example, the connectivity adapter 206 may first try to determine the facility ID (or another ID) based on the MAC address of the infusion pump 204. If the connectivity adapter 206 does not find a facility ID matching the MAC address, the connectivity adapter 206 may then try to determine the facility ID based on the serial number of the infusion pump 204. If the connectivity adapter 206 does not find a facility ID matching the serial number, the connectivity adapter 206 may then try to determine the facility ID based on the location data associated with the infusion pump 204. If the connectivity adapter 206 does not find a facility ID matching the location data, the connectivity adapter 206 may add a default facility ID to the message received from the infusion pump 204 at block 1304, indicating that the pump message originated from an infusion pump not associated with a known facility. Although the priority order of MAC address, serial number, and location data is used as an example, the techniques described herein can be applied to any other combination of indicators may be checked in any other priority order.


At block 1306, the cloud environment 106 transfers the facility at which the infusion pump 204 is located to another system (e.g., a healthcare system or a network of facilities) without changing the account ID and the facility ID of the message. For example, the facility may be using the EMR system from vendor A, and all facilities using the EMR system from vendor A within the existing healthcare system may have been separated out to a new healthcare system.


At block 1308, the cloud environment 106 updates the region ID and the system ID associated with the facility in which the infusion pump 204 is located. By updating the region ID and system ID of the facility, any new data generated in the facility may be accessible using the new region ID and system ID. Further, even after moving the facility 1216 from the system 1208 to the system 1210, the pump messages generated by the infusion pumps at the facility 1216 may continue to be stamped, tagged, or otherwise associated with the same account ID and the facility ID as those used prior to the move. In some cases, when an infusion pump is physically moved to a new facility, the connectivity adapter 206 at the new facility may stamp, tag, or otherwise associate the pump messages generated by the infusion pump with a new facility ID corresponding to the new facility.


In the method 1300, one or more of the blocks shown in FIG. 13 may be removed (e.g., not performed) and/or the order in which the method 1300 is performed may be switched. In some embodiments, additional blocks may be added to the method 1300. The embodiments of the present disclosure are not limited to or by the example shown in FIG. 13, and other variations may be implemented without departing from the spirit of this disclosure.


EXAMPLE CLAUSES

Embodiments of the present disclosure can be defined by the following non-limiting clauses:


Clause 1. A system configured to facilitate messaging during a network outage, the system comprising: a plurality of infusion pumps configured to deliver medication to patients, each infusion pump of the plurality of infusion pumps comprising a memory configured to store operational software and a processor configured to generate pump messages; a connectivity adapter comprising computer hardware and in communication with the plurality of infusion pumps over a first network; and a server comprising computer hardware and in communication with the connectivity adapter over a second network different from the first network, wherein the connectivity adapter is configured to: receive a first pump message from a first infusion pump of the plurality of infusion pumps, the first pump message including information that is new to the connectivity adapter; generate a first standardized dataset message based on the information in the first pump message; store the first standardized dataset message in an outbound queue for transmission to the server; subsequent to storing the first standardized dataset message in the outbound queue, receive a second pump message from the first infusion pump, the second pump message including additional information that is new to the connectivity adapter; generate a second standardized dataset message based on the additional information in the second pump message; store the second standardized dataset message in the outbound queue for transmission to the server; remove the first standardized dataset message from the outbound queue without transmitting the first standardized dataset message to the server; and transmit the second standardized dataset message in the outbound queue to the server.


Clause 2. The system of Clause 1, wherein the first pump message includes a first message identifier (ID), and the second pump message includes a second message ID that immediately follows the first message ID in value.


Clause 3. The system of Clause 1, wherein the first standardized dataset message includes a first message identifier (ID), and the second standardized dataset message includes a second message ID that immediately follows the first message ID in value.


Clause 4. The system of Clause 1, wherein the first pump message includes a first parameter indicative of a status of the first infusion pump, and the first standardized dataset message includes (i) the first parameter and (ii) a second parameter that is not in the first pump message and indicative of another status of the first infusion pump.


Clause 5. The system of Clause 4, wherein the second parameter is associated with one of a null value or a default value.


Clause 6. The system of Clause 1, wherein the connectivity adapter is further configured to store the information in the first pump message in a cache.


Clause 7. The system of Clause 6, wherein the connectivity adapter is further configured to receive a third pump message from the first infusion pump, and based on determining that the third pump message does not include information new to the connectivity adapter, refrain from storing the information in the third pump message in the cache.


Clause 8. The system of Clause 1, wherein the connectivity adapter is further configured to update a parameter stored in a cache based on the information in the first pump message.


Clause 9. The system of Clause 1, wherein the connectivity adapter is further configured to, subsequent to removing the first standardized dataset message from the outbound queue without transmitting the first standardized dataset message to the server, receive a request for the first pump message from the server.


Clause 10. The system of Clause 9, wherein the connectivity adapter is further configured to, in response to the request for the first pump message, transmit a request for the first pump message to the first infusion pump.


Clause 11. A method of facilitating messaging during a network outage, the method comprising: receiving a first pump message from a first infusion pump over a first network; generating a first standardized dataset message based on the information in the first pump message; storing the first standardized dataset message in an outbound queue for transmission to a server over a second network different from the first network; subsequent to storing the first standardized dataset message in the outbound queue, receiving a second pump message from the first infusion pump over the first network; generating a second standardized dataset message based on the additional information in the second pump message; storing the second standardized dataset message in the outbound queue for transmission to the server; removing the first standardized dataset message from the outbound queue without transmitting the first standardized dataset message to the server; and transmitting the second standardized dataset message in the outbound queue to the server over the second network.


Clause 12. The method of Clause 11, wherein the first pump message includes a first message identifier (ID), and the second pump message includes a second message ID that immediately follows the first message ID in value.


Clause 13. The method of Clause 11, wherein the first standardized dataset message includes a first message identifier (ID), and the second standardized dataset message includes a second message ID that immediately follows the first message ID in value.


Clause 14. The method of Clause 11, wherein the first pump message includes a first parameter indicative of a status of the first infusion pump, and the first standardized dataset message includes (i) the first parameter and (ii) a second parameter that is not in the first pump message and indicative of another status of the first infusion pump.


Clause 15. The method of Clause 14, wherein the second parameter is associated with one of a null value or a default value.


Clause 16. The method of Clause 11, further comprising storing the information in the first pump message in a cache.


Clause 17. The method of Clause 16, further comprising receiving a third pump message from the first infusion pump, and based on determining that the third pump message does not include information new to the connectivity adapter, refraining from storing the information in the third pump message in the cache.


Clause 18. The method of Clause 11, further comprising updating a parameter stored in a cache based on the information in the first pump message.


Clause 19. The method of Clause 11, further comprising, subsequent to removing the first standardized dataset message from the outbound queue without transmitting the first standardized dataset message to the server, receiving a request for the first pump message from the server.


Clause 20. The method of Clause 19, further comprising, in response to the request for the first pump message, transmitting a request for the first pump message to the first infusion pump.


Clause 21. A system configured to facilitate messaging during a network outage, the system comprising: a plurality of infusion pumps configured to deliver medication to patients, each infusion pump of the plurality of infusion pumps comprising a memory configured to store operational software and a processor configured to generate pump messages; a connectivity adapter comprising computer hardware and in communication with the plurality of infusion pumps over a first network; and a server comprising computer hardware and in communication with the connectivity adapter over a second network different from the first network, wherein the connectivity adapter is configured to: receive a first pump message from a first infusion pump of the plurality of infusion pumps, the first pump message including information that is new to the connectivity adapter; generate a first standardized dataset message based on the information in the first pump message; store the first standardized dataset message in an outbound queue for transmission to the server; subsequent to storing the first standardized dataset message in the outbound queue, receive a second pump message from the first infusion pump, the second pump message including additional information that is new to the connectivity adapter; generate a second standardized dataset message based on the additional information in the second pump message; store the second standardized dataset message in the outbound queue for transmission to the server; determine whether a removal condition for removing the first standardized dataset message from the outbound queue without transmitting the first standardized dataset message to the server is satisfied; and subsequent to determining whether the removal condition is satisfied, removing the first standardized dataset message from the outbound queue.


Clause 22. The system of Clause 21, wherein the connectivity adapter is further configured to, subsequent to determining that the removal condition is satisfied, remove the first standardized dataset message from the outbound queue without transmitting the first standardized dataset message to the server.


Clause 23. The system of Clause 21, wherein the connectivity adapter is further configured to, subsequent to determining that the removal condition is not satisfied, remove the first standardized dataset message from the outbound queue and transmit the first standardized dataset message to the server.


Clause 24. The system of Clause 22 or 23, wherein determining whether the removal condition is satisfied comprises determining whether the first standardized dataset message has been in the outbound queue for a time period greater than a threshold time period.


Clause 25. The system of Clause 22 or 23, wherein determining whether the removal condition is satisfied comprises determining whether the outbound queue includes a number of messages that is greater than a threshold number of messages.


Clause 26. The system of Clause 22 or 23, wherein the first pump message includes a first message identifier (ID), and the second pump message includes a second message ID that immediately follows the first message ID in value.


Clause 27. The system of Clause 22 or 23, wherein the first standardized dataset message includes a first message identifier (ID), and the second standardized dataset message includes a second message ID that immediately follows the first message ID in value.


Clause 28. The system of Clause 22 or 23, wherein the first pump message includes a first parameter indicative of a status of the first infusion pump, and the first standardized dataset message includes (i) the first parameter and (ii) a second parameter that is not in the first pump message and indicative of another status of the first infusion pump.


Clause 29. The system of Clause 28, wherein the second parameter is associated with one of a null value or a default value.


Clause 30. The system of Clause 22 or 23, wherein the connectivity adapter is further configured to store the information in the first pump message in a cache.


Clause 31. The system of Clause 30, wherein the connectivity adapter is further configured to receive a third pump message from the first infusion pump, and based on determining that the third pump message does not include information new to the connectivity adapter, refrain from storing the information in the third pump message in the cache.


Clause 32. The system of Clause 22 or 23, wherein the connectivity adapter is further configured to update a parameter stored in a cache based on the information in the first pump message.


Clause 33. The system of Clause 22, wherein the connectivity adapter is further configured to, subsequent to removing the first standardized dataset message from the outbound queue without transmitting the first standardized dataset message to the server, receive a request for the first pump message from the server.


Clause 34. The system of Clause 33, wherein the connectivity adapter is further configured to, in response to the request for the first pump message, transmit a request for the first pump message to the first infusion pump.


Clause 35. A method for providing messaging in a clinical environment, the method comprising: storing a plurality of messages in a message queue, wherein the plurality of messages contain information about one or more infusion pumps residing in the clinical environment, the plurality of messages stored in the message queue including at least a first message and a second message; transmitting at least some of the plurality of messages to a remote server configured to receive messages generated in the clinical environment; subsequent to the transmission, detecting a network outage, wherein the network outage prevents transmission of messages to the remote server; determining that the first message in the message queue satisfies a condition for being removed from the message queue without being successfully transmitted to the remote server; removing the first message from the message queue such that the first message is removed from the message queue prior to being received by the remote server; determining that the network outage has been resolved; and transmitting the second message to the remote server such that the second message is received by the remote server and the first message is not received by the remote server.


Clause 36. The method of Clause 35, further comprising detecting the network outage based at least on not having received an acknowledgement from the remote server during a specific time window.


Clause 37. The method of Clause 35, further comprising detecting the network outage based at least on receiving a message from the remote server that a connection to the remote server is terminated.


Clause 38. The method of Clause 35, further comprising determining that the first message satisfies the condition based at least on the first message being associated with an infusion pump event that is older than a threshold amount of time.


Clause 39. The method of Clause 35, further comprising determining that the first message satisfies the condition based at least on the first message being the oldest message in the message queue.


Clause 40. The method of Clause 35, further comprising determining that the first message satisfies the condition based at least on the message queue being full.


Clause 41. The method of Clause 35, further comprising attempting, prior to determining that the first message satisfies the condition, to transmit the first message to the remote server, and determining that the first message was not received by the remote server.


Clause 42. An apparatus configured to provide messaging in a clinical environment, the apparatus comprising: one or more processors; and one or more memories in communication with the one or more processors and storing computer-executable instructions that, when executed by the one or more processors, configure the one or more processors to: cause a plurality of messages to be stored in a message queue, wherein the plurality of messages contain information about one or more infusion pumps residing in the clinical environment, the plurality of messages stored in the message queue including at least a first message and a second message; cause at least some of the plurality of messages to be transmitted to a remote server configured to receive messages generated in the clinical environment; subsequent to the transmission, determine that the first message in the message queue satisfies a condition for being removed from the message queue; cause the first message to be removed from the message queue such that the first message is removed from the message queue prior to being received by the remote server; and cause the second message to be transmitted to the remote server such that the second message is received by the remote server and the first message is not received by the remote server.


Clause 43. The apparatus of Clause 42, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to detect a network outage that prevents transmission of messages to the remote server.


Clause 44. The apparatus of Clause 43, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to detect the network outage based at least on not having received an acknowledgement from the remote server during a specific time window.


Clause 45. The apparatus of Clause 43, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to detect the network outage based at least on receiving a message from the remote server that a connection to the remote server is terminated.


Clause 46. The apparatus of Clause 42, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to determine that the first message satisfies the condition based at least on the first message being associated with an infusion pump event that is older than a threshold amount of time.


Clause 47. The apparatus of Clause 42, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to determine that the first message satisfies the condition based at least on the first message being the oldest message in the message queue.


Clause 48. The apparatus of Clause 42, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to determine that the first message satisfies the condition based at least on the message queue being full.


Clause 49. The apparatus of Clause 42, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to attempt, prior to determining that the first message satisfies the condition, to transmit the first message to the remote server, and determine that the first message was not received by the remote server.


Clause 50. Non-transitory physical computer storage storing computer-executable instructions that, when executed by one or more computing devices, configure the one or more computing devices to: cause a plurality of messages to be stored in a message queue, wherein the plurality of messages contain information about one or more infusion pumps residing in the clinical environment, the plurality of messages stored in the message queue including at least a first message and a second message; cause at least some of the plurality of messages to be transmitted to a remote server configured to receive messages generated in the clinical environment; subsequent to the transmission, determine that the first message in the message queue satisfies a condition for being removed from the message queue; cause the first message to be removed from the message queue such that the first message is removed from the message queue prior to being received by the remote server; and cause the second message to be transmitted to the remote server such that the second message is received by the remote server and the first message is not received by the remote server.


Clause 51. The non-transitory physical computer storage of Clause 50, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to detect a network outage that prevents transmission of messages to the remote server.


Clause 52. The non-transitory physical computer storage of Clause 50, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to determine that the first message satisfies the condition based at least on the first message being associated with an infusion pump event that is older than a threshold amount of time.


Clause 53. The non-transitory physical computer storage of Clause 50, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to determine that the first message satisfies the condition based at least on the first message being the oldest message in the message queue.


Clause 54. The non-transitory physical computer storage of Clause 50, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to attempt, prior to determining that the first message satisfies the condition, to transmit the first message to the remote server, and determine that the first message was not received by the remote server.


Clause 55. A method for providing messaging in a clinical environment, the method comprising: storing a plurality of messages in a message queue, wherein the plurality of messages contain information about one or more infusion pumps residing in the clinical environment, the plurality of messages stored in the message queue including at least a first message; transmitting at least some of the plurality of messages to a remote server configured to receive messages generated in the clinical environment; subsequent to the transmission, detecting a temporary interruption in a network connection to the remote server, wherein the temporary interruption prevents transmission of messages to the remote server; determining that the first message in the message queue does not satisfy a condition for being removed from the message queue without being successfully transmitted to the remote server; determining that the temporary interruption has been resolved; and transmitting the first message to the remote server such that the first message is received by the remote server.


Clause 56. The method of Clause 55, further comprising detecting the temporary interruption based at least on not having received an acknowledgement from the remote server during a specific time window.


Clause 57. The method of Clause 55, further comprising detecting the temporary interruption based at least on receiving a message from the remote server that a connection to the remote server is terminated.


Clause 58. The method of Clause 55, further comprising determining that the first message does not satisfy the condition based at least on the first message being associated with an infusion pump event that is not older than a threshold amount of time.


Clause 59. The method of Clause 55, further comprising determining that the first message does not satisfy the condition based at least on the first message not being a time-sensitive message.


Clause 60. The method of Clause 55, further comprising attempting, prior to determining that the first message does not satisfy the condition, to transmit the first message to the remote server, and determining that the first message was not received by the remote server.


Clause 61. An apparatus configured to provide messaging in a clinical environment, the apparatus comprising: one or more processors; and one or more memories in communication with the one or more processors and storing computer-executable instructions that, when executed by the one or more processors, configure the one or more processors to: cause a plurality of messages to be stored in a message queue, wherein the plurality of messages contain information about one or more infusion pumps residing in the clinical environment, the plurality of messages stored in the message queue including at least a first message; cause at least some of the plurality of messages to be transmitted to a remote server configured to receive messages generated in the clinical environment; subsequent to the transmission, determine that the first message in the message queue does not satisfy a condition for being removed from the message queue; and cause the first message to be transmitted to the remote server such that the first message is received by the remote server.


Clause 62. The apparatus of Clause 61, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to detect an interruption in a network connection between the apparatus and the remote server that prevents transmission of messages from the apparatus to the remote server.


Clause 63. The apparatus of Clause 62, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to detect the interruption based at least on not having received an acknowledgement from the remote server during a specific time window.


Clause 64. The apparatus of Clause 62, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to detect the interruption based at least on receiving a message from the remote server that the network connection between the apparatus and the remote server is terminated.


Clause 65. The apparatus of Clause 61, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to determine that the first message does not satisfy the condition based at least on the first message being associated with an infusion pump event that is not older than a threshold amount of time.


Clause 66. The apparatus of Clause 61, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to determine that the first message does not satisfy the condition based at least on the first message not being a time-sensitive message.


Clause 67. The apparatus of Clause 61, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to attempt, prior to determining that the first message does not satisfy the condition, to transmit the first message to the remote server, and determine that the first message was not received by the remote server.


Clause 68. Non-transitory physical computer storage storing computer-executable instructions that, when executed by one or more computing devices, configure the one or more computing devices to: cause a plurality of messages to be stored in a message queue, wherein the plurality of messages contain information about one or more infusion pumps residing in the clinical environment, the plurality of messages stored in the message queue including at least a first message; cause at least some of the plurality of messages to be transmitted to a remote server configured to receive messages generated in the clinical environment; subsequent to the transmission, determine that the first message in the message queue does not satisfy a condition for being removed from the message queue; and cause the first message to be transmitted to the remote server such that the first message is received by the remote server.


Clause 69. The non-transitory physical computer storage of Clause 68, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to detect an interruption in a network connection to the remote server that prevents transmission of messages to the remote server.


Clause 70. The non-transitory physical computer storage of Clause 69, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to detect the interruption based at least on not having received an acknowledgement from the remote server during a specific time window.


Clause 71. The non-transitory physical computer storage of Clause 69, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to detect the interruption based at least on receiving a message from the remote server that the network connection to the remote server is terminated.


Clause 72. The non-transitory physical computer storage of Clause 68, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to determine that the first message does not satisfy the condition based at least on the first message being associated with an infusion pump event that is not older than a threshold amount of time.


Clause 73. The non-transitory physical computer storage of Clause 68, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to determine that the first message does not satisfy the condition based at least on the first message not being a time-sensitive message.


Clause 74. The non-transitory physical computer storage of Clause 68, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to attempt, prior to determining that the first message does not satisfy the condition, to transmit the first message to the remote server, and determine that the first message was not received by the remote server.


Clause 75. A method for detecting missing messages from a clinical environment, the method comprising: processing a plurality of messages from a network device residing in the clinical environment, wherein the plurality of messages contain information about one or more infusion pumps residing in the clinical environment, wherein the plurality of messages includes a first message having a first message identifier value and a second message having a second message identifier value; determining that one or more messages are missing between the first message and the second message based on (i) receiving the second message after the first message without receiving any other message therebetween and (ii) determining that there is at least one message identifier value between the first message identifier value and the second message identifier value in a predetermined sequence; and transmitting a message request to the network device residing in the clinical environment, wherein the message request identifies the one or more messages that should have been received from the network device but have not been received.


Clause 76. The method of Clause 75, further comprising, in response to the message request, receiving one or more additional messages from the network device, wherein the one or more messages include information that would have been included in the one or more messages.


Clause 77. The method of Clause 76, further comprising updating, based at least on the one or more additional messages received in response to the message request, a cache to include additional information about the one or more infusion pumps residing in the clinical environment.


Clause 78. The method of Clause 75, further comprising causing the network device to request additional information from the one or more infusion pumps that would have been included in the one or more messages.


Clause 79. The method of Clause 75, further comprising, in response to determining that the one or more messages has reached a threshold count, transmitting the message request to the network device residing in the clinical environment.


Clause 80. A system configured to detect missing messages from a clinical environment, the system comprising: one or more processors; and one or more memories in communication with the one or more processors and storing computer-executable instructions that, when executed by the one or more processors, configure the one or more processors to: process a plurality of messages from a network device residing in the clinical environment, wherein the plurality of messages contain information about one or more infusion pumps residing in the clinical environment; detect one or more missing messages that should have been received from the network device but have not been received; and cause a message request to be transmitted to the network device residing in the clinical environment, wherein the message request identifies the one or more missing messages that should have been received from the network device but have not been received.


Clause 81. The system of Clause 80, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to receive, in response to the message request, one or more additional messages from the network device, wherein the one or more messages include information that would have been included in the one or more missing messages.


Clause 82. The system of Clause 81, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to cause, based at least on the one or more additional messages received in response to the message request, a cache to be updated to include additional information about the one or more infusion pumps residing in the clinical environment.


Clause 83. The system of Clause 80, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to detect the one or more missing messages based at least on message identifier information associated with one or more of the plurality of messages.


Clause 84. The system of Clause 80, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to detect the one or more missing messages based at least on a first message in the plurality of messages having a message identifier that does not immediately follow another message identifier of a second message of the plurality of messages that immediately follows the first message.


Clause 85. The system of Clause 80, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to cause the network device to request additional information from the one or more infusion pumps that would have been included in the one or more missing messages.


Clause 86. The system of Clause 80, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to cause, in response to determining that the one or more missing messages has reached a threshold count, the message request to be transmitted to the network device residing in the clinical environment.


Clause 87. The system of Clause 80, wherein the message request includes a flag having a value indicating that the message request is a log retrieval request and not live data.


Clause 88. Non-transitory physical computer storage storing computer-executable instructions that, when executed by one or more computing devices, configure the one or more computing devices to: process a plurality of messages from a network device residing in the clinical environment, wherein the plurality of messages contain information about one or more infusion pumps residing in the clinical environment; detect one or more missing messages that should have been received from the network device but have not been received; and cause a message request to be transmitted to the network device residing in the clinical environment, wherein the message request identifies the one or more missing messages that should have been received from the network device but have not been received.


Clause 89. The non-transitory physical computer storage of Clause 88, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to receive, in response to the message request, one or more additional messages from the network device, wherein the one or more messages include information that would have been included in the one or more missing messages.


Clause 90. The non-transitory physical computer storage of Clause 89, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to cause, based at least on the one or more additional messages received in response to the message request, a cache to be updated to include additional information about the one or more infusion pumps residing in the clinical environment.


Clause 91. The non-transitory physical computer storage of Clause 88, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to detect the one or more missing messages based at least on message identifier information associated with one or more of the plurality of messages.


Clause 92. The non-transitory physical computer storage of Clause 88, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to detect the one or more missing messages based at least on a first message in the plurality of messages having a message identifier that does not immediately follow another message identifier of a second message of the plurality of messages that immediately follows the first message.


Clause 93. The non-transitory physical computer storage of Clause 88, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to cause the network device to request additional information from the one or more infusion pumps that would have been included in the one or more missing messages.


Clause 94. The non-transitory physical computer storage of Clause 88, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to cause, in response to determining that the one or more missing messages has reached a threshold count, the message request to be transmitted to the network device residing in the clinical environment.


Clause 95. A method for generating a user interface based on messages from a clinical environment, the method comprising: processing a message from a network device residing in the clinical environment, wherein the message includes information about one or more infusion pumps in communication with the network device in the clinical environment; determining that the information included in the message satisfies a condition for updating a cache to include at least some of the information included in the message, wherein the cache stores information usable to generate user interfaces in response to a request from a computing device residing in the clinical environment; updating the cache to include at least some of the information included in the message from the network device; receiving a request for a user interface from the computing device residing in the clinical environment; accessing, from the updated cache, user interface information to be used to generate the user interface, wherein the user interface information includes at least some of the information that the cache was updated to include; and outputting instructions for displaying the user interface on the computing device, wherein the instructions are based at least on the user interface information accessed from the updated cache.


Clause 96. The method of Clause 95, wherein the message includes information indicating a current state of the one or more infusion pumps.


Clause 97. The method of Clause 95, wherein the cache stores information associated with two or more infusion pumps residing in different medical facilities.


Clause 98. The method of Clause 95, wherein the user interface information includes user interface data previously generated and stored in the cache.


Clause 99. The method of Clause 95, further comprising updating user interface data stored in the cache, and outputting the instructions based at least on the updated user interface data.


Clause 100. The method of Clause 95, wherein the condition is satisfied based on the information in the message being usable to generate one or more user interfaces in response to a request from the clinical environment.


Clause 101. The method of Clause 95, further comprising causing the user interface to be outputted on a display of the computing device.


Clause 102. A system configured to detect missing messages from a clinical environment, the system comprising: one or more processors; and one or more memories in communication with the one or more processors and storing computer-executable instructions that, when executed by the one or more processors, configure the one or more processors to: process a message from a network device residing in the clinical environment, wherein the message includes information about one or more infusion pumps in communication with the network device in the clinical environment; determine that the information included in the message satisfies a condition for updating a cache to include at least some of the information included in the message, wherein the cache stores information usable to generate user interfaces in response to a request from a computing device residing in the clinical environment; cause the cache to be updated to include at least some of information included in the message from the network device; process a request for a user interface from the computing device residing in the clinical environment; access, from the updated cache, user interface information to be used to generate the user interface, wherein the user interface information includes at least some of the information that the cache was updated to include; and output instructions for displaying the user interface on the computing device, wherein the instructions are based at least on the user interface information accessed from the updated cache.


Clause 103. The system of Clause 102, wherein the message includes information indicating a current state of the one or more infusion pumps.


Clause 104. The system of Clause 102, wherein the cache is configured to store information associated with two or more infusion pumps residing in different medical facilities.


Clause 105. The system of Clause 102, wherein the user interface information includes user interface data previously generated and stored in the cache.


Clause 106. The system of Clause 102, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to cause user interface data stored in the cache to be updated, and output the instructions based at least on the updated user interface data.


Clause 107. The system of Clause 102, wherein the condition is satisfied based on the information in the message being usable to generate one or more user interfaces in response to a request from the clinical environment.


Clause 108. The system of Clause 102, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to cause the user interface to be outputted on a display of the computing device.


Clause 109. Non-transitory physical computer storage storing computer-executable instructions that, when executed by one or more computing devices, configure the one or more computing devices to: process a message from a network device residing in the clinical environment, wherein the message includes information about one or more infusion pumps in communication with the network device in the clinical environment; determine that the information included in the message satisfies a condition for updating a cache to include at least some of the information included in the message, wherein the cache stores information usable to generate user interfaces in response to a request from a computing device residing in the clinical environment; cause the cache to be updated to include at least some of information included in the message from the network device; process a request for a user interface from the computing device residing in the clinical environment; access, from the updated cache, user interface information to be used to generate the user interface, wherein the user interface information includes at least some of the information that the cache was updated to include; and output instructions for displaying the user interface on the computing device, wherein the instructions are based at least on the user interface information accessed from the updated cache.


Clause 110. The non-transitory physical computer storage of Clause 109, wherein the message includes information indicating a current state of the one or more infusion pumps.


Clause 111. The non-transitory physical computer storage of Clause 109, wherein the cache is configured to store information associated with two or more infusion pumps residing in different medical facilities.


Clause 112. The non-transitory physical computer storage of Clause 109, wherein the user interface information includes user interface data previously generated and stored in the cache.


Clause 113. The non-transitory physical computer storage of Clause 109, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to cause user interface data stored in the cache to be updated, and output the instructions based at least on the updated user interface data.


Clause 114. The non-transitory physical computer storage of Clause 109, wherein the condition is satisfied based on the information in the message being usable to generate one or more user interfaces in response to a request from the clinical environment.


Clause 115. A method for converting messages having one message format from infusion pumps residing in a clinical environment into messages having another message format, the method comprising: detecting a first pump protocol used by one or more infusion pumps in the clinical environment, the first pump protocol defining the first message format; generating a message converter configured to convert a pump message having the first message format into a standardized dataset message having a second message format different from the first message format and including at least some additional data or metadata not included in the pump message; receiving a first pump message from an infusion pump in the clinical environment, wherein the infusion pump is configured to generate pump messages using the first pump protocol; converting the first pump message into a standardized dataset message having the second message format using the message converter, wherein the standardized dataset message includes information associated with the infusion pump and includes at least some additional data or metadata not included in the first pump message; and transmitting the standardized dataset message to a remote server configured to receive standardized dataset messages.


Clause 116. The method of Clause 115, wherein the standardized dataset message includes one or more key-value pairs that are not included in the first pump message.


Clause 117. The method of Clause 116, wherein the one or more key-value pairs are each set to a default value or a null value.


Clause 118. The method of Clause 115, wherein the standardized dataset message includes identification data that identifies one or more portions of the standardized dataset message that include new information.


Clause 119. The method of Clause 115, further comprising detecting the first pump protocol based on a protocol identifier associated with the first pump protocol not being on a predetermined list of protocol identifiers.


Clause 120. The method of Clause 119, further comprising subsequent to detecting the first pump protocol, adding the protocol identifier associated with the first pump protocol to the predetermined list of protocol identifiers.


Clause 121. The method of Clause 115, wherein the message converter comprises a software module that is configured to receive a pump message in the first pump protocol as input and output a standardized dataset message based on the pump message.


Clause 122. The method of Clause 115, wherein the message converter is a configuration file downloaded from the remote server.


Clause 123. An apparatus configured to convert messages having one message format from infusion pumps residing in a clinical environment into messages having another message format, the apparatus comprising: one or more processors; and one or more memories in communication with the one or more processors and storing computer-executable instructions that, when executed by the one or more processors, configure the one or more processors to: detect a first pump protocol used by one or more infusion pumps in the clinical environment, the first pump protocol defining a first message format; generate a message converter configured to convert a pump message having the first message format into another message having a second message format different from the first message format and including at least some additional data or metadata not included in the pump message; receive a first message from an infusion pump in the clinical environment, wherein the infusion pump is configured to generate messages using the first pump protocol; cause the first message to be converted into a second message having the second message format using the message converter, wherein the second message includes information associated with the infusion pump and includes at least some additional data or metadata not included in the first message; and cause the second message to be transmitted to a remote server configured to receive messages having the second message format.


Clause 124. The apparatus of Clause 123, wherein the second message includes one or more key-value pairs that are not included in the first message.


Clause 125. The apparatus of Clause 124, wherein the one or more key-value pairs are each set to a default value or a null value.


Clause 126. The apparatus of Clause 123, wherein the second message includes identification data that identifies one or more portions of the second message that include new information.


Clause 127. The apparatus of Clause 123, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to detect the first pump protocol based on a protocol identifier associated with the first pump protocol not being on a predetermined list of protocol identifiers.


Clause 128. The apparatus of Clause 123, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to, subsequent to detecting the first pump protocol, cause the protocol identifier associated with the first pump protocol to be added to the predetermined list of protocol identifiers.


Clause 129. The apparatus of Clause 123, wherein the message converter comprises a software module that is configured to receive a pump message having the first message format as input and output another message having the second message format based on the pump message.


Clause 130. The apparatus of Clause 123, wherein the message converter is a configuration file downloaded from the remote server.


Clause 131. Non-transitory physical computer storage storing computer-executable instructions that, when executed by one or more computing devices, configure the one or more computing devices to: detect a first pump protocol used by one or more infusion pumps in the clinical environment, the first pump protocol defining a first message format; generate a message converter configured to convert a pump message having the first message format into another message having a second message format different from the first message format and including at least some additional data or metadata not included in the pump message; receive a first message from an infusion pump in the clinical environment, wherein the infusion pump is configured to generate messages using the first pump protocol; cause the first message to be converted into a second message having the second message format using the message converter, wherein the second message includes information associated with the infusion pump and includes at least some additional data or metadata not included in the first message; and cause the second message to be transmitted to a remote server configured to receive messages having the second message format.


Clause 132. The non-transitory physical computer storage of Clause 131, wherein the second message includes one or more key-value pairs that are not included in the first message, the one or more key-value pairs each having a default value or a null value.


Clause 133. The non-transitory physical computer storage of Clause 131, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to detect the first pump protocol based on a protocol identifier associated with the first pump protocol not being on a predetermined list of protocol identifiers, and subsequent to detecting the first pump protocol, cause the protocol identifier associated with the first pump protocol to be added to the predetermined list of protocol identifiers.


Clause 134. The non-transitory physical computer storage of Clause 131, wherein the message converter comprises a software module that is downloaded from the remote server, the message converter being configured to receive a pump message having the first message format as input and output another message having the second message format based on the pump message.


Clause 135. A method for authenticating a network device residing in a clinical environment using a token, the method comprising: processing an authentication request from the network device residing in the clinical environment via a first network connection, wherein the authentication request includes identifying information associated with the clinical environment, and wherein the clinical environment includes one or more infusion pumps in communication with the network device; identifying login credentials to be used to authenticate the network device residing in the clinical environment; transmitting the login credentials to an authentication system configured to authenticate requests from the network device residing in the clinical environment via a second network connection different from the first network connection; receiving a security token from the authentication system, the security token being usable by the network device to transmit requests to the authentication system via the second network connection; and transmitting the security token to the network device residing in the clinical environment via the first network connection.


Clause 136. The method of Clause 135, wherein the first network connection is a Web Socket connection.


Clause 137. The method of Clause 135, wherein the first network connection is secured and authenticated.


Clause 138. The method of Clause 135, further comprising causing the network device residing in the clinical environment to transmit a signed request to the authentication system.


Clause 139. The method of Clause 135, wherein the first network connection and the second network connection are both established over a wide area network.


Clause 140. The method of Clause 135, further comprising receiving a message from the network device residing in the clinical environment via the first network connection, wherein the messages include information associated with the one or more infusion pumps in communication with the network device.


Clause 141. The method of Clause 140, wherein the network device is configured to communicate with the one or more infusion pumps over a local area network.


Clause 142. A system configured to authenticate a network device residing in a clinical environment using a token, the system comprising: one or more processors; and one or more memories in communication with the one or more processors and storing computer-executable instructions that, when executed by the one or more processors, configure the one or more processors to: process an authentication request from the network device residing in the clinical environment via a first network connection, wherein the authentication request includes identifying information associated with the clinical environment, and wherein the clinical environment includes one or more infusion pumps in communication with the network device; identify login credentials to be used to authenticate the network device residing in the clinical environment; cause the login credentials to be transmitted to an authentication system configured to authenticate requests from the network device residing in the clinical environment via a second network connection different from the first network connection; receive a security token from the authentication system, the security token being usable by the network device to transmit requests to the authentication system via the second network connection; and cause the security token to be transmitted to the network device residing in the clinical environment via the first network connection.


Clause 143. The system of Clause 142, wherein the first network connection is a Web Socket connection.


Clause 144. The system of Clause 142, wherein the first network connection is secured and authenticated.


Clause 145. The system of Clause 142, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to cause the network device residing in the clinical environment to transmit a signed request to the authentication system.


Clause 146. The system of Clause 142, wherein the first network connection and the second network connection are both established over a wide area network.


Clause 147. The system of Clause 142, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to receive a message from the network device residing in the clinical environment via the first network connection, wherein the messages include information associated with the one or more infusion pumps in communication with the network device.


Clause 148. The system of Clause 147, wherein the network device is configured to communicate with the one or more infusion pumps over a local area network.


Clause 149. Non-transitory physical computer storage storing computer-executable instructions that, when executed by one or more computing devices, configure the one or more computing devices to: process an authentication request from the network device residing in the clinical environment via a first network connection, wherein the authentication request includes identifying information associated with the clinical environment, and wherein the clinical environment includes one or more infusion pumps in communication with the network device; identify login credentials to be used to authenticate the network device residing in the clinical environment; cause the login credentials to be transmitted to an authentication system configured to authenticate requests from the network device residing in the clinical environment via a second network connection different from the first network connection; receive a security token from the authentication system, the security token being usable by the network device to transmit requests to the authentication system via the second network connection; and cause the security token to be transmitted to the network device residing in the clinical environment via the first network connection.


Clause 150. The non-transitory physical computer storage of Clause 149, wherein the first network connection is a secured and authenticated WebSocket connection.


Clause 151. The non-transitory physical computer storage of Clause 149, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to cause the network device residing in the clinical environment to transmit a signed request to the authentication system.


Clause 152. The non-transitory physical computer storage of Clause 149, wherein the first network connection and the second network connection are both established over a wide area network.


Clause 153. The non-transitory physical computer storage of Clause 149, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to receive a message from the network device residing in the clinical environment via the first network connection, wherein the messages include information associated with the one or more infusion pumps in communication with the network device.


Clause 154. The non-transitory physical computer storage of Clause 149, wherein the condition is satisfied based on the information in the message being usable to generate one or more user interfaces in response to a request from the clinical environment.


Clause 155. A method for tagging messages from infusion pumps residing in a clinical environment, the method comprising: processing a pump message including information about an infusion pump residing in the clinical environment; tagging the pump message with a facility identifier indicative of a facility associated with the infusion pump and an account identifier indicative of an account associated with the infusion pump, wherein the facility is below the account in a hierarchical structure, and wherein the hierarchical structure includes one or more intermediate levels that are between the facility and the account in the hierarchical structure; and transmitting the tagged pump message to a remote server such that the facility identifier of the tagged pump message and the account identifier of the tagged message need not be changed by the remote server in response to the facility being moved within the hierarchical structure.


Clause 156. The method of Clause 155, wherein the facility identifier and the account identifier are permanent identifiers that are not changed in response to the facility being moved to another system or region in the hierarchical structure.


Clause 157. The method of Clause 155, wherein the infusion pump is configured to generate pump messages without determining the facility associated with the infusion pump or the account associated with the infusion pump.


Clause 158. The method of Clause 155, further comprising determining, in a priority order, whether one or more facility detection indicators correspond to one of a plurality of facility identifiers stored in a database.


Clause 159. The method of Clause 158, further comprising, in response to determining that none of the one or more facility detection indicators corresponds to any of the plurality of facility identifiers stored in the database, tagging the pump message with a default facility identifier indicating that the pump message originated from an infusion pump that is not associated with a known facility.


Clause 160. The method of Clause 155, further comprising tagging the pump message with a first intermediate identifier indicative of a first intermediate level of the one or more intermediate levels such that the tagged pump message includes the facility identifier, the account identifier, and the first intermediate identifier.


Clause 161. The method of Clause 160, in response to determining that the facility is no longer associated with the first intermediate level in the hierarchical structure, updating the first intermediate identifier, such that the tagged pump message includes the updated first intermediate identifier.


Clause 162. The method of Clause 155, wherein processing the pump message comprises converting a message in a first format received from the infusion pump into the pump message in a second format different from the first format.


Clause 163. An apparatus configured to tag messages from infusion pumps residing in a clinical environment, the apparatus comprising: one or more processors; and one or more memories in communication with the one or more processors and storing computer-executable instructions that, when executed by the one or more processors, configure the one or more processors to: process a pump message including information about an infusion pump residing in the clinical environment; cause the pump message to be tagged with a facility identifier indicative of a facility associated with the infusion pump and an account identifier indicative of an account associated with the infusion pump, wherein the facility is below the account in a hierarchical structure, and wherein the message is not tagged with at least one other identifier indicative of an intermediate level that is between the facility and the account in the hierarchical structure; and cause the tagged pump message to be transmitted to a remote server such that the facility identifier of the tagged pump message and the account identifier of the tagged message need not be changed by the remote server in response to the facility being moved within the hierarchical structure.


Clause 164. The apparatus of Clause 163, wherein the facility identifier and the account identifier are permanent identifiers that are not changed in response to the facility being moved within the hierarchical structure.


Clause 165. The apparatus of Clause 163, wherein the facility identifier and the account identifier are permanent identifiers that are not changed in response to the facility being moved to another system or region in the hierarchical structure.


Clause 166. The apparatus of Clause 163, wherein the infusion pump is configured to generate pump messages without determining the facility associated with the infusion pump or the account associated with the infusion pump.


Clause 167. The apparatus of Clause 163, wherein the computer-executable instructions further configure the one or more processors to cause the pump message to be tagged with a first intermediate identifier indicative of a first intermediate level of the one or more intermediate levels such that the tagged pump message includes the facility identifier, the account identifier, and the first intermediate identifier.


Clause 168. The apparatus of Clause 167, wherein the computer-executable instructions further configure the one or more processors to, in response to determining that the facility is no longer associated with the first intermediate level in the hierarchical structure, cause the first intermediate identifier to be updated, such that the tagged pump message includes the updated first intermediate identifier.


Clause 169. The apparatus of Clause 163, wherein processing the pump message comprises converting a message in a first format received from the infusion pump into the pump message in a second format different from the first format.


Clause 170. Non-transitory physical computer storage storing computer-executable instructions that, when executed by one or more computing devices, configure the one or more computing devices to: process a pump message including information about an infusion pump residing in the clinical environment; cause the pump message to be tagged with a facility identifier indicative of a facility associated with the infusion pump and an account identifier indicative of an account associated with the infusion pump, wherein the facility is below the account in a hierarchical structure, and wherein the message is not tagged with at least one other identifier indicative of an intermediate level that is between the facility and the account in the hierarchical structure; and cause the tagged pump message to be transmitted to a remote server such that the facility identifier of the tagged pump message and the account identifier of the tagged message need not be changed by the remote server in response to the facility being moved within the hierarchical structure.


Clause 171. The non-transitory physical computer storage of Clause 170, wherein the facility identifier and the account identifier are permanent identifiers that are not changed in response to the facility being moved to another system or region in the hierarchical structure.


Clause 172. The non-transitory physical computer storage of Clause 170, wherein the infusion pump is configured to generate pump messages without determining the facility associated with the infusion pump or the account associated with the infusion pump.


Clause 173. The non-transitory physical computer storage of Clause 170, wherein the intermediate level in the hierarchical structure is a system associated with the infusion pump or a region associated with the infusion pump.


Clause 174. The non-transitory physical computer storage of Clause 170, wherein processing the pump message comprises converting a message in a first format received from the infusion pump into the pump message in a second format different from the first format.


OTHER CONSIDERATIONS

It is to be understood that not necessarily all objects or advantages may be achieved in accordance with any particular embodiment described herein. Thus, for example, those skilled in the art will recognize that certain embodiments may be configured to operate in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.


Many other variations than those described herein will be apparent from this disclosure. For example, depending on the embodiment, certain acts, events, or functions of any of the algorithms described herein can be performed in a different sequence, can be added, merged, or left out altogether (e.g., not all described acts or events are necessary for the practice of the algorithms). Moreover, in certain embodiments, acts or events can be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially. In addition, different tasks or processes can be performed by different machines and/or computing systems that can function together.


The various illustrative logical blocks, modules, and algorithm elements described in connection with the embodiments disclosed herein can be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, and elements have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. The described functionality can be implemented in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosure.


The various illustrative logical blocks and modules described in connection with the embodiments disclosed herein can be implemented or performed by a machine, such as a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor can be a microprocessor, but in the alternative, the processor can be a controller, microcontroller, or state machine, combinations of the same, or the like. A processor can include electrical circuitry configured to process computer-executable instructions. In another embodiment, a processor includes an FPGA or other programmable device that performs logic operations without processing computer-executable instructions. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Although described herein primarily with respect to digital technology, a processor may also include primarily analog components. For example, some or all of the signal processing algorithms described herein may be implemented in analog circuitry or mixed analog and digital circuitry. A computing environment can include any type of computer system, including, but not limited to, a computer system based on a microprocessor, a mainframe computer, a digital signal processor, a portable computing device, a device controller, or a computational engine within an appliance, to name a few.


The elements of a method, process, or algorithm described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module stored in one or more memory devices and executed by one or more processors, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of non-transitory computer-readable storage medium, media, or physical computer storage known in the art. An example storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor. The storage medium can be volatile or nonvolatile. The processor and the storage medium can reside in an ASIC. The ASIC can reside in a user terminal. In the alternative, the processor and the storage medium can reside as discrete components in a user terminal.


Conditional language used herein, such as, among others, “can,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Further, the term “each,” as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term “each” is applied.


Disjunctive language such as the phrase “at least one of X, Y, or Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to present that an item, term, etc., may be either X, Y, or Z, or any combination thereof (e.g., X, Y, and/or Z). Thus, such disjunctive language is not generally intended to, and should not, imply that certain embodiments require at least one of X, at least one of Y, or at least one of Z to each be present.


Unless otherwise explicitly stated, articles such as “a”, “an”, or “the” should generally be interpreted to include one or more described items. Accordingly, phrases such as “a device configured to” are intended to include one or more recited devices. Such one or more recited devices can also be collectively configured to carry out the stated recitations. For example, “a processor configured to carry out recitations A, B, and C” can include a first processor configured to carry out recitation A working in conjunction with a second processor configured to carry out recitations B and C.


While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the devices or algorithms illustrated can be made without departing from the spirit of the disclosure. As will be recognized, certain embodiments described herein can be implemented within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others. All such modifications and variations are intended to be included herein within the scope of this disclosure. Further, additional embodiments created by combining any two or more features or techniques of one or more embodiments described herein are also intended to be included herein within the scope of this disclosure.

Claims
  • 1. A method comprising: receiving a first message from a network device, wherein the first message is in a first message format;converting the first message into a second message having a second message format that is different from the first message format, wherein the second message includes information associated with the network device, includes at least one key-value pair not included in the first message, and includes an indicator that distinguishes (i) a portion of the second message that includes information to be processed and to be added to a cache, from (ii) another portion of the second message that includes information that need to be processed and needed not be added to the cache; andtransmitting the second message to a remote server.
  • 2. The method of claim 1, wherein the at least one key-value pair is set to a default value or a null value.
  • 3. The method of claim 1, further comprising detecting a first protocol used by the first message based on a protocol identifier associated with the first message not being on a predetermined list of protocol identifiers.
  • 4. The method of claim 1, further comprising, subsequent to detecting the first protocol, adding the protocol identifier associated with the first message to the predetermined list of protocol identifiers.
  • 5. The method of claim 1, further comprising generating a message converter that is configured to receive a message having the first message format as input and configured to output another message that is in the second message format and includes at least one key-value pair not included in the message.
  • 6. The method of claim 1, further comprising downloading, from the remote server, a message converter that is configured to receive a message having the first message format as input and configured to output another message that is in the second message format and includes at least one key-value pair not included in the message.
  • 7. The method of claim 1, wherein the second message comprises a plurality of parameter categories, and indicates that only a subset of the plurality of parameter categories, but not all of the plurality of parameter categories, includes new information.
  • 8. An apparatus comprising: one or more processors; andone or more memories in communication with the one or more processors and storing computer-executable instructions that, when executed by the one or more processors, configure the one or more processors to: receive a first message from a network device, wherein the first message is in a first message format;cause the first message to be converted into a second message having a second message format that is different from the first message format, wherein the second message includes information associated with the network device, includes at least one key-value pair not included in the first message, and includes an indicator that distinguishes (i) a portion of the second message that includes information to be processed and to be added to a cache, from (ii) another portion of the second message that includes information that need not be processed and needed not be added to the cache; andcause the second message to be transmitted to a remote server.
  • 9. The apparatus of claim 8, wherein the at least one key-value pair is set to a default value or a null value.
  • 10. The apparatus of claim 8, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to detect a first protocol used by the first message based on a protocol identifier associated with the first message not being on a predetermined list of protocol identifiers.
  • 11. The apparatus of claim 10, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to, subsequent to detecting the first protocol, add the protocol identifier associated with the first message to the predetermined list of protocol identifiers.
  • 12. The apparatus of claim 8, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to generate a message converter that is configured to receive a message having the first message format as input and configured to output another message that is in the second message format and includes at least one key-value pair not included in the message.
  • 13. The apparatus of claim 8, wherein the computer-executable instructions, when executed by the one or more processors, further configure the one or more processors to cause a message converter to be downloaded from the remote server, wherein the message converter is configured to receive a message having the first message format as input and configured to output another message that is in the second message format and includes at least one key-value pair not included in the message.
  • 14. The apparatus of claim 8, wherein the second message comprises a plurality of parameter categories, and indicates that only a subset of the plurality of parameter categories, but not all of the plurality of parameter categories, includes new information.
  • 15. Non-transitory physical computer storage storing computer-executable instructions that, when executed by one or more computing devices, configure the one or more computing devices to: receive a first message from a network device, wherein the first message is in a first message format;cause the first message to be converted into a second message having a second message format that is different from the first message format, wherein the second message includes information associated with the network device, includes at least one key-value pair not included in the first message, and includes an indicator that distinguishes (i) a portion of the second message that includes information to be processed and the be added to a cache, from (ii) another portion of the second message that includes information that need not to be processed and needed to be added to the cache; andcause the second message to be transmitted to a remote server.
  • 16. The non-transitory physical computer storage of claim 15, wherein the at least one key-value pair has a default value or a null value.
  • 17. The non-transitory physical computer storage of claim 15, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to detect a first protocol used by the first message based on a protocol identifier associated with the first message not being on a predetermined list of protocol identifiers, and subsequent to detecting the first protocol, cause the protocol identifier associated with the first message to be added to the predetermined list of protocol identifiers.
  • 18. The non-transitory physical computer storage of claim 15, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to cause a message converter to be downloaded from the remote server, wherein the message converter is configured to receive a message having the first message format as input and configured to output another message that is in the second message format and includes at least one key-value pair not included in the message.
  • 19. The non-transitory physical computer storage of claim 15, wherein the computer-executable instructions, when executed by the one or more computing devices, further configure the one or more computing devices to generate a message converter that is configured to receive a message having the first message format as input and configured to output another message that is in the second message format and includes at least one key-value pair not included in the message.
  • 20. The non-transitory physical computer storage of claim 15, wherein the second message comprises a plurality of parameter categories, and indicates that only a subset of the plurality of parameter categories, but not all of the plurality of parameter categories, includes new information.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/174,813, filed Feb. 12, 2021 and titled: “CONVERTING PUMP MESSAGES IN NEW PUMP PROTOCOL TO STANDARDIZED DATASET MESSAGES, which is a continuation of U.S. patent application Ser. No. 16/512,246, filed Jul. 15, 2019 and titled “CONVERTING PUMP MESSAGES IN NEW PUMP PROTOCOL TO STANDARDIZED DATASET MESSAGES,” which is a continuation of International Application No. PCT/US19/41706, filed Jul. 12, 2019 and titled “SYSTEMS AND METHODS FOR FACILITATING CLINICAL MESSAGING IN A NETWORK ENVIRONMENT,” which claims priority to U.S. Provisional Application No. 62/699,499, filed on Jul. 17, 2018 and titled “SYSTEMS AND METHODS FOR FACILITATING CLINICAL MESSAGING IN A NETWORK ENVIRONMENT.” Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated herein by reference in their entirety under 37 CFR 1.57.

US Referenced Citations (1313)
Number Name Date Kind
4024864 Davies et al. May 1977 A
4055175 Clemens et al. Oct 1977 A
4151845 Clemens May 1979 A
4213454 Shim Jul 1980 A
4240438 Updike et al. Dec 1980 A
4280494 Cosgrove et al. Jul 1981 A
4308866 Jeliffe Jan 1982 A
4370983 Lichtenstein et al. Feb 1983 A
4373527 Fischell Feb 1983 A
4392849 Petre et al. Jul 1983 A
4395259 Prestele et al. Jul 1983 A
4457751 Rodler Jul 1984 A
4464170 Clemens Aug 1984 A
4469481 Kobayashi Sep 1984 A
4475901 Kraegen et al. Oct 1984 A
4494950 Fischell Jan 1985 A
4498843 Schneider et al. Feb 1985 A
4515584 Abe et al. May 1985 A
4526568 Clemens et al. Jul 1985 A
4529401 Leslie et al. Jul 1985 A
4543955 Schroeppel Oct 1985 A
4551133 Zegers de Beyl et al. Nov 1985 A
4553958 LeCocq Nov 1985 A
4559037 Franetzki et al. Dec 1985 A
4613937 Batty Sep 1986 A
4624661 Arimond Nov 1986 A
4633878 Bombardieri Jan 1987 A
4634426 Kamen Jan 1987 A
4634427 Hannula et al. Jan 1987 A
4674652 Aten et al. Jun 1987 A
4676776 Howson et al. Jun 1987 A
4679562 Luksha Jul 1987 A
4685903 Cable et al. Aug 1987 A
4695954 Rose Sep 1987 A
4696671 Epstein et al. Sep 1987 A
4714462 DiDomenico Dec 1987 A
4722734 Kolin Feb 1988 A
4730849 Siegel Mar 1988 A
4731051 Fischell Mar 1988 A
4741732 Crankshaw et al. May 1988 A
4756706 Kerns et al. Jul 1988 A
4776842 Franetzki et al. Oct 1988 A
4785969 McLaughlin Nov 1988 A
4803625 Fu et al. Feb 1989 A
4835372 Gombrich et al. May 1989 A
4838275 Lee Jun 1989 A
4838856 Mulreany et al. Jun 1989 A
4838857 Strowe et al. Jun 1989 A
4854324 Hirschman et al. Aug 1989 A
4857716 Gombrich et al. Aug 1989 A
4858154 Anderson et al. Aug 1989 A
4898578 Rubalcaba, Jr. Feb 1990 A
4908017 Howson et al. Mar 1990 A
4933873 Kaufman et al. Jun 1990 A
4943279 Samiotes et al. Jul 1990 A
4946439 Eggers Aug 1990 A
4953745 Rowlett Sep 1990 A
4978335 Arthur, III Dec 1990 A
5000739 Kulisz et al. Mar 1991 A
5010473 Jacobs Apr 1991 A
5014698 Cohen May 1991 A
5016172 Dessertine May 1991 A
5026084 Paisfield Jun 1991 A
5034004 Crankshaw Jul 1991 A
5041086 Koenig et al. Aug 1991 A
5058161 Weiss Oct 1991 A
5078683 Sancoff et al. Jan 1992 A
5084828 Kaufman et al. Jan 1992 A
5088981 Howson et al. Feb 1992 A
5097505 Weiss Mar 1992 A
5100380 Epstein et al. Mar 1992 A
5102392 Sakai et al. Apr 1992 A
5104374 Bishko et al. Apr 1992 A
5109850 Blanco et al. May 1992 A
5131816 Brown Jul 1992 A
5142484 Kaufman et al. Aug 1992 A
5153827 Coutre et al. Oct 1992 A
5157640 Backner Oct 1992 A
5161222 Montejo et al. Nov 1992 A
5177993 Beckman et al. Jan 1993 A
5181910 Scanlon Jan 1993 A
5190522 Wocicki et al. Mar 1993 A
5199439 Zimmerman et al. Apr 1993 A
5200891 Kehr et al. Apr 1993 A
5216597 Beckers Jun 1993 A
5221268 Barton et al. Jun 1993 A
5230061 Welch Jul 1993 A
5243982 Möstl et al. Sep 1993 A
5244463 Cordner, Jr. et al. Sep 1993 A
5249260 Nigawara et al. Sep 1993 A
5256156 Kern et al. Oct 1993 A
5256157 Samiotes et al. Oct 1993 A
5261702 Mayfield Nov 1993 A
5317506 Coutre et al. May 1994 A
5319355 Russek Jun 1994 A
5319363 Welch et al. Jun 1994 A
5330634 Wong et al. Jul 1994 A
5338157 Blomquist Aug 1994 A
5341476 Lowell Aug 1994 A
5364346 Schrezenmeir Nov 1994 A
5366346 Danby Nov 1994 A
5368562 Blomquist et al. Nov 1994 A
5373454 Kanda et al. Dec 1994 A
5376070 Purvis et al. Dec 1994 A
5378231 Johnson et al. Jan 1995 A
5389071 Kawahara et al. Feb 1995 A
5389078 Zalesky et al. Feb 1995 A
5417222 Dempsey et al. May 1995 A
5423748 Uhala Jun 1995 A
5429602 Hauser Jul 1995 A
5431627 Pastrone et al. Jul 1995 A
5432777 Le Boudec et al. Jul 1995 A
5445621 Poli et al. Aug 1995 A
5447164 Shaya et al. Sep 1995 A
5455851 Chaco et al. Oct 1995 A
5461365 Schlager et al. Oct 1995 A
5464392 Epstein et al. Nov 1995 A
5465082 Chaco Nov 1995 A
5485408 Blomquist Jan 1996 A
5486286 Peterson et al. Jan 1996 A
5493430 Lu et al. Feb 1996 A
5496273 Pastrone et al. Mar 1996 A
5505828 Wong et al. Apr 1996 A
5507288 Bocker et al. Apr 1996 A
5507786 Morgan et al. Apr 1996 A
5508499 Ferrario Apr 1996 A
5515713 Saugues et al. May 1996 A
5520637 Pager et al. May 1996 A
5522798 Johnson et al. Jun 1996 A
5547470 Johnson et al. Aug 1996 A
5554013 Owens et al. Sep 1996 A
5562615 Nassif Oct 1996 A
5577169 Prezioso Nov 1996 A
5582323 Kurtenbach Dec 1996 A
5582593 Hultman Dec 1996 A
5594786 Chaco et al. Jan 1997 A
5598519 Narayanan Jan 1997 A
5620608 Rosa et al. Apr 1997 A
5630710 Tune et al. May 1997 A
5636044 Yuan et al. Jun 1997 A
5643212 Coutre et al. Jul 1997 A
5651775 Walker et al. Jul 1997 A
5658131 Aoki et al. Aug 1997 A
5658250 Blomquist et al. Aug 1997 A
5665065 Colman et al. Sep 1997 A
5669877 Blomquist Sep 1997 A
5672154 Sillén et al. Sep 1997 A
5681285 Ford et al. Oct 1997 A
5685844 Marttila Nov 1997 A
5687717 Halpern et al. Nov 1997 A
5689229 Chaco et al. Nov 1997 A
5697899 Hillman et al. Dec 1997 A
5699509 Gary et al. Dec 1997 A
5713350 Yokota et al. Feb 1998 A
5713856 Eggers et al. Feb 1998 A
5718562 Lawless et al. Feb 1998 A
5719761 Gatti et al. Feb 1998 A
5733259 Valcke et al. Mar 1998 A
5738102 Lemelson Apr 1998 A
5744027 Connell et al. Apr 1998 A
5752621 Passamante May 1998 A
5754111 Garcia May 1998 A
5764034 Bowman et al. Jun 1998 A
5764159 Neftel et al. Jun 1998 A
5772635 Dastur et al. Jun 1998 A
5774865 Glynn Jun 1998 A
5778256 Darbee Jul 1998 A
5778345 McCartney Jul 1998 A
5781442 Engleson et al. Jul 1998 A
5782805 Meinzer et al. Jul 1998 A
5788669 Peterson Aug 1998 A
5797515 Liff et al. Aug 1998 A
5800387 Duffy et al. Sep 1998 A
5814015 Gargano et al. Sep 1998 A
5822544 Chaco et al. Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5827179 Lichter et al. Oct 1998 A
5832448 Brown Nov 1998 A
5836910 Duffy et al. Nov 1998 A
5850344 Conkright Dec 1998 A
5867821 Ballantyne et al. Feb 1999 A
5870733 Bass et al. Feb 1999 A
5871465 Vasko Feb 1999 A
5873731 Predergast Feb 1999 A
5885245 Lynch et al. Mar 1999 A
5897493 Brown Apr 1999 A
5897498 Canfield, II et al. Apr 1999 A
5910252 Truitt et al. Jun 1999 A
5912818 McGrady et al. Jun 1999 A
5915240 Karpf Jun 1999 A
5920054 Uber, III Jul 1999 A
5920263 Huttenhoff et al. Jul 1999 A
5924074 Evans Jul 1999 A
5931764 Freeman et al. Aug 1999 A
5935099 Peterson et al. Aug 1999 A
5935106 Olsen Aug 1999 A
5941846 Duffy et al. Aug 1999 A
5956501 Brown Sep 1999 A
5957885 Bollish et al. Sep 1999 A
5960085 de la Huerga Sep 1999 A
5961448 Swenson et al. Oct 1999 A
5967559 Abramowitz Oct 1999 A
5971594 Sahai et al. Oct 1999 A
5975081 Hood et al. Nov 1999 A
5990838 Burns et al. Nov 1999 A
5997476 Brown Dec 1999 A
6000828 Leet Dec 1999 A
6003006 Colella et al. Dec 1999 A
6012034 Hamparian et al. Jan 2000 A
6017318 Gauthier et al. Jan 2000 A
6021392 Lester et al. Feb 2000 A
6024539 Blomquist Feb 2000 A
6024699 Surwit et al. Feb 2000 A
6032155 de la Huerga Feb 2000 A
6032676 Moore Mar 2000 A
6039251 Holowko et al. Mar 2000 A
6070761 Bloom et al. Jun 2000 A
6073106 Rozen et al. Jun 2000 A
6104295 Gaisser et al. Aug 2000 A
6112182 Akers et al. Aug 2000 A
6112323 Meizlik et al. Aug 2000 A
RE36871 Epstein et al. Sep 2000 E
6115390 Chuah Sep 2000 A
6122536 Sun et al. Sep 2000 A
6126637 Kriesel et al. Oct 2000 A
6135949 Russo et al. Oct 2000 A
6150942 O'Brien Nov 2000 A
6151643 Cheng et al. Nov 2000 A
6157914 Seto et al. Dec 2000 A
6159147 Lichter et al. Dec 2000 A
6167567 Chiles et al. Dec 2000 A
6182667 Hanks et al. Feb 2001 B1
6189105 Lopes Feb 2001 B1
6195589 Ketcham Feb 2001 B1
6208974 Campbell et al. Mar 2001 B1
6222323 Yamashita et al. Apr 2001 B1
6223440 Rashman May 2001 B1
6226277 Chuah May 2001 B1
6227371 Song May 2001 B1
6234176 Domae et al. May 2001 B1
6241704 Peterson et al. Jun 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6249705 Snell Jun 2001 B1
6257265 Brunner et al. Jul 2001 B1
6259355 Chaco et al. Jul 2001 B1
6269340 Ford et al. Jul 2001 B1
6270455 Brown Aug 2001 B1
6271813 Palalau Aug 2001 B1
6277072 Bardy Aug 2001 B1
6280380 Bardy Aug 2001 B1
6283761 Joao Sep 2001 B1
6285665 Chuah Sep 2001 B1
6292860 Cochcroft, Jr. Sep 2001 B1
6312378 Bardy Nov 2001 B1
6327254 Chuah Dec 2001 B1
6330008 Razdow et al. Dec 2001 B1
6339718 Zatezalo et al. Jan 2002 B1
6346886 de la Huerga Feb 2002 B1
6363282 Nichols et al. Mar 2002 B1
6371719 Hildebrandt Apr 2002 B1
6377548 Chuah Apr 2002 B1
6388951 Matsumoto et al. May 2002 B1
6406426 Reuss et al. Jun 2002 B1
6408330 de la Huerga Jun 2002 B1
6418334 Unger et al. Jul 2002 B1
6427088 Bowman et al. Jul 2002 B1
6428483 Carlebach Aug 2002 B1
6442432 Lee Aug 2002 B2
6469991 Chuah Oct 2002 B1
6475180 Peterson et al. Nov 2002 B2
6482158 Mault Nov 2002 B2
6485418 Yasushi et al. Nov 2002 B2
6494694 Lawless et al. Dec 2002 B2
6494831 Koritzinsky Dec 2002 B1
6497680 Holst et al. Dec 2002 B1
6514460 Fendrock Feb 2003 B1
6517482 Eiden et al. Feb 2003 B1
6519569 White et al. Feb 2003 B1
6520930 Critchlow et al. Feb 2003 B2
6540672 Simonsen et al. Apr 2003 B1
6542902 Dulong et al. Apr 2003 B2
6544212 Galley et al. Apr 2003 B2
6544228 Heitmeier Apr 2003 B1
6546350 Hartmann et al. Apr 2003 B1
6551276 Mann et al. Apr 2003 B1
6554798 Mann et al. Apr 2003 B1
6558320 Causey et al. May 2003 B1
6558351 Steil et al. May 2003 B1
6565509 Say et al. May 2003 B1
6567416 Chuah May 2003 B1
6571294 Simmon et al. May 2003 B2
6572542 Houben et al. Jun 2003 B1
6572545 Knobbe et al. Jun 2003 B2
6578002 Derzay et al. Jun 2003 B1
6581117 Klein et al. Jun 2003 B1
6587034 Heiman et al. Jul 2003 B1
6589229 Connelly et al. Jul 2003 B1
6599281 Struys et al. Jul 2003 B1
6602191 Quy Aug 2003 B2
6605072 Struys et al. Aug 2003 B2
6628809 Rowe et al. Sep 2003 B1
6631353 Davis et al. Oct 2003 B1
6640246 Gardy, Jr. et al. Oct 2003 B1
6641533 Causey, III et al. Nov 2003 B2
6647299 Bourget Nov 2003 B2
6652455 Kocher Nov 2003 B1
6653937 Nelson et al. Nov 2003 B2
6659947 Carter et al. Dec 2003 B1
6669630 Joliat et al. Dec 2003 B1
6671563 Engleson et al. Dec 2003 B1
6673033 Sciulli et al. Jan 2004 B1
6674403 Gray et al. Jan 2004 B2
6681003 Linder et al. Jan 2004 B2
6689091 Bui et al. Feb 2004 B2
6692241 Watanabe et al. Feb 2004 B2
6694191 Starkweather et al. Feb 2004 B2
6694334 DuLong et al. Feb 2004 B2
6721286 Williams et al. Apr 2004 B1
6721582 Trepagnier et al. Apr 2004 B2
6725200 Rost Apr 2004 B1
6731989 Engleson et al. May 2004 B2
6740072 Starkweather et al. May 2004 B2
6751651 Crockett Jun 2004 B2
6752787 Causey, III et al. Jun 2004 B1
6753830 Gelbman Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6773396 Flach et al. Aug 2004 B2
6774786 Havekost et al. Aug 2004 B1
6775577 Cmkovich et al. Aug 2004 B2
6780156 Haueter et al. Aug 2004 B2
6790198 White et al. Sep 2004 B1
6792470 Hakenberg et al. Sep 2004 B2
6796956 Hartlaub et al. Sep 2004 B2
6799149 Hartlaub Sep 2004 B2
6809653 Mann et al. Oct 2004 B1
6811534 Bowman, IV et al. Nov 2004 B2
6816605 Rowe et al. Nov 2004 B2
6839753 Biondi et al. Jan 2005 B2
6852104 Blomquist Feb 2005 B2
6859134 Heiman et al. Feb 2005 B1
6871211 Labounty et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6876303 Reeder et al. Apr 2005 B2
6885881 Leonhardt Apr 2005 B2
6891525 Ogoro May 2005 B2
6892278 Ebergen May 2005 B2
6899695 Herrera May 2005 B2
6915170 Engleson et al. Jul 2005 B2
6923763 Kovatchev et al. Aug 2005 B1
6924781 Gelbman Aug 2005 B1
6928338 Buchser et al. Aug 2005 B1
6928490 Bucholz et al. Aug 2005 B1
6936029 Mann et al. Aug 2005 B2
6945954 Hochman et al. Sep 2005 B2
6948492 Wemeling et al. Sep 2005 B2
6958677 Carter Oct 2005 B1
6958691 Anderson et al. Oct 2005 B1
6958705 Lebel et al. Oct 2005 B2
6961448 Nichols et al. Nov 2005 B2
6969352 Chiang et al. Nov 2005 B2
6969865 Duchon et al. Nov 2005 B2
6974437 Lebel et al. Dec 2005 B2
6979326 Mann et al. Dec 2005 B2
6980958 Surwit et al. Dec 2005 B1
6985870 Martucci et al. Jan 2006 B2
6986347 Hickle Jan 2006 B2
6997880 Carlebach et al. Feb 2006 B2
6997920 Mann et al. Feb 2006 B2
6998984 Zittrain Feb 2006 B1
7016752 Ruben et al. Mar 2006 B1
7017293 Riley Mar 2006 B2
7025743 Mann et al. Apr 2006 B2
7029455 Flaherty Apr 2006 B2
7038584 Carter May 2006 B2
7060031 Webb et al. Jun 2006 B2
7060059 Keith et al. Jun 2006 B2
7069552 Lindberg et al. Jun 2006 B2
7072725 Bristol et al. Jul 2006 B2
7079035 Bock et al. Jul 2006 B2
7092943 Roese et al. Aug 2006 B2
7096072 Engleson et al. Aug 2006 B2
7099809 Dori Aug 2006 B2
7103419 Engleson et al. Sep 2006 B2
7103578 Beck et al. Sep 2006 B2
7107106 Engleson et al. Sep 2006 B2
7108680 Rohr et al. Sep 2006 B2
7109878 Mann et al. Sep 2006 B2
7114002 Okumura et al. Sep 2006 B1
7117041 Engleson et al. Oct 2006 B2
7136645 Hanson et al. Nov 2006 B2
7137964 Flaherty Nov 2006 B2
7142190 Martinez Nov 2006 B2
7150741 Erickson et al. Dec 2006 B2
7153289 Vasko Dec 2006 B2
7154397 Zerhusen et al. Dec 2006 B2
7156807 Carter et al. Jan 2007 B2
7158030 Chung Jan 2007 B2
7161484 Tsoukalis et al. Jan 2007 B2
7167755 Seeberger et al. Jan 2007 B2
7167920 Traversat Jan 2007 B2
7171277 Engleson et al. Jan 2007 B2
7171492 Borella et al. Jan 2007 B1
7181493 English et al. Feb 2007 B2
7185288 McKeever Feb 2007 B2
7193514 Ritson Mar 2007 B2
7197025 Chuah Mar 2007 B2
7201734 Hickle Apr 2007 B2
7204823 Estes et al. Apr 2007 B2
7213009 Pestotnik May 2007 B2
7216802 de la Huerga May 2007 B1
7220240 Struys et al. May 2007 B2
7224979 Singhal et al. May 2007 B2
7229430 Hickle et al. Jun 2007 B2
7230529 Ketcherside Jun 2007 B2
7236936 White et al. Jun 2007 B2
7238164 Childers et al. Jul 2007 B2
7247154 Hickle Jul 2007 B2
7248239 Dowling Jul 2007 B2
7250856 Havekost et al. Jul 2007 B2
7255683 Vanderveen et al. Aug 2007 B2
7256888 Staehr et al. Aug 2007 B2
7258534 Fathallah et al. Aug 2007 B2
7263213 Rowe Aug 2007 B2
7267664 Rizzo Sep 2007 B2
7267665 Steil et al. Sep 2007 B2
7275156 Balfanz et al. Sep 2007 B2
7278983 Ireland et al. Oct 2007 B2
7289815 Gfeller et al. Oct 2007 B2
7289948 Mohri Oct 2007 B1
7293107 Hanson et al. Nov 2007 B1
7295119 Rappaport et al. Nov 2007 B2
7295556 Roese et al. Nov 2007 B2
7301451 Hastings Nov 2007 B2
7308300 Toews et al. Dec 2007 B2
7315825 Rosenfeld et al. Jan 2008 B2
7319386 Collins, Jr. et al. Jan 2008 B2
7324000 Zittrain et al. Jan 2008 B2
7327705 Fletcher et al. Feb 2008 B2
7343224 DiGianfilippo et al. Mar 2008 B2
7346025 Bryson Mar 2008 B2
7347836 Peterson et al. Mar 2008 B2
7354420 Steil et al. Apr 2008 B2
7369897 Boveja et al. May 2008 B2
7369948 Ferenczi et al. May 2008 B1
7383088 Spinelli et al. Jun 2008 B2
7384410 Eggers et al. Jun 2008 B2
7398183 Holland et al. Jul 2008 B2
7398279 Muno, Jr. et al. Jul 2008 B2
7399277 Saidara et al. Jul 2008 B2
7402153 Steil et al. Jul 2008 B2
7420472 Tran Sep 2008 B2
7432807 Schmitt Oct 2008 B2
7436454 Yamaguchi et al. Oct 2008 B2
7447643 Olson Nov 2008 B1
7454314 Holland et al. Nov 2008 B2
7457804 Uber, III et al. Nov 2008 B2
7464040 Joao Dec 2008 B2
7469213 Rao Dec 2008 B1
7471994 Ford et al. Dec 2008 B2
7483756 Engleson et al. Jan 2009 B2
7489808 Gerder Feb 2009 B2
7490021 Holland et al. Feb 2009 B2
7490048 Joao Feb 2009 B2
7491187 Van Den Berghe et al. Feb 2009 B2
7519905 Kougiouris et al. Apr 2009 B2
7523401 Aldridge Apr 2009 B1
7524304 Genosar Apr 2009 B2
7551078 Carlson Jun 2009 B2
7559321 Wermeling et al. Jul 2009 B2
7565197 Haulbrich et al. Jul 2009 B2
7572230 Neumann et al. Aug 2009 B2
7578802 Hickle Aug 2009 B2
7621009 Elhabashy Nov 2009 B2
D606533 De Jong et al. Dec 2009 S
7636718 Steen et al. Dec 2009 B1
7640172 Kuth Dec 2009 B2
7645258 White et al. Jan 2010 B2
7647237 Malave et al. Jan 2010 B2
7662124 Duchon et al. Feb 2010 B2
7668731 Martucci et al. Feb 2010 B2
7671733 McNeal et al. Mar 2010 B2
7678071 Lebel et al. Mar 2010 B2
7687678 Jacobs Mar 2010 B2
7697994 VanDanacker et al. Apr 2010 B2
7698239 Lieuallen Apr 2010 B2
7705727 Pestotnik Apr 2010 B2
7724147 Brown et al. May 2010 B2
7739126 Cave Jun 2010 B1
7746218 Collins, Jr. Jun 2010 B2
7766873 Moberg et al. Aug 2010 B2
7776029 Whitehurst et al. Aug 2010 B2
7776031 Hartlaub et al. Aug 2010 B2
7785313 Mastrototaro Aug 2010 B2
7788369 McAllen et al. Aug 2010 B2
7806852 Jurson Oct 2010 B1
7806886 Kanderian, Jr. et al. Oct 2010 B2
7826981 Goode, Jr. et al. Nov 2010 B2
7835927 Schlotterbeck et al. Nov 2010 B2
7836314 Chieu Nov 2010 B2
7856276 Ripart et al. Dec 2010 B2
7860583 Condurso et al. Dec 2010 B2
7864771 Tavares et al. Jan 2011 B2
7868754 Salvat, Jr. Jan 2011 B2
7871394 Halbert et al. Jan 2011 B2
7886231 Hopermann et al. Feb 2011 B2
7895053 Holland et al. Feb 2011 B2
7896842 Palmroos et al. Mar 2011 B2
7899546 Sieracki et al. Mar 2011 B2
7905710 Wang et al. Mar 2011 B2
7920061 Klein et al. Apr 2011 B2
7933780 de la Huerga Apr 2011 B2
7938796 Moubayed May 2011 B2
7945452 Fathallah et al. May 2011 B2
7974714 Hoffberg Jul 2011 B2
7976508 Hoag Jul 2011 B2
7996241 Zak Aug 2011 B2
8034026 Grant Oct 2011 B2
8038593 Friedman et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8060576 Chan et al. Nov 2011 B2
8065161 Howard et al. Nov 2011 B2
8066672 Mandro Nov 2011 B2
8075514 Butterfield et al. Dec 2011 B2
8078983 Davis et al. Dec 2011 B2
8082018 Duchon et al. Dec 2011 B2
8082312 Chan et al. Dec 2011 B2
8095692 Mehta et al. Jan 2012 B2
8126730 Dicks et al. Feb 2012 B2
8147448 Sundar et al. Apr 2012 B2
8149131 Blomquist Apr 2012 B2
8169914 Bajpai May 2012 B2
8171094 Chan et al. May 2012 B2
8172798 Hungerford et al. May 2012 B2
8185322 Schroeder et al. May 2012 B2
8195478 Petersen et al. Jun 2012 B2
8206350 Mann et al. Jun 2012 B2
8219413 Martinez et al. Jul 2012 B2
8231578 Fathallah et al. Jul 2012 B2
8234128 Martucci et al. Jul 2012 B2
8267892 Spencer et al. Sep 2012 B2
8271106 Wehba et al. Sep 2012 B2
8287495 Michaud et al. Oct 2012 B2
8291337 Gannin et al. Oct 2012 B2
8298184 DiPerna et al. Oct 2012 B2
8312272 Serenyl et al. Nov 2012 B1
8352290 Bartz et al. Jan 2013 B2
8359338 Butterfield et al. Jan 2013 B2
8380536 Howard et al. Feb 2013 B2
8387112 Ranjan et al. Feb 2013 B1
8394077 Jacobson et al. Mar 2013 B2
8398592 Leibner-Druska Mar 2013 B2
8403908 Jacobson et al. Mar 2013 B2
8435206 Evans et al. May 2013 B2
8449523 Brukalo et al. May 2013 B2
8452953 Buck et al. May 2013 B2
8453645 Figueiredo et al. Jun 2013 B2
8472630 Konrad et al. Jun 2013 B2
8480648 Burnett et al. Jul 2013 B2
8489427 Simpson et al. Jul 2013 B2
8494879 Davis et al. Jul 2013 B2
8504179 Blomquist Aug 2013 B2
8517990 Teel et al. Aug 2013 B2
8518021 Stewart et al. Aug 2013 B2
8543416 Palmroos et al. Sep 2013 B2
8551038 Tsoukalis et al. Oct 2013 B2
8560345 Wehba et al. Oct 2013 B2
8567681 Borges et al. Oct 2013 B2
8577692 Silkaitis et al. Nov 2013 B2
8579884 Lanier et al. Nov 2013 B2
8626530 Tran et al. Jan 2014 B1
8655676 Wehba et al. Feb 2014 B2
8660860 Wehba et al. Feb 2014 B2
8662388 Belkin Mar 2014 B2
8666769 Butler et al. Mar 2014 B2
8667293 Birtwhistle et al. Mar 2014 B2
8687811 Nierzwick et al. Apr 2014 B2
8700421 Feng et al. Apr 2014 B2
8731960 Butler et al. May 2014 B2
8768719 Wehba et al. Jul 2014 B2
8771251 Ruchti et al. Jul 2014 B2
8777894 Butterfield et al. Jul 2014 B2
8777895 Hsu et al. Jul 2014 B2
8799012 Butler et al. Aug 2014 B2
8876793 Ledford et al. Nov 2014 B2
8886316 Juels Nov 2014 B1
8922330 Moberg et al. Dec 2014 B2
8936565 Chawla Jan 2015 B2
8945043 Lee et al. Feb 2015 B2
8952794 Blomquist et al. Feb 2015 B2
8959617 Newlin et al. Feb 2015 B2
8998100 Halbert et al. Apr 2015 B2
9026370 Rubalcaba et al. May 2015 B2
9069887 Gupta et al. Jun 2015 B2
9077544 Baker et al. Jul 2015 B2
9089642 Murphy et al. Jul 2015 B2
9114217 Sur et al. Aug 2015 B2
9123077 Silkaitis et al. Sep 2015 B2
9192712 DeBelser et al. Nov 2015 B2
9240002 Hume et al. Jan 2016 B2
9292692 Wallrabenstein Mar 2016 B2
9302035 Marseille et al. Apr 2016 B2
9313154 Son Apr 2016 B1
9381296 Arrizza et al. Jul 2016 B2
9393362 Cozmi et al. Jul 2016 B2
9430655 Stockton et al. Aug 2016 B1
9483615 Roberts Nov 2016 B2
9498583 Sur et al. Nov 2016 B2
9539383 Kohlbrecher Jan 2017 B2
9572923 Howard et al. Feb 2017 B2
9594875 Arrizza et al. Mar 2017 B2
9604000 Wehba et al. Mar 2017 B2
9641432 Jha et al. May 2017 B2
9649431 Gray et al. May 2017 B2
9662436 Belkin et al. May 2017 B2
9690909 Stewart et al. Jun 2017 B2
9707341 Dumas, III et al. Jul 2017 B2
9717845 Istoc Aug 2017 B2
9724470 Day et al. Aug 2017 B2
9764082 Day et al. Sep 2017 B2
9886550 Lee et al. Feb 2018 B2
9943269 Muhsin et al. Apr 2018 B2
9967739 Proennecke et al. May 2018 B2
9971871 Arrizza et al. May 2018 B2
9995611 Ruchti et al. Jun 2018 B2
10022498 Ruchti et al. Jul 2018 B2
10042986 Ruchti et al. Aug 2018 B2
10046112 Oruklu et al. Aug 2018 B2
10166328 Oruklu et al. Jan 2019 B2
10173008 Simpson et al. Jan 2019 B2
10233179 Ng et al. Mar 2019 B2
10238799 Kohlbrecher Mar 2019 B2
10238801 Wehba et al. Mar 2019 B2
10242060 Butler et al. Mar 2019 B2
10300194 Day et al. May 2019 B2
10311972 Kohlbrecher et al. Jun 2019 B2
10314974 Day et al. Jun 2019 B2
10333843 Jha et al. Jun 2019 B2
10341866 Spencer et al. Jul 2019 B1
10430761 Hume et al. Oct 2019 B2
10434246 Silkaitis et al. Oct 2019 B2
10453157 Kamen et al. Oct 2019 B2
10463788 Day Nov 2019 B2
10516536 Rommel Dec 2019 B2
10617815 Day et al. Apr 2020 B2
10646651 Day et al. May 2020 B2
10681207 Johnson et al. Jun 2020 B1
10692595 Xavier et al. Jun 2020 B2
10740436 Moskal et al. Aug 2020 B2
10741280 Xavier et al. Aug 2020 B2
10757219 Moskal Aug 2020 B2
10765799 Belkin et al. Sep 2020 B2
10799632 Kohlbrecher Oct 2020 B2
10812380 Jha et al. Oct 2020 B2
10861592 Xavier et al. Dec 2020 B2
10898641 Day et al. Jan 2021 B2
10950339 Xavier et al. Mar 2021 B2
10964428 Xavier et al. Mar 2021 B2
11013861 Wehba et al. May 2021 B2
11037668 Ruchti et al. Jun 2021 B2
11052193 Day et al. Jul 2021 B2
11139058 Xavier et al. Oct 2021 B2
11151290 Karakoyunlu et al. Oct 2021 B2
11152108 Xavier et al. Oct 2021 B2
11152109 Xavier et al. Oct 2021 B2
11152110 Xavier et al. Oct 2021 B2
11194810 Butler et al. Dec 2021 B2
11235100 Howard et al. Feb 2022 B2
11289183 Kohlbrecher Mar 2022 B2
11309070 Xavier et al. Apr 2022 B2
11328804 Xavier et al. May 2022 B2
11328805 Xavier et al. May 2022 B2
11373753 Xavier et al. Jun 2022 B2
11437132 Xavier et al. Sep 2022 B2
11470000 Jha et al. Oct 2022 B2
11483402 Xavier et al. Oct 2022 B2
11483403 Xavier et al. Oct 2022 B2
11501877 Kohlbrecher et al. Nov 2022 B2
11571508 Jacobson et al. Feb 2023 B2
11574721 Kohlbrecher Feb 2023 B2
11574737 Dharwad et al. Feb 2023 B2
11587669 Xavier et al. Feb 2023 B2
11594326 Xavier et al. Feb 2023 B2
11605468 Jacobson et al. Mar 2023 B2
11626205 Arrizza et al. Apr 2023 B2
11628246 Day et al. Apr 2023 B2
11628254 Day et al. Apr 2023 B2
11670416 Xavier et al. Jun 2023 B2
20010016056 Westphal et al. Aug 2001 A1
20010031944 Peterson et al. Oct 2001 A1
20010032099 Joao Oct 2001 A1
20010037060 Thompson et al. Nov 2001 A1
20010044731 Coffman et al. Nov 2001 A1
20010048027 Walsh Dec 2001 A1
20010051787 Haller et al. Dec 2001 A1
20010056358 Dulong et al. Dec 2001 A1
20020010595 Kapp Jan 2002 A1
20020013551 Zaitsu et al. Jan 2002 A1
20020013723 Mise Jan 2002 A1
20020015018 Shimazu et al. Feb 2002 A1
20020019584 Schulze et al. Feb 2002 A1
20020021700 Hata et al. Feb 2002 A1
20020026103 Norris et al. Feb 2002 A1
20020029776 Blomquist Mar 2002 A1
20020032583 Joao Mar 2002 A1
20020040208 Flaherty et al. Apr 2002 A1
20020040282 Bailey et al. Apr 2002 A1
20020044043 Chaco et al. Apr 2002 A1
20020044059 Reeder et al. Apr 2002 A1
20020082728 Mueller et al. Jun 2002 A1
20020087115 Hartlaub Jul 2002 A1
20020087116 Hartlaub Jul 2002 A1
20020095486 Bahl Jul 2002 A1
20020103675 Vanelli Aug 2002 A1
20020123905 Goodroe et al. Sep 2002 A1
20020143580 Bristol et al. Oct 2002 A1
20020152239 Bautista-Lloyd et al. Oct 2002 A1
20020154600 Ido et al. Oct 2002 A1
20020173702 Lebel et al. Nov 2002 A1
20020173875 Wallace et al. Nov 2002 A1
20020194329 Alling Dec 2002 A1
20030009244 Engleson Jan 2003 A1
20030013959 Grunwald et al. Jan 2003 A1
20030014222 Klass et al. Jan 2003 A1
20030014817 Gallant et al. Jan 2003 A1
20030025602 Medema et al. Feb 2003 A1
20030028082 Thompson Feb 2003 A1
20030036683 Kehr et al. Feb 2003 A1
20030036744 Struys et al. Feb 2003 A1
20030047126 Tomaschko Mar 2003 A1
20030050621 Lebel et al. Mar 2003 A1
20030059750 Bindler et al. Mar 2003 A1
20030060688 Ciarniello et al. Mar 2003 A1
20030069963 Jayant et al. Apr 2003 A1
20030079746 Hickle May 2003 A1
20030097529 Arimilli et al. May 2003 A1
20030104982 Wittmann et al. Jun 2003 A1
20030105389 Noonan et al. Jun 2003 A1
20030106553 Vanderveen Jun 2003 A1
20030115358 Yun Jun 2003 A1
20030120384 Haitin et al. Jun 2003 A1
20030125662 Bui Jul 2003 A1
20030130616 Steil Jul 2003 A1
20030135087 Hickle et al. Jul 2003 A1
20030139701 White et al. Jul 2003 A1
20030140928 Bui et al. Jul 2003 A1
20030140929 Wilkes et al. Jul 2003 A1
20030141981 Bui et al. Jul 2003 A1
20030143746 Sage, Jr. Jul 2003 A1
20030144878 Wilkes et al. Jul 2003 A1
20030158749 Olchanski et al. Aug 2003 A1
20030187338 Say et al. Oct 2003 A1
20030200116 Forrester Oct 2003 A1
20030204416 Acharya Oct 2003 A1
20030204781 Peebles et al. Oct 2003 A1
20030212364 Mann et al. Nov 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030212821 Gillies et al. Nov 2003 A1
20030217962 Childers et al. Nov 2003 A1
20040008123 Carrender et al. Jan 2004 A1
20040015132 Brown Jan 2004 A1
20040019607 Moubayed et al. Jan 2004 A1
20040030323 Ullestad et al. Feb 2004 A1
20040039257 Hickle Feb 2004 A1
20040057226 Berthou et al. Mar 2004 A1
20040064341 Langan et al. Apr 2004 A1
20040064342 Browne et al. Apr 2004 A1
20040064435 Moubayed et al. Apr 2004 A1
20040073811 Sanin Apr 2004 A1
20040077934 Massad Apr 2004 A1
20040078231 Wilkes et al. Apr 2004 A1
20040078236 Stoodley et al. Apr 2004 A1
20040085186 Eveland et al. May 2004 A1
20040104271 Martucci et al. Jun 2004 A1
20040122530 Hansen Jun 2004 A1
20040128162 Schlotterbeck et al. Jul 2004 A1
20040128163 Goodman et al. Jul 2004 A1
20040133441 Brady et al. Jul 2004 A1
20040139004 Cohen et al. Jul 2004 A1
20040145480 Despotis Jul 2004 A1
20040147034 Gore et al. Jul 2004 A1
20040167464 Ireland et al. Aug 2004 A1
20040167465 Kohler Aug 2004 A1
20040167804 Simpson Aug 2004 A1
20040172222 Simpson et al. Sep 2004 A1
20040172283 Vanderveen Sep 2004 A1
20040172301 Mihai et al. Sep 2004 A1
20040172302 Martucci et al. Sep 2004 A1
20040176667 Mihai et al. Sep 2004 A1
20040176980 Bulitta et al. Sep 2004 A1
20040176984 White et al. Sep 2004 A1
20040181314 Zaleski Sep 2004 A1
20040189708 Larcheveque et al. Sep 2004 A1
20040193325 Bonderud Sep 2004 A1
20040193328 Butterfield et al. Sep 2004 A1
20040193453 Butterfield et al. Sep 2004 A1
20040204673 Flaherty et al. Oct 2004 A1
20040215278 Stegink et al. Oct 2004 A1
20040220517 Starkweather et al. Nov 2004 A1
20040225252 Gillespie et al. Nov 2004 A1
20040236240 Kraus et al. Nov 2004 A1
20040243438 Mintz Dec 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20050010269 Lebel et al. Jan 2005 A1
20050020886 Hutchinson et al. Jan 2005 A1
20050021006 Tonnies Jan 2005 A1
20050027560 Cook Feb 2005 A1
20050027567 Taha Feb 2005 A1
20050038311 Kuth Feb 2005 A1
20050038669 Sachdeva et al. Feb 2005 A1
20050038680 McMahon Feb 2005 A1
20050040226 Al-Sheikh Feb 2005 A1
20050043620 Fallows et al. Feb 2005 A1
20050049910 Lancaster et al. Mar 2005 A1
20050055242 Bello et al. Mar 2005 A1
20050055244 Mullan et al. Mar 2005 A1
20050065465 Lebel et al. Mar 2005 A1
20050065817 Mihai et al. Mar 2005 A1
20050075544 Shapiro et al. Apr 2005 A1
20050080801 Kothandaraman et al. Apr 2005 A1
20050086071 Fox, Jr. et al. Apr 2005 A1
20050086072 Fox Apr 2005 A1
20050088704 Vaschillo et al. Apr 2005 A1
20050090808 Malave et al. Apr 2005 A1
20050099624 Staehr May 2005 A1
20050102162 Blumenfeld May 2005 A1
20050102165 Oshita et al. May 2005 A1
20050102167 Kapoor May 2005 A1
20050102669 Marney et al. May 2005 A1
20050107923 Vanderveen May 2005 A1
20050108057 Cohen et al. May 2005 A1
20050117529 Ramos-Escano Jun 2005 A1
20050119788 Engleson et al. Jun 2005 A1
20050119914 Batch Jun 2005 A1
20050131739 Rabinowitz et al. Jun 2005 A1
20050135306 McAllen et al. Jun 2005 A1
20050137522 Aoki Jun 2005 A1
20050137573 Mclaughlin Jun 2005 A1
20050138428 McAllen et al. Jun 2005 A1
20050154769 Eckart et al. Jul 2005 A1
20050160057 Wefers et al. Jul 2005 A1
20050171503 Van Den Berghe et al. Aug 2005 A1
20050171815 Vanderveen Aug 2005 A1
20050177096 Bollish et al. Aug 2005 A1
20050177395 Blomquist Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050182355 Bui Aug 2005 A1
20050187950 Parker Aug 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050197554 Polcha Sep 2005 A1
20050197621 Poulsen et al. Sep 2005 A1
20050210037 Wefers et al. Sep 2005 A1
20050216479 Wefers et al. Sep 2005 A1
20050216480 Wefers et al. Sep 2005 A1
20050223045 Funahashi et al. Oct 2005 A1
20050224083 Crass Oct 2005 A1
20050234746 Funahashi Oct 2005 A1
20050240305 Bogash et al. Oct 2005 A1
20050246416 Blomquist Nov 2005 A1
20050251418 Fox, Jr. et al. Nov 2005 A1
20050261660 Choi Nov 2005 A1
20050273059 Mernoe et al. Dec 2005 A1
20050273367 Nourie Dec 2005 A1
20050277873 Stewart et al. Dec 2005 A1
20050277890 Stewart et al. Dec 2005 A1
20050277911 Stewart et al. Dec 2005 A1
20050278194 Holland et al. Dec 2005 A1
20060004772 Hagan et al. Jan 2006 A1
20060009727 O'Mahony et al. Jan 2006 A1
20060009734 Martin Jan 2006 A1
20060010098 Goodnow et al. Jan 2006 A1
20060042139 Mendes Mar 2006 A1
20060047270 Shelton Mar 2006 A1
20060053036 Coffman et al. Mar 2006 A1
20060064020 Burnes et al. Mar 2006 A1
20060074633 Mahesh et al. Apr 2006 A1
20060074920 Wefers et al. Apr 2006 A1
20060079831 Gilbert Apr 2006 A1
20060089854 Holland et al. Apr 2006 A1
20060089855 Holland et al. Apr 2006 A1
20060100746 Leibner-Druska May 2006 A1
20060100907 Holland et al. May 2006 A1
20060106649 Eggers et al. May 2006 A1
20060111943 Wu May 2006 A1
20060116904 Brem Jun 2006 A1
20060116907 Rhodes et al. Jun 2006 A1
20060122481 Sievenpiper et al. Jun 2006 A1
20060122867 Eggers et al. Jun 2006 A1
20060129140 Todd et al. Jun 2006 A1
20060129429 Moubayed et al. Jun 2006 A1
20060129434 Smitherman et al. Jun 2006 A1
20060129435 Smitherman et al. Jun 2006 A1
20060136266 Tarassenko et al. Jun 2006 A1
20060136271 Eggers et al. Jun 2006 A1
20060143051 Eggers et al. Jun 2006 A1
20060173260 Gaoni et al. Aug 2006 A1
20060173406 Hayes et al. Aug 2006 A1
20060173715 Wang et al. Aug 2006 A1
20060173927 Beyer et al. Aug 2006 A1
20060190302 Eggers et al. Aug 2006 A1
20060195022 Trepagnier et al. Aug 2006 A1
20060200007 Brockway et al. Sep 2006 A1
20060200369 Batch et al. Sep 2006 A1
20060211404 Cromp et al. Sep 2006 A1
20060224141 Rush et al. Oct 2006 A1
20060229918 Fotsch et al. Oct 2006 A1
20060247606 Batch Nov 2006 A1
20060258985 Russell Nov 2006 A1
20060259327 Hoag Nov 2006 A1
20060264895 Flanders Nov 2006 A1
20060265246 Hoag Nov 2006 A1
20060267753 Hussey et al. Nov 2006 A1
20060268710 Appanna et al. Nov 2006 A1
20060270971 Gelfand et al. Nov 2006 A1
20060277206 Bailey et al. Dec 2006 A1
20060287885 Frick Dec 2006 A1
20070015972 Wang et al. Jan 2007 A1
20070016443 Wachman et al. Jan 2007 A1
20070021715 Kohlbrenner et al. Jan 2007 A1
20070027506 Stender et al. Feb 2007 A1
20070060796 Kim Mar 2007 A1
20070060870 Tolle et al. Mar 2007 A1
20070060871 Istoc Mar 2007 A1
20070061393 Moore Mar 2007 A1
20070065363 Dalal et al. Mar 2007 A1
20070073419 Sesay Mar 2007 A1
20070078314 Grounsell Apr 2007 A1
20070083870 Kanakogi Apr 2007 A1
20070088333 Levin et al. Apr 2007 A1
20070093786 Goldsmith et al. Apr 2007 A1
20070100665 Brown May 2007 A1
20070100667 Bardy May 2007 A1
20070106126 Mannheimer et al. May 2007 A1
20070112298 Mueller et al. May 2007 A1
20070116037 Moore May 2007 A1
20070118405 Campbell et al. May 2007 A1
20070135866 Baker et al. Jun 2007 A1
20070136098 Smythe et al. Jun 2007 A1
20070142822 Remde Jun 2007 A1
20070156282 Dunn Jul 2007 A1
20070156452 Batch Jul 2007 A1
20070169008 Varanasi et al. Jul 2007 A1
20070179448 Lim et al. Aug 2007 A1
20070186923 Poutiatine et al. Aug 2007 A1
20070191817 Martin Aug 2007 A1
20070191973 Holzbauer et al. Aug 2007 A1
20070213657 Jennewine et al. Sep 2007 A1
20070213684 Hickle et al. Sep 2007 A1
20070214003 Holland et al. Sep 2007 A1
20070215545 Bissler et al. Sep 2007 A1
20070232867 Hansmann Oct 2007 A1
20070233035 Wehba et al. Oct 2007 A1
20070233049 Wehba et al. Oct 2007 A1
20070233206 Frikart Oct 2007 A1
20070233520 Wehba et al. Oct 2007 A1
20070251835 Mehta et al. Nov 2007 A1
20070253021 Mehta et al. Nov 2007 A1
20070254593 Jollota et al. Nov 2007 A1
20070255125 Moberg et al. Nov 2007 A1
20070257788 Carlson Nov 2007 A1
20070258395 Jollota et al. Nov 2007 A1
20070299687 Palmer et al. Dec 2007 A1
20070299695 Jung et al. Dec 2007 A1
20080001771 Faoro et al. Jan 2008 A1
20080004904 Tran Jan 2008 A1
20080009684 Corsetti et al. Jan 2008 A1
20080033361 Evans et al. Feb 2008 A1
20080033966 Wahl Feb 2008 A1
20080034323 Blomquist Feb 2008 A1
20080041942 Aissa Feb 2008 A1
20080052704 Wysocki Feb 2008 A1
20080065007 Peterson et al. Mar 2008 A1
20080065417 Jung et al. Mar 2008 A1
20080071217 Moubayed et al. Mar 2008 A1
20080071251 Moubayed et al. Mar 2008 A1
20080091466 Butler et al. Apr 2008 A1
20080095339 Elliott Apr 2008 A1
20080097289 Steil et al. Apr 2008 A1
20080097552 Dicks et al. Apr 2008 A1
20080126969 Blomquist May 2008 A1
20080139907 Rao et al. Jun 2008 A1
20080148047 Appenzeller et al. Jun 2008 A1
20080149117 Raghuram Jun 2008 A1
20080154177 Moubayed et al. Jun 2008 A1
20080172337 Banfield et al. Jul 2008 A1
20080184219 Matsumoto Jul 2008 A1
20080188796 Steil et al. Aug 2008 A1
20080214919 Harmon et al. Sep 2008 A1
20080246748 Cassidy et al. Oct 2008 A1
20080256305 Kwon Oct 2008 A1
20080259926 Tavares et al. Oct 2008 A1
20080262469 Bristol et al. Oct 2008 A1
20080269714 Mastrototaro et al. Oct 2008 A1
20080269723 Mastrototaro et al. Oct 2008 A1
20080275384 Mastrototaro et al. Nov 2008 A1
20080300572 Rankers et al. Dec 2008 A1
20080301298 Bernardi et al. Dec 2008 A1
20080320387 Sasaki et al. Dec 2008 A1
20080320466 Dias Dec 2008 A1
20090003554 Katis et al. Jan 2009 A1
20090005703 Fasciano Jan 2009 A1
20090005728 Weinert et al. Jan 2009 A1
20090006061 Thukral et al. Jan 2009 A1
20090006129 Thukral Jan 2009 A1
20090006133 Weinert Jan 2009 A1
20090018495 Panduro Jan 2009 A1
20090036750 Weinstein et al. Feb 2009 A1
20090051560 Manning et al. Feb 2009 A1
20090054743 Stewart Feb 2009 A1
20090054754 McMahon et al. Feb 2009 A1
20090057399 Sajkowsky Mar 2009 A1
20090063187 Johnson et al. Mar 2009 A1
20090069785 Miller et al. Mar 2009 A1
20090099867 Newman Apr 2009 A1
20090135196 Holland et al. May 2009 A1
20090143662 Estes et al. Jun 2009 A1
20090149743 Barron et al. Jun 2009 A1
20090150174 Buck et al. Jun 2009 A1
20090150439 Gejdos et al. Jun 2009 A1
20090150878 Pathak et al. Jun 2009 A1
20090156991 Roberts Jun 2009 A1
20090157695 Roberts Jun 2009 A1
20090158274 Roberts Jun 2009 A1
20090177146 Nesbitt et al. Jul 2009 A1
20090177769 Roberts Jul 2009 A1
20090177992 Rubalcaba et al. Jul 2009 A1
20090183147 Davis et al. Jul 2009 A1
20090209938 Aalto-Setala Aug 2009 A1
20090210250 Prax et al. Aug 2009 A1
20090221890 Saffer et al. Sep 2009 A1
20090231249 Wang et al. Sep 2009 A1
20090270833 DeBelser Oct 2009 A1
20090275886 Blomquist et al. Nov 2009 A1
20090275896 Kamen et al. Nov 2009 A1
20090284691 Marhefka et al. Nov 2009 A1
20090292340 Mass et al. Nov 2009 A1
20090306573 Gagner et al. Dec 2009 A1
20090326340 Wang Dec 2009 A1
20090326516 Bangera et al. Dec 2009 A1
20100008377 Hasti et al. Jan 2010 A1
20100022988 Wochner Jan 2010 A1
20100036310 Hillman Feb 2010 A1
20100056992 Hayter Mar 2010 A1
20100083060 Rahman Apr 2010 A1
20100095229 Dixon et al. Apr 2010 A1
20100121170 Rule May 2010 A1
20100121246 Peters et al. May 2010 A1
20100121415 Skelton et al. May 2010 A1
20100121654 Portnoy et al. May 2010 A1
20100121752 Banigan et al. May 2010 A1
20100130933 Holland et al. May 2010 A1
20100131434 Magent et al. May 2010 A1
20100138523 Umess et al. Jun 2010 A1
20100146137 Wu et al. Jun 2010 A1
20100156633 Buck et al. Jun 2010 A1
20100160854 Gauthier Jun 2010 A1
20100160860 Celentano et al. Jun 2010 A1
20100174266 Estes Jul 2010 A1
20100191525 Rabenko et al. Jul 2010 A1
20100198034 Thomas et al. Aug 2010 A1
20100198196 Wei Aug 2010 A1
20100200506 Ware et al. Aug 2010 A1
20100209268 Davis Aug 2010 A1
20100212675 Walling et al. Aug 2010 A1
20100217621 Schoenberg Aug 2010 A1
20100234708 Buck et al. Sep 2010 A1
20100250732 Bucknell Sep 2010 A1
20100271479 Heydlauf Oct 2010 A1
20100273738 Valcke et al. Oct 2010 A1
20100274218 Yodfat et al. Oct 2010 A1
20100280486 Khair et al. Nov 2010 A1
20100292634 Kircher Nov 2010 A1
20100298765 Budiman et al. Nov 2010 A1
20100318025 John Dec 2010 A1
20110001605 Kiani et al. Jan 2011 A1
20110021898 Wei et al. Jan 2011 A1
20110028885 Eggers et al. Feb 2011 A1
20110040158 Katz et al. Feb 2011 A1
20110060758 Schlotterbeck et al. Mar 2011 A1
20110071844 Cannon et al. Mar 2011 A1
20110072379 Gannon Mar 2011 A1
20110078253 Chan et al. Mar 2011 A1
20110078608 Gannon et al. Mar 2011 A1
20110093284 Dicks et al. Apr 2011 A1
20110099313 Bolanowski Apr 2011 A1
20110125095 Lebel et al. May 2011 A1
20110138185 Ju et al. Jun 2011 A1
20110166628 Jain Jul 2011 A1
20110175728 Baker, Jr. Jul 2011 A1
20110178462 Moberg et al. Jul 2011 A1
20110185010 Shatsky et al. Jul 2011 A1
20110196748 Caron et al. Aug 2011 A1
20110231216 Fyke et al. Sep 2011 A1
20110257496 Terashima et al. Oct 2011 A1
20110257798 Ali et al. Oct 2011 A1
20110259954 Bartz et al. Oct 2011 A1
20110264043 Kotnick et al. Oct 2011 A1
20110264044 Bartz et al. Oct 2011 A1
20110266221 Ware et al. Nov 2011 A1
20110270045 Lebel et al. Nov 2011 A1
20110275904 Lebel et al. Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110289314 Whitcomb Nov 2011 A1
20110289497 Kiaie et al. Nov 2011 A1
20110295196 Chazot et al. Dec 2011 A1
20110295341 Estes et al. Dec 2011 A1
20110296051 Vange Dec 2011 A1
20110296411 Tang et al. Dec 2011 A1
20110313789 Karmen et al. Dec 2011 A1
20110319813 Kamen et al. Dec 2011 A1
20110320049 Chossat et al. Dec 2011 A1
20120005680 Dolby et al. Jan 2012 A1
20120011253 Friedman et al. Jan 2012 A1
20120016305 Jollota Jan 2012 A1
20120029941 Malave et al. Feb 2012 A1
20120036102 Fletcher et al. Feb 2012 A1
20120066501 Xiong Mar 2012 A1
20120070045 Vesper et al. Mar 2012 A1
20120095437 Hemmerling Apr 2012 A1
20120112903 Kaib et al. May 2012 A1
20120130198 Beaule May 2012 A1
20120143116 Ware et al. Jun 2012 A1
20120150556 Galasso et al. Jun 2012 A1
20120157920 Flachbart et al. Jun 2012 A1
20120179135 Rinehart et al. Jul 2012 A1
20120179136 Rinehart et al. Jul 2012 A1
20120185267 Kamen et al. Jul 2012 A1
20120203177 Lanier Aug 2012 A1
20120245554 Kawamura Sep 2012 A1
20120259978 Petersen et al. Oct 2012 A1
20120260012 Gao-Saari et al. Oct 2012 A1
20120277716 Ali et al. Nov 2012 A1
20120283630 Lee et al. Nov 2012 A1
20120284734 McQuaid et al. Nov 2012 A1
20120323212 Murphy Dec 2012 A1
20120330380 Corndorf Dec 2012 A1
20130006666 Schneider Jan 2013 A1
20130006702 Wu Jan 2013 A1
20130012877 Debelser et al. Jan 2013 A1
20130012879 Debelser et al. Jan 2013 A1
20130012880 Blomquist Jan 2013 A1
20130015980 Evans et al. Jan 2013 A1
20130036403 Geist Feb 2013 A1
20130036412 Birtwhistle et al. Feb 2013 A1
20130066265 Grant Mar 2013 A1
20130072872 Yodfat et al. Mar 2013 A1
20130096444 Condurso et al. Apr 2013 A1
20130096648 Benson Apr 2013 A1
20130102963 Marsh et al. Apr 2013 A1
20130114594 Van Zijst May 2013 A1
20130138452 Cork et al. May 2013 A1
20130144206 Lee et al. Jun 2013 A1
20130150824 Estes et al. Jun 2013 A1
20130167245 Birtwhistle et al. Jun 2013 A1
20130173473 Birtwhistle et al. Jul 2013 A1
20130191770 Bartz et al. Jul 2013 A1
20130204188 Kamen et al. Aug 2013 A1
20130218080 Peterfreund et al. Aug 2013 A1
20130274669 Stempfle et al. Oct 2013 A1
20130275539 Gross et al. Oct 2013 A1
20130291116 Homer Oct 2013 A1
20130296823 Melker et al. Nov 2013 A1
20130296984 Burnett et al. Nov 2013 A1
20130317753 Kamen et al. Nov 2013 A1
20130346108 Kamen et al. Dec 2013 A1
20140025392 Chandrasenan Jan 2014 A1
20140142963 Hill et al. May 2014 A1
20140163517 Finan et al. Jun 2014 A1
20140180711 Kamen et al. Jun 2014 A1
20140197950 Shupp et al. Jul 2014 A1
20140215490 Mathur et al. Jul 2014 A1
20140254598 Jha et al. Sep 2014 A1
20140257251 Bush et al. Sep 2014 A1
20140266790 Al-Ali et al. Sep 2014 A1
20140266794 Brown et al. Sep 2014 A1
20140269643 Sun Sep 2014 A1
20140276571 Ludolph Sep 2014 A1
20140280522 Watte Sep 2014 A1
20140288947 Simpson et al. Sep 2014 A1
20140294177 Shastry et al. Oct 2014 A1
20140297329 Rock Oct 2014 A1
20140316819 Dunsirn et al. Oct 2014 A1
20140318639 Peret et al. Oct 2014 A1
20140366878 Baron Dec 2014 A1
20150005935 Bae et al. Jan 2015 A1
20150006907 Brouwer et al. Jan 2015 A1
20150045729 Denzer et al. Feb 2015 A1
20150058960 Schmoyer et al. Feb 2015 A1
20150066531 Jacobson et al. Mar 2015 A1
20150097701 Al-Ali Apr 2015 A1
20150100038 McCann et al. Apr 2015 A1
20150100787 Westin et al. Apr 2015 A1
20150117234 Raman et al. Apr 2015 A1
20150151051 Tsoukalis Jun 2015 A1
20150161354 Blomquist Jun 2015 A1
20150199192 Borges et al. Jul 2015 A1
20150230760 Schneider Aug 2015 A1
20150281128 Sindhu Oct 2015 A1
20150328396 Adams et al. Nov 2015 A1
20150371004 Jones Dec 2015 A1
20150379237 Mills et al. Dec 2015 A1
20160006695 Prodoehl et al. Jan 2016 A1
20160015885 Pananen et al. Jan 2016 A1
20160034655 Gray et al. Feb 2016 A1
20160045661 Gray et al. Feb 2016 A1
20160051749 Istoc Feb 2016 A1
20160063471 Kobres et al. Mar 2016 A1
20160228633 Welsch et al. Aug 2016 A1
20160241391 Fenster Aug 2016 A1
20160277152 Xiang et al. Sep 2016 A1
20160285876 Perez et al. Sep 2016 A1
20160317742 Gannon et al. Nov 2016 A1
20160350513 Jacobson et al. Dec 2016 A1
20170034277 Jackson et al. Feb 2017 A1
20170063559 Wallrabenstein Mar 2017 A1
20170099148 Ochmanski et al. Apr 2017 A1
20170104645 Wooton et al. Apr 2017 A1
20170111301 Robinson Apr 2017 A1
20170147761 Moskal et al. May 2017 A1
20170149567 Moskal May 2017 A1
20170214762 Swain et al. Jul 2017 A1
20170258401 Volpe Sep 2017 A1
20170262590 Karakosta et al. Sep 2017 A1
20170274140 Howard et al. Sep 2017 A1
20170286637 Arrizza et al. Oct 2017 A1
20170319780 Belkin et al. Nov 2017 A1
20170325091 Freeman et al. Nov 2017 A1
20170351841 Moskal Dec 2017 A1
20180063724 Zhang et al. Mar 2018 A1
20180121613 Connely, IV et al. May 2018 A1
20180126067 Ledford et al. May 2018 A1
20180181712 Ensey et al. Jun 2018 A1
20180247712 Muhsin Aug 2018 A1
20180317826 Muhsin Nov 2018 A1
20180322948 Drost et al. Nov 2018 A1
20180359085 Dervyn Dec 2018 A1
20190006044 Brask Jan 2019 A1
20190036688 Wasily et al. Jan 2019 A1
20190096518 Pace Mar 2019 A1
20190132196 Trivedi et al. May 2019 A1
20190147998 Ruchti et al. May 2019 A1
20190166501 Debates et al. May 2019 A1
20190172590 Vesto et al. Jun 2019 A1
20190228863 Dharwad et al. Jul 2019 A1
20190229982 Ikuta et al. Jul 2019 A1
20190240405 Wehba et al. Aug 2019 A1
20190243829 Butler et al. Aug 2019 A1
20190244689 Atkin Aug 2019 A1
20190245942 Moskal Aug 2019 A1
20190269852 Kohlbrecher Sep 2019 A1
20190311803 Kohlbrecher et al. Oct 2019 A1
20190348160 Heavelyn et al. Nov 2019 A1
20190392929 Gassman Dec 2019 A1
20200023127 Simpson et al. Jan 2020 A1
20200027541 Xavier et al. Jan 2020 A1
20200027542 Xavier et al. Jan 2020 A1
20200027543 Xavier et al. Jan 2020 A1
20200027548 Xavier et al. Jan 2020 A1
20200027549 Xavier et al. Jan 2020 A1
20200027550 Xavier et al. Jan 2020 A1
20200027551 Xavier et al. Jan 2020 A1
20200028837 Xavier et al. Jan 2020 A1
20200028929 Xavier et al. Jan 2020 A1
20200035346 Xavier et al. Jan 2020 A1
20200035355 Xavier et al. Jan 2020 A1
20200054825 Kamen et al. Feb 2020 A1
20200061291 Day et al. Feb 2020 A1
20200153627 Wentz May 2020 A1
20200206413 Silkaitis et al. Jul 2020 A1
20200220865 Finger et al. Jul 2020 A1
20200282139 Susi Sep 2020 A1
20200306443 Day Oct 2020 A1
20200330685 Day Oct 2020 A1
20200334497 Barrett et al. Oct 2020 A1
20200335194 Jacobson et al. Oct 2020 A1
20200351376 Moskal Nov 2020 A1
20200353167 Vivek et al. Nov 2020 A1
20200353168 Keenan et al. Nov 2020 A1
20210014259 Harris et al. Jan 2021 A1
20210043296 Xavier et al. Feb 2021 A1
20210045640 Poltorak Feb 2021 A1
20210050097 Xavier et al. Feb 2021 A1
20210085855 Belkin et al. Mar 2021 A1
20210098106 Kohlbrecher et al. Apr 2021 A1
20210098107 Xavier et al. Apr 2021 A1
20210105206 Jha et al. Apr 2021 A1
20210252210 Day et al. Aug 2021 A1
20210316072 Wehba et al. Oct 2021 A1
20210375421 Ruchti et al. Dec 2021 A1
20210375438 Xavier et al. Dec 2021 A1
20210409362 Katis et al. Dec 2021 A1
20220023535 Day Jan 2022 A1
20220037011 Fryman Feb 2022 A1
20220037012 Fryman Feb 2022 A1
20220051777 Xavier et al. Feb 2022 A1
20220062541 Kamen et al. Mar 2022 A1
20220129452 Butler et al. Apr 2022 A1
20220139536 Xavier et al. May 2022 A1
20220139537 Xavier et al. May 2022 A1
20220139538 Xavier et al. May 2022 A1
20220150307 Walsh et al. May 2022 A1
20220165404 Vivek et al. May 2022 A1
20220189605 Kelly et al. Jun 2022 A1
20220223283 Biasi et al. Jul 2022 A1
20220270736 Kohlbrecher Aug 2022 A1
20220328175 Arrizza et al. Oct 2022 A1
20220331513 Howard et al. Oct 2022 A1
20220344023 Xavier et al. Oct 2022 A1
20220375565 Xavier et al. Nov 2022 A1
20220384059 Xavier et al. Dec 2022 A1
20230009417 Xavier et al. Jan 2023 A1
20230139360 Kohlbrecher et al. May 2023 A1
20230145267 Xavier et al. May 2023 A1
20230147762 Xavier et al. May 2023 A1
Foreign Referenced Citations (142)
Number Date Country
2 060 151 Aug 1997 CA
2 125 300 Oct 1999 CA
2 898 825 Jul 2014 CA
01110843 Aug 2003 CO
31 12 762 Jan 1983 DE
34 35 647 Jul 1985 DE
198 44 252 Mar 2000 DE
199 32 147 Jan 2001 DE
103 52 456 Jul 2005 DE
0 319 267 Jun 1989 EP
0 380 061 Aug 1990 EP
0 384 155 Aug 1990 EP
0 460 533 Dec 1991 EP
0 564 127 Jun 1993 EP
0 633 035 Jan 1995 EP
0 652 528 May 1995 EP
0 672 427 Sep 1995 EP
0 683 465 Nov 1995 EP
0 880 936 Dec 1998 EP
1 157 711 Nov 2001 EP
1 174 817 Jan 2002 EP
0 664 102 Apr 2002 EP
1 197 178 Apr 2002 EP
0 830 775 Aug 2002 EP
1 500 025 Apr 2003 EP
2 113 842 Nov 2009 EP
2 228 004 Sep 2010 EP
2 243 506 Oct 2010 EP
2 410 448 Jan 2012 EP
2 742 961 Jun 2014 EP
2 874 087 May 2015 EP
2 717 919 Sep 1995 FR
2 285 135 Jun 1995 GB
04-161139 Jun 1992 JP
07-502678 Mar 1995 JP
11-500643 Jan 1999 JP
2000-316820 Nov 2000 JP
2002-531154 Sep 2002 JP
2003-016183 Jan 2003 JP
2003-296173 Oct 2003 JP
2005-021463 Jan 2005 JP
2005-527284 Sep 2005 JP
2005-284846 Oct 2005 JP
2006-047319 Feb 2006 JP
2006-520949 Sep 2006 JP
2007-518479 Jul 2007 JP
2007-525256 Sep 2007 JP
2008-080036 Apr 2008 JP
2008-516303 May 2008 JP
2008-158622 Jul 2008 JP
2008-529675 Aug 2008 JP
2009-163534 Jul 2009 JP
2010-502361 Jan 2010 JP
2011-506048 Mar 2011 JP
2012-011204 Jan 2012 JP
2012-070991 Apr 2012 JP
2012-523895 Oct 2012 JP
2014-068283 Apr 2014 JP
200426656 Dec 2004 TW
WO 84001719 May 1984 WO
WO 91016416 Oct 1991 WO
WO 92010985 Jul 1992 WO
WO 92013322 Aug 1992 WO
WO 94005355 Mar 1994 WO
WO 96008755 Mar 1996 WO
WO 96025186 Aug 1996 WO
WO 96025963 Aug 1996 WO
WO 98012670 Mar 1998 WO
WO 98019263 May 1998 WO
WO 99051003 Oct 1999 WO
WO 00013580 Mar 2000 WO
WO 00053243 Sep 2000 WO
WO 01014974 Mar 2001 WO
WO 01033484 May 2001 WO
WO 01045014 Jun 2001 WO
WO 02005702 Jan 2002 WO
WO 02036044 May 2002 WO
WO 02049153 Jun 2002 WO
WO 02049279 Jun 2002 WO
WO 02069099 Sep 2002 WO
WO 02081015 Oct 2002 WO
WO 02088875 Nov 2002 WO
WO 03006091 Jan 2003 WO
WO 03050917 Jun 2003 WO
WO 03091836 Nov 2003 WO
WO 03094092 Nov 2003 WO
WO 2004060455 Jul 2004 WO
WO 2004070557 Aug 2004 WO
WO 2004070562 Aug 2004 WO
WO 2004072828 Aug 2004 WO
WO 2005036447 Apr 2005 WO
WO 2005050526 Jun 2005 WO
WO 2005057175 Jun 2005 WO
WO 2005066872 Jul 2005 WO
WO 2007087443 Aug 2007 WO
WO 2007117705 Oct 2007 WO
WO 2007127879 Nov 2007 WO
WO 2007127880 Nov 2007 WO
WO 2008067245 Jun 2008 WO
WO 2008082854 Jul 2008 WO
WO 2008088490 Jul 2008 WO
WO 2008097316 Aug 2008 WO
WO 2008103915 Aug 2008 WO
WO 2008124478 Oct 2008 WO
WO 2008134146 Nov 2008 WO
WO 2009016504 Feb 2009 WO
WO 2009023406 Feb 2009 WO
WO 2009023407 Feb 2009 WO
WO 2009023634 Feb 2009 WO
WO 2009036327 Mar 2009 WO
WO 2009049252 Apr 2009 WO
WO 2010017279 Feb 2010 WO
WO 2010033919 Mar 2010 WO
WO 2010053703 May 2010 WO
WO 2010075371 Jul 2010 WO
WO 2010099313 Sep 2010 WO
WO 2010114929 Oct 2010 WO
WO 2010119409 Oct 2010 WO
WO 2010124127 Oct 2010 WO
WO 2010130992 Nov 2010 WO
WO 2010135646 Nov 2010 WO
WO 2010135654 Nov 2010 WO
WO 2010135686 Nov 2010 WO
WO 2011005633 Jan 2011 WO
WO 2011022549 Feb 2011 WO
WO 2012048833 Apr 2012 WO
WO 2012049214 Apr 2012 WO
WO 2012049218 Apr 2012 WO
WO 2012120078 Sep 2012 WO
WO 2012140547 Oct 2012 WO
WO 2012164556 Dec 2012 WO
WO 2012170942 Dec 2012 WO
WO 2013045506 Apr 2013 WO
WO 2014100736 Jun 2014 WO
WO 2014131729 Sep 2014 WO
WO 2014131730 Sep 2014 WO
WO 2015124569 Aug 2015 WO
WO 2016179389 Nov 2016 WO
WO 2019219290 Nov 2019 WO
WO 2020227403 Nov 2020 WO
WO 2022006014 Jan 2022 WO
WO 2022051230 Mar 2022 WO
Non-Patent Literature Citations (126)
Entry
Gutwin et al., “Gone but not Forgotten: Designing for Disconnection in Synchronous Groupware”, CSCW 2010, Feb. 6-10, 2010, Savannah, Georgia, USA, pp. 179-188.
Ahn et al., “Towards Scalable Authentication in Health Services”, Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, Jun. 2002, pp. 83-88.
Akridge, Jeannie, “New Pumps Outsmart User Error”, Healthcare Purchasing News, Apr. 2011, pp. 10, <http://web.archive.org/web/20110426122450/http://www.hpnonline.com/inside/2011-04/1104-OR-Pumps.html>.
Alur et al., “Formal Specifications and Analysis of the Computer-Assisted Resuscitation Algorithm (CARA) Infusion Pump Control System”, International Journal on Software Tools for Technology Transfer, Feb. 2004, vol. 5, No. 4, pp. 308-319.
Aragon, Daleen RN, Ph.D., CCRN, “Evaluation of Nursing Work Effort and Perceptions About Blood Glucose Testing in Tight Glycemic Control”, American Journal of Critical Care, Jul. 2006, vol. 15, No. 4, pp. 370-377.
ASHP Advantage, “Improving Medication Safety in Health Systems Through Innovations in Automation Technology”, Proceedings of Educational Symposium and Educational Sessions during the 39th ASHP Midyear Clinical Meeting, Dec. 5-9, 2004, Orlando, FL, pp. 28.
Beard et al., “Total Quality Pain Management: History, Background, Resources”, Abbott Laboratories, TQPM Survey History, available Feb. 2015 or earlier, pp. 1-3.
Bektas et al., “Bluetooth Communication Employing Antenna Diversity”, Proceedings of Eight IEEE International Symposium on Computers and Communication, Jul. 2003, pp. 6.
Bellare et al., “Security Proofs for Identity-Based Identification and Signature Schemes”, Lecture Notes in Computer Science, Jan. 2009, vol. 22, No. 1, pp. 18.
Bequette, Ph.D., “A Critical Assessment of Algorithms and Challenges in the Development of a Closed-Loop Artificial Pancreas”, Diabetes Technology & Therapeutics, Feb. 28, 2005, vol. 7, No. 1, pp. 28-47.
Bequette, B. Wayne, Ph.D., “Analysis of Algorithms for Intensive Care Unit Blood Glucose Control”, Journal of Diabetes Science and Technology, Nov. 2007, vol. 1, No. 6, pp. 813-824.
Braun, “Infusomat® Space and Accessories”, Instructions for Use, Nov. 2010, pp. 68. <http://corp.bbraun.ee/Extranet/Infusionipumbad/Kasutusjuhendid/Vanad/Kasutusjuhend-Infusomat_Space(vers688J,inglise_k).pdf>.
Brownlee, Seth, “Product Spotlight: The Plum A+ with Hospira MedNet Infusion System”, PP&P Magazine, Dec. 2005, vol. 2, No. 7, pp. 2.
Cannon, MD et al., “Automated Heparin-Delivery System to Control Activated Partial Thromboplastin Time”, Circulation, Feb. 16, 1999, vol. 99, pp. 751-756.
Cardinal Health, “Alaris® Syringe Pumps” Technical Service Manual, Copyright 2002-2006, Issue 9, pp. 1-88, <http://www.frankshospitalworkshop.com/equipment/documents/infusion_pumps/service_manuals/Cardinal_Alaris_-_Service_Manual.pdf>.
“CareAware® Infusion Management”, Cerner Store, as printed May 12, 2011, pp. 3, <https://store.cerner.com/items/7>.
Chen et al., “Enabling Location-Based Services on Wireless LANs”, The 11th IEEE International Conference on Networks, ICON 2003, Sep. 28-Oct. 1, 2003, pp. 567-572.
“Computer Dictionary”, Microsoft Press, Third Edition, Microsoft Press, 1997, pp. 430 & 506.
“Context-Free Grammar”, Wikipedia.org, as last modified Mar. 5, 2010 in 11 pages, <https://en.wikipedia.org/w/index.php/?title=Context-free_grammar&oldid=347915989>.
Crawford, Anne J., MSN, RNC, “Building a Successful Quality Pain Service: Using Patient Satisfaction Data and the Clinical Practice Guideline”, USA, 1995, pp. 1-6.
Crocker et al., “Augmented BNF for Syntax Specifications: ABNF”, Network Working Group, Standards Track, Jan. 2008, pp. 16.
Davidson et al., “A Computer-Directed Intravenous Insulin System Shown to be Safe, Simple, and Effective in 120,618 h of Operation”, Diabetes Care, Oct. 2005, vol. 28, No. 10, pp. 2418-2423.
Davies, T., “Cordless Data Acquisition in a Hospital Environment”, IEE Colloquium on Cordless Computing—Systems and User Experience, 1993, pp. 4.
Dayhoff et al., “Medical Data Capture and Display: The Importance of Clinicians' Workstation Design”, AMIA, Inc., 1994, pp. 541-545.
Diabetes Close Up, Close Concerns AACE Inpatient Management Conference Report, Consensus Development Conference on Inpatient Diabetes and Metabolic Control, Washington, D.C., Dec. 14-16, 2003, pp. 1-32.
Doesburg et al., “Improved Usability of a Multi-Infusion Setup Using a Centralized Control Interface: A Task-Based Usability Test”, Aug. 11, 2017, PLoS One, vol. 12, No. 8, pp. 10.
“Download”, Free On-Line Dictionary of Computing, as archived Jun. 16, 2010 in 1 page, http://web.archive.org/web/20100616010314/https://foldoc.org/download.
East PhD et al., “Digital Electronic Communication Between ICU Ventilators and Computers and Printers”, Respiratory Care, Sep. 1992, vol. 37, No. 9, pp. 1113-1122.
Edworthy, Judy, “Medical Audible Alarms: A Review”, Journal of the American Medical Informatics Association, vol. 20, No. 3, 2013, pp. 584-589.
Einhorn, George W., “Total Quality Pain Management: A Computerized Quality Assessment Tool for Postoperative Pain Management”, Abbott Laboratories, Chicago, IL, Mar. 2, 2000, pp. 1-4.
Eskew et al., “Using Innovative Technologies to Set New Safety Standards for the Infusion of Intravenous Medications”, Hospital Pharmacy, 2002, vol. 37, No. 11, pp. 1179-1189.
Felleiter et al., “Data Processing in Prehospital Emergency Medicine”, International journal of Clinical Monitoring and Computing, Feb. 1995, vol. 12, No. 1, pp. 37-41.
“File Verification”, Wikipedia.org, as last modified Oct. 11, 2011 in 2 pages, <https://en.wikipedia.org/w/index.php?title=File_verification&oldid=455048290>.
Fogt et al., Development and Evaluation of a Glucose Analyzer for a Glucose-Controlled Insulin Infusion System (Biostator®), Clinical Chemistry, 1978, vol. 24, No. 8, pp. 1366-1372.
Gabel et al., “Camp: A Common API for Measuring Performance”, 21st Large Installations System Administration Conference (LISA '07), 2007, pp. 49-61.
Gage et al., “Automated Anesthesia Surgery Medical Record System”, International Journal of Clinical Monitoring and Computing, Dec. 1990, vol. 7, No. 4, pp. 259-263.
Galt et al., “Personal Digital Assistant-Based Drug Information Sources: Potential to Improve Medication Safety”, Journal of Medical Library Association, Apr. 2005, vol. 93, No. 2, pp. 229-236.
Gardner, Ph.D. et al., “Real Time Data Acquisition: Recommendations for the Medical Information Bus (MIB)”, 1992, pp. 813-817.
“General-Purpose Infusion Pumps”, Health Devices, EXRI Institute, Oct. 1, 2002, vol. 31, No. 10, pp. 353-387.
Givens et al., “Exploring the Internal State of User Interfaces by Combining Computer Vision Techniques with Grammatical Inference”, Proceedings of the 2013 International Conference on Software Engineering, San Francisco, CA, May 18-26, 2013, pp. 1165-1168.
Glaeser, “A Hierarchical Minicomputer System for Continuous Post-Surgical Monitoring”, Computers and Biomedical Research, Aug. 31, 1975, pp. 336-361.
Goldberg et al., “Clinical Results of an Updated Insulin Infusion Protocol in Critically Ill Patients”, Diabetes Spectrum, 2005, vol. 18, No. 3, pp. 188-191.
Gomez et al., “CLAM: Connection-Less, Lightweight, and Multiway Communication Support for Distributed Computing”, Computer Science, 1997, vol. 1199, pp. 227-240.
“GPS Tracker for Medical Equipment”, <http://www.trackingsystem.com/forbusinesses/corporate-trackingsystem/1098-gps-tracker-formedicalequipment.html>, Mar. 15, 2015, pp. 2.
Graseby, “Model 3000/500 and Micro 3100/505: Volumetric Infusion Pump”, Technical Service Manual, Graseby Medical Ltd., Apr. 2002, Issue A, pp. 160.
Graseby, “Model 3000/500 and Micro 3100/505: Volumetric Infusion Pump: Illustrated Parts List for Pump Serial Nos. from 3000 to 59,999”, Technical Service Manual, Graseby Medical Ltd., Apr. 2002, Issue A, pp. 71.
Halpern et al., “Changes in Critical Care Beds and Occupancy in the United States 1985-2000: Differences Attributable to Hospital Size”, Critical Care Medical, Aug. 2006, vol. 34, No. 8, pp. 2105-2112.
Hamann et al., “PUMPSIM: A Software Package for Simulating Computer-Controlled Drug Infusion Pumps”, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1990, vol. 12, No. 5, pp. 2019-2020.
Hasegawa et al., “On a Portable Memory Device for Physical Activities and Informations of Maternal Perception”, Journal of Perinatal Medicine, 1988, vol. 16, No. 4, pp. 349-356.
Hawley et al., “Clinical Implementation of an Automated Medical Information Bus in an Intensive Care Unit”, Proceedings of the Annual Symposium on Computer Application in Medical Care, Nov. 9, 1988, pp. 621-624.
Hayes-Roth et al., “Guardian: A Prototype Intelligent Agent for Intensive-Care Monitoring”, Artificial Intelligence in Medicine, vol. 4, Dec. 31, 1992, pp. 165-185.
Hospira, GemStar® Pain Management Infusion System 9-084-PR1-2-2, <www.hospira.com/products/gemstar_painmanagement.aspx>, Jan. 28, 2010, pp. 1-2.
Huang et al., “Secure Identity-Based Data Sharing and Profile Matching for Mobile Healthcare Social Networks in Cloud Computing”, vol. 6, Jul. 2018, pp. 36584-36594.
Introducing Abbott TQPM (Total Quality Pain Management), Abbott Laboratories, Abbott Park, IL, May 2000, pp. 1-4.
“Infusion Pump”, Wikipedia.org, as last modified Mar. 27, 2014, in 3 pages, <https://web.archive.org/web/20140703024932/https://en.wikipedia.org/wiki/Infusion_pump>.
Isaka et al., “Control Strategies for Arterial Blood Pressure Regulation”, IEEE Transactions on Biomedical Engineering, Apr. 1993, vol. 40, No. 4, pp. 353-363.
Johnson et al., “Using BCMA Software to Improve Patient Safety in Veterans Administration Medical Centers”, Journal of Healthcare Information Management, Dec. 6, 2004, vol. 16, No. 1, pp. 46-51.
Kent Displays, “Reflex™ Electronic Skins”, Product Brief 25127B, 2009, pp. 2.
Kent Displays, “Reflex Electronic Skins Engineering Evaluation Kit”, 25136A, Mar. 10, 2009.
Lefkowitz et al., “A Trial of the Use of Bar Code Technology to Restructure a Drug Distribution and Administration System”, Hospital Pharmacy, Mar. 31, 1991, vol. 26, No. 3, pp. 239-242.
Lenssen et al., “Bright Color Electronic Paper Technology and Applications”, IDS '09 Publication EP1-2 (Phillips Research), 2009, pp. 529-532.
Leveson, Nancy, “Medical Devices: The Therac-25”, Appendix A, University of Washington, 1995, pp. 49.
Li et al., “Hijacking an Insulin Pump: Security Attacks and Defenses for a Diabetes Therapy System”, 2011 IEEE 13th International Conference on e-Health Networking, Applications and Services, 2011, pp. 150-156.
Linkens, D.A. “Computer Control for Patient Care”, Computer Control of Real-Time Processes, IEE Control Engineering Series 41, 1990, Ch. 13, pp. 216-238.
Mako Hill et al., “The Official Ubuntu Book”, Shoeisha Co., Ltd., 1st Edition, Jun. 11, 2007, pp. 115 to 125.
Marshall, et al., “New Microprocessor-Based Insulin Controller”, IEEE Transactions on Biomedical Engineering, Nov. 1983, vol. BME-30, No. 11, pp. 689-695.
Martino et al., “Automation of a Medical Intensive Care Environment with a Flexible Configuration of Computer Systems”, Proceedings of the Annual Symposium on Computer Application in Medical Care, Nov. 5, 1980, vol. 3, pp. 1562-1568.
Matsunaga et al., “On the Use of Machine Learning to Predict the Time and Resources Consumed by Applications”, 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), May 17-20, 2010, pp. 495-504.
Mauseth et al., “Proposed Clinical Application for Tuning Fuzzy Logic Controller of Artificial Pancreas Utilizing a Personalization Factor”, Journal of Diabetes Science and Technology, Jul. 2010, vol. 4, No. 4, pp. 913-922.
“McKesson Automation and ALARIS Medical Systems Developing Point-of-Care Bar Coding Solution to Improve IV Medication Safety”, PR Newswire, NY, Dec. 9, 2002, pp. 4.
Medfusion™, “Medfusion Syringe Infusion Pump Model 4000”, Operator's Manual, Software Version V1.1, Sep. 2011, pp. 154. <http://www.medfusionpump.com/assets/literature/manuals/Operators_Manual_4000_40-5760-51A.pdf>.
Metnitz et al., “Computer Assisted Data Analysis in Intensive Care: the ICDEV Project-Development of a Scientific Database System for Intensive Care”, International Journal of Clinical Monitoring and Computing, Aug. 1995, vol. 12, No. 3, pp. 147-159.
Michienzi, Kelly, “Managing Drug Library Updates”, Pharmacy Purchasing Products, https://www.pppmag.com/article/1061, Feb. 2012, vol. 9, pp. 22-23.
Micrel Medical Devices, “MP Daily +” <http://web.archive.org/web/20130803235715/http://www.micrelmed.com/index.aspx?productid=9> as archived Aug. 3, 2013 in 1 page.
Moghissi, Etie, MD, FACP, FACE, “Hyperglycemia in Hospitalized Patients”, A Supplement to ACP Hospitalist, Jun. 15, 2008, pp. 32.
Murray, Jr. et al., “Automated Drug Identification System (during surgery)”, IEEE Proceedings of Southeastcon '91, Apr. 7-10, 1991, pp. 265.
Nicholson et al., “‘Smart’ Infusion Apparatus for Computation and Automated Delivery of Loading, Tapering, and Maintenance Infusion Regimens of Lidocaine, Procainamide, and Theophylline”, Proceedings of The Seventh Annual Symposium on Computer Applications in Medical Care, Oct. 1983, pp. 212-213.
Nolan et al., “The P1073 Medical Information Bus Standard: Overview and Benefits for Clinical Users”, 1990, pp. 216-219.
Omnilink Systems, Inc., “Portable Medical Equipment Tracking”, <http://www.omnilink.com/portablemedicalequipmenttracking/>, Mar. 15, 2015, pp. 2.
O'Shea, Kristen L., “Infusion Management: Working Smarter, Not Harder”, Hospital Pharmacy, Apr. 2013, vol. 48, No. 3, pp. S1-S14.
Package Management in Debian GNU/Linux, Debian GNU/Linux Expert Desktop Use Special, Giutsu-Hyohron Co., Ltd., First Edition, Sep. 25, 2004, pp. 183-185.
Passos et al., “Distributed Software Platform for Automation and Control of General Anaesthesia”, Eighth International Symposium on Parallel and Distributed Computing, ISPDC '09, Jun. 30-Jul. 4, 2009, pp. 8.
Philips, “IntelliSpace Event Management and IntelliVue Patient Monitoring”, Release 10, 2011, <http://incenter.medical.philips.com/doclib/enc/fetch/2000/4504/577242/577243/577247/582646/583147/8359175/Philips_Patient_Monitoring_and_IntelliSpace_Event_Management_Interoperability.pdf%3fnodeid%3d8508574%26vernum%3d-2>, pp. 2.
Pretty et al., “Hypoglycemia Detection in Critical Care Using Continuous Glucose Monitors: An in Silico Proof of Concept Analysis”, Journal of Diabetes Science and Technology, Jan. 2010, vol. 4, No. 1, pp. 15-24.
Rappoport, Arthur E., “A Hospital Patient and Laboratory machine-Readable Identification System (MRIS) Revisited”, Journal of Medical Systems, Apr. 1984, vol. 8, Nos. 1/2, pp. 133-156.
Ritchie et al., “A Microcomputer Based Controller for Neuromuscular Block During Surgery”, Annals of Biomedical Engineering, Jan. 1985, vol. 13, No. 1, pp. 3-15.
Saager et al., “Computer-Guided Versus Standard Protocol for Insulin Administration in Diabetic Patients Undergoing Cardiac Surgery”, Annual Meeting of the American Society of Critical Care Anesthesiologists, Oct. 13, 2006.
Sanders et al., “The Computer in a Programmable Implantable Medication System (PIMS)”, Proceedings of the Annual Symposium on Computer Application in Medical Care, Nov. 2, 1982, pp. 682-685.
Schilling et al., “Optimizing Outcomes! Error Prevention and Evidence-Based Practice with IV Medications”, A Pro-Ce Publication, Hospira, Inc., Feb. 6, 2012, pp. 56.
Schulze et al., “Advanced Sensors Technology Survey”, Final Report, Feb. 10, 1992, pp. 161.
Scott, et al., “Using Bar-Code Technology to Capture Clinical Intervention Data in a Hospital with a Stand-Alone Pharmacy Computer System”, Mar. 15, 1996, American Journal of Health-System Pharmacy, vol. 53, No. 6, pp. 651-654.
Sebald et al., “Numerical Analysis of a Comprehensive in Silico Subcutaneous Insulin Absorption Compartmental Model”, 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sep. 2-6, 2009, pp. 3901-3904.
Shabot, M. Michael, “Standardized Acquisition of Bedside Data: The IEEE P1073 Medical Information Bus”, International Journal of Clinical Monitoring and Computing, vol. 6, Sep. 27, 1989, pp. 197-204.
Sheppard, Louis, Ph.D., “Automation of the Infusion of Drugs Using Feedback Control”, Journal of Cardiothoracic and Vascular Anesthesia, Feb. 28, 1989, vol. 3, No. 1, pp. 1-3.
Sheppard, Louis, Ph.D., “Computer Control of the Infusion of Vasoactive Drugs”, Annals of Biomedical Engineering, Jul. 1980, vol. 8, No. 4-6, pp. 431-444.
Sheppard, Louis, Ph.D., “The Application of Computers to the Measurement, Analysis, and Treatment of Patients Following Cardiac Surgical Procedures”, The University of Alabama in Birmingham, Oct. 31, 1977, pp. 297-300.
Sheppard, Louis, Ph.D., “The Computer in the Care of Critically Ill Patients”, Proceedings of the IEEE, Sep. 1979, vol. 67, No. 9, pp. 1300-1306.
“Sigma Spectrum: Operator's Manual”, May 15, 2008, pp. 63. <https://usme.com/content/manuals/sigma-spectrum-operator-manual.pdf>.
“Sigma Spectrum: Operator's Manual”, Oct. 2009, pp. 72. <http://static.medonecapital.com/manuals/userManuals/Sigma-Spectrum-Operator-Manual-October-2009.pdf>.
Simonsen, Michael Ph.D., POC Testing, New Monitoring Strategies on Fast Growth Paths in European Healthcare Arenas, Biomedical Business & Technology, Jan. 2007, vol. 30, No. 1, pp. 1-36.
Siv-Lee et al., “Implementation of Wireless ‘Intelligent’ Pump IV Infusion Technology in a Not-for-Profit Academic Hospital Setting”, Hospital Pharmacy, Sep. 2007, vol. 42, No. 9, pp. 832-840. <http://www.thomasland.com/hpj4209-832.pdf>.
Slack, W.V., “Information Technologies for Transforming Health Care”, <https://www.andrew.cmu.edu/course/90-853/medis.dir/otadocs.dir/03ch2.pdf>, Ch. 2, 1995, pp. 29-78.
Smith, Joe, “Infusion Pump Informatics”, CatalyzeCare: Transforming Healthcare, as printed May 12, 2011, pp. 2.
Sodders, Lisa, “VA Center Keeps Medicine in Right Hands”, The Capital-Journal, Dec. 4, 1999, pp. 1-2.
“Software Versioning”, Wikipedia.org, dated Oct. 16, 2011 in 11 pages, <https://en.wikipedia.org/w/index.php?title=Software_versioning&oldid=455859110>.
Stitt, F.W., “The Problem-Oriented Medical Synopsis: a Patient-Centered Clinical Information System”, Proceedings of the Annual Symposium on Computer Application in Medical Care, 1994, pp. 88-92.
Stokowski, Laura A. RN, MS, “Using Technology to Improve Medication Safety in the Newborn Intensive Care Unit”, Advances in Neonatal Care, Dec. 2001, vol. 1, No. 2, pp. 70-83.
Sutton et al., “The Syntax and Semantics of the PROforma Guideline Modeling Language”, Journal of the American Medical Informatics Association, September/Oct. 2003, vol. 10, No. 5, pp. 433-443.
Szeinbach et al., “Automated Dispensing Technologies: Effect on Managed Care”, Journal of Managed Care Pharmacy (JMCP), Sep./Oct. 1995, vol. 1, No. 2, pp. 121-127.
Szolovits et al., “Guardian Angel: Patient-Centered Health Information Systems”, Technical Report MIT/LCS/TR-604, Massachusetts Institute of Technology Laboratory for Computer Science, May 1994, pp. 39.
“TCG TPM v2.0 Provisioning Guidance”, Reference, Version 1, Revision 1, Mar. 15, 2017, pp. 1-43.
Van Den Berghe, M.D., Ph.D., et al., “Intensive Insulin Therapy in Critically Ill Patients”, The New England Journal of Medicine, Nov. 8, 2001, vol. 345, No. 19, pp. 1359-1367.
Van Den Berghe, M.D., Ph.D., et al., “Intensive Insulin Therapy in the Medical ICU”, The New England Journal of Medicine, Feb. 2, 2006, vol. 354, No. 5, pp. 449-461.
Van Der Maas et al., “Requirements for Medical Modeling Languages”, Journal of the American Medical Informatics Association, Mar./Apr. 2001, vol. 8, No. 2, pp. 146-162.
Villalobos et al., “Computerized System in Intensive Care medicine”, Medical Informatics, vol. 11, No. 3, 1986, pp. 269-275.
Wilkins et al., “A Regular Language: The Annotated Case Report Form”, PPD Inc., PharmaSUG2011—Paper CD18, 2011, pp. 1-9.
Ying et al., “Regulating Mean Arterial Pressure in Postsurgical Cardiac Patients. A Fuzzy Logic System to Control Administration of Sodium Nitroprusside”, IEEE Engineering in Medicine and Biology Magazine, vol. 13, No. 5, Nov.-Dec. 1994, pp. 671-677.
Yue, Ying Kwan, “A Healthcare Failure Mode and Effect Analysis on the Safety of Secondary Infusions”, Thesis, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 2012, pp. 168.
Yurkonis et al., “Computer Simulation of Adaptive Drug Infusion”, IEEE Transactions on Biomedical Engineering, vol. BME-34, No. 8, Aug. 1987, pp. 633-635.
Zakariah et al., “Combination of Biphasic Transmittance Waveform with Blood Procalcitonin Levels for Diagnosis of Sepsis in Acutely Ill Patients”, Critical Care Medicine, 2008, vol. 36, No. 5, pp. 1507-1512.
International Search Report and Written Opinion received in PCT Application No. PCT/US2019/041706, dated Nov. 5, 2019 in 15 pages.
International Preliminary Report on Patentability and Written Opinion received in PCT Application No. PCT/US2019/041706, dated Jun. 11, 2020 in 6 pages.
Block, Alexander, “Secret Sharing and 1-11 Threshold Signatures with BLS”, Jul. 2, 2018, https://blog.dash.org/secret-sharing-and-threshold-signatures-with-bls-954d1587b5f, in 8 pages.
Nojoumian et al., “Social Secret Sharing in Cloud Computing Using a New Trust Function”, 2012 Tenth Annual International Conference on Privacy, Security and Trust, pp. 161-167.
Solapurkar et al., “Building Secure Healthcare Services Using OAuth 2.0 and JSON Web Token in IOT Cloud Scenario”, Dec. 2016, 2nd International Conference on Contemporary Computing and Informatics, pp. 99-10.
Yoo et al., “Code-Based Authentication Scheme for Lightweight Integrity Checking of Smart Vehicles”, IEEE Access, 2018, vol. 6, pp. 46731-46741.
Related Publications (1)
Number Date Country
20230009405 A1 Jan 2023 US
Provisional Applications (1)
Number Date Country
62699499 Jul 2018 US
Continuations (3)
Number Date Country
Parent 17174813 Feb 2021 US
Child 17664823 US
Parent 16512246 Jul 2019 US
Child 17174813 US
Parent PCT/US2019/041706 Jul 2019 US
Child 16512246 US