This application is a United States National Phase Application of International Application PCT/EP2013/001601 filed May 31, 2013 and claims the benefit of priority under 35 U.S.C. ยง119 of German Patent Application DE 10 2012 010 923.7 filed Jun. 4, 2012, the entire contents of which are incorporated herein by reference.
The invention relates to a conveying device for molten metal in an injection die casting unit, for example a metal-casting machine, having a storage container for the molten metal and a conveying duct in which the molten metal is deliverable to a mold cavity, wherein the conveying duct comprises a cylinder bore in which a piston is disposed in an axially adjustable manner, and wherein a collection chamber for the molten metal, from which the molten metal is introducible through an onward line into the mold cavity as a result of an axial displacement of the piston, is provided.
In the case of a metal-casting machine, molten metal, which is usually a metal alloy, is introduced into a mold cavity and hardens therein, such that a metal component which corresponds to the mold cavity is formed. Introduction of the molten metal may take place alone as a result of gravity, for example.
However, it has been demonstrated that this introduction of the molten metal into the mold cavity is comparatively slow, particularly in the case of components in which a metal portion is molded onto a basic body which is usually composed of plastic. The processing speed, i.e. the maximum number of operating cycles per unit of time, is thus greatly restricted in the case of the metal-casting machine.
From EP 1 046 445 B1 a conveying device of the generic type for molten metal, having a piston which is axially adjustable in a cylinder bore, is known. The molten metal, by means of a rotatingly driven screw conveyor which is perpendicularly disposed in relation to the piston, can be introduced via a lateral inlet bore into a collection chamber which is configured ahead of the piston in the cylinder bore, and by way of an axial displacement of the piston is then pressed into an onward conveying line and from there into a mold cavity. This construction is complex and requires a large installation space.
The invention is based on the object of providing a conveying device for molten metal in an injection die casting unit, for example a metal-casting machine, which possesses a simple, compact construction and by way of which the molten metal is introducible into a mold cavity at high cycle rates.
According to the invention, a conveying device is provided for molten metal in an injection die casting unit, having a storage container for the molten metal and a conveying duct in which the molten metal is deliverable to a mold cavity. The conveying duct comprises a cylinder bore in which a piston is disposed in an axially adjustable manner, and that a collection chamber for the molten metal, from which the molten metal is introducible through an onward line into the mold cavity as a result of the axial displacement of the piston, is configured. The collection chamber is preferably configured in the cylinder bore.
This proceeds according to the invention from the fundamental principle of providing a predetermined amount of the molten metal in the collection chamber and squeezing said molten metal out of said collection chamber by way of displacing the piston and conveying said molten metal via the onward line into the mold cavity. The piston subsequently returns to its initial position, whereby fresh molten metal may already flow into the collection chamber during the return movement of the piston. The movement of the piston is preferably conceived such that the collection chamber is already completely filled with replenishing molten metal flowing in when the piston has reached its upper initial position, so that said piston can again immediately carry out its displacement by way of which the molten metal is squeezed out of the collection chamber and through the onward line into the mold cavity.
The molten metal from the storage container is introducible via at least one filling bore into the collection chamber. While the piston moves back into its initial position, the molten metal runs through the filling bore, which is preferably configured in the piston and particularly preferably penetrates the piston, into the collection chamber which has simultaneously been vacated by the piston. It has been demonstrated that replenishment of the collection chamber can be achieved very rapidly and in a reliable manner in this way. Preferably, a plurality of filling bores which are arranged in parallel and thus ensure rapid filling of the collection chamber are provided.
During the return movement of the piston back to its initial position, the filling bore or the filling bores, respectively, is/are constantly connected to the storage container for the molten metal, on the one hand, and to the collection chamber, on the other. This is achieved according to the invention in that an annular space is formed in a predetermined portion of the piston between the outer wall of the piston and the inner wall of the cylinder bore, and in that the annular space is connected via the filling bore or the filling bores, respectively, to the collection chamber. In addition, the annular space is supplied with molten metal from the storage container.
In order to be able to control the delivery of molten metal into the collection chamber, it is provided according to the invention that the filling bore, on its end which opens into the collection chamber, is closable by means of a valve body. In the event that a plurality or filling bores arranged in parallel are provided, a common valve body may be provided therefor. The valve body can be adjusted between a closed position, in which it inhibits the flow of the molten metal from the filling bore into the collection chamber, and an open position, in which the molten metal can flow from the filling bore or the filling bores, respectively, into the collection chamber. For adjustment of the valve body, the latter is connected to an adjustable valve rod which is preferably provided with a drive which is actuated by a control device.
Here, the valve rod is displaceably disposed in an axial bore or in a longitudinal central bore of the piston, on account of which a very compact construction results. The valve body and the valve rod thus may be displaced together with the piston within the cylinder bore, and also be adjusted in relation to the piston.
Sealing between the piston and the cylinder bore is achieved in that the piston, at least in portions, sits having a tight fit in the cylinder bore.
The cross section of the valve body is preferably smaller than the cross section of the cylinder bore, such that the molten metal can freely flow around the valve body within the cylinder bore.
In order to avoid a return flow of the molten metal from the onward line into the collection chamber, it is provided in a refinement of the invention that a check valve, which may be a spring-loaded valve body, for example, is disposed in the onward line.
Further details and features of the invention are apparent from the following description of an exemplary embodiment, with reference to the drawing.
The present invention shall be explained in more detail on the basis of the following figures and exemplary embodiments, without the present invention being limited to these. The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.
In the drawings:
A conveying device 10 illustrated in
A storage container 27 for molten metal M is placed onto the housing 11, said storage container 27 comprising a container housing 28 in which a container interior space 29 which is filled with the molten metal M is configured. The molten metal M may be delivered to the container interior space 29 in liquid form, or be produced therein by melting a metallic granulate, for example.
The container interior space 29 of the storage container 27 is connected via at least one supply duct 18, which runs obliquely downward and is inclined in the direction of flow, to the cylinder bore 12. A slag separator 30, which has the effect of a filter, is provided in the container interior space 29, at the inlet of the supply duct 18.
A piston 13 is displaceably inserted with a tight fit into the cylinder bore 12. In a region which is disposed in the lower half of the axial length of the piston 13 but which has an axial spacing from the lower end of the piston 13, an annular space 17 is configured on the outer surface of the piston 13. A plurality of filling bores 16 which are disposed so as to be distributed over the circumference of the piston 13 run on the lower end of the annular space 17, in each case toward the lower end face of the piston 13 (see
The piston 13 furthermore displays a centric axial bore 14 in which a valve rod 19 which completely penetrates the piston 13 and, on its lower end downstream of the end side of the piston 13, carries a plate-type valve body 20 is disposed in a displaceable manner. The valve body 20, by displacing the valve rod 19 in relation to the piston 13, can be adjusted between a closed position illustrated in
As is shown by
The cylinder bore 12 or the collection chamber 15 formed therein, respectively, on the lower end is connected via an onward line 21 to a mold cavity F which is not illustrated in more detail. The onward line 21 comprises a lower transverse bore 31 via which the collection chamber 15 is connected to a vertical riser 22. The riser 22, at its upper end, transitions into a substantially horizontally running filling duct 23 from which the molten metal is delivered to the mold cavity, as indicated by the arrow F. A check valve 24 having a valve body 25, which is tensioned in relation to a valve seat 32 counter to the direction of flow by a spring 26, is disposed in the transition between the riser 22 and the filling duct 23.
In the following, the individual phases of the introduction of the molten metal M into the mold cavity F are to be explained.
According to
As is shown in
Prior to or at the same time as adjusting the piston 13 from its lower position, the valve rod 19 having the valve body 20 is adjusted in relation to the piston 13, on account of which the valve body 20 reaches its open position. During retraction of the piston 13 into its upper position, the molten metal M thus flows out of the storage container 27 through the inlet duct 18, the annular space 17, and the filling bores 16 into the collection chamber 15. On account of the displacement of the piston 13, slight negative pressure may potentially be established in the collection chamber 15. Any intake or a return flow of the molten metal M still located in the riser 22 or the filling duct 23 is prevented on account of the check valve 24 closing.
Once the piston 13 has reached its upper position and the collection chamber 15 has been filled with the molten metal M, the valve body 20 is displaced into its closed position in which said valve body 20 interrupts the connection between the filling bores 16 and the collection chamber 15. In this instant, the initial position illustrated in
Number | Date | Country | Kind |
---|---|---|---|
10 2012 010 923 | Jun 2012 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/001601 | 5/31/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/182284 | 12/12/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5205338 | Shimmell | Apr 1993 | A |
5632321 | Hegel et al. | May 1997 | A |
6840302 | Tanaka et al. | Jan 2005 | B1 |
7163046 | Tanaka et al. | Jan 2007 | B2 |
20030000676 | Motegi et al. | Jan 2003 | A1 |
20050006046 | Tanaka et al. | Jan 2005 | A1 |
20090178776 | Minamimura et al. | Jul 2009 | A1 |
20140042193 | Aspacher et al. | Feb 2014 | A1 |
20150151357 | Wunderle | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
692 22 510 | Apr 1998 | DE |
600 35 147 | Feb 2008 | DE |
10 2009 012 636 | Sep 2010 | DE |
1 046 445 | Jun 2007 | EP |
11254119 | Sep 1999 | JP |
02085560 | Oct 2002 | WO |
2012146408 | Nov 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20150151357 A1 | Jun 2015 | US |