Various cooking appliances used in the home, e.g., ranges, cooktops, ovens, etc., can affect the environment within a home during their operation. Cooking appliances often generate heat, steam, moisture and/or odors as byproducts of the cooking process. Many homes and commercial kitchens may for example, be equipped with hoods or vents that are positioned over or adjacent to a cooking appliance to draw in air in the immediate vicinity of the cooking appliance in an attempt to address these cooking byproducts. Some hoods or vents are vented to the exterior of the home, while others merely recirculate the air in the immediate vicinity of the cooking appliance. However, these hoods or vents have limited effect due to their location; for example many of these hoods or vents are positioned approximately 30 inches above the cooktop, so their ability to capture cooking byproducts emanating from a particular location on a cooking appliance (e.g., from a specific pot or pan placed on the cooking appliance) is limited. Moreover, conventional hoods and/or vents are generally operated manually by a user via separate controls from the cooking appliance.
The herein-described embodiments address these and other problems associated with the art by providing in one aspect a cooking appliance and method of controlling one or more repositionable vent arms. Therefore, consistent with one aspect of the invention, a venting appliance for use with a cooking appliance of a type including a cooktop with at least one cooking element disposed thereon may include: a housing configured to be positioned above the cooktop; a repositionable vent arm coupled to and extending below the housing; and a controller coupled to the repositionable vent arm and configured to determine that a first cooking element among the at least one cooking elements is active, and in response thereto, automatically reposition the vent arm to be closer to the first cooking element.
In some embodiments, the controller determines that the first cooking element is active based on a signal from a thermal sensor positioned to detect heat emanating from the first cooking element. In such instances, the controller may determine that the first cooking element is active based on a signal received from the cooking appliance. For example, in some instances, the signal comprises a wireless signal generated in response to the first cooking element being put in an active state in response to user input, where the venting appliance further comprises a wireless receiver configured to receive the wireless signal from the cooking appliance. In some embodiments, the controller is disposed in the housing. In other embodiments, the controller is disposed in the cooking appliance.
In some embodiments, the venting appliance further includes a fan coupled to the controller and configured to draw air through the repositionable vent arm, where the controller is configured to activate the fan in response to the determination that the first cooking element is active. In such instances, the fan may be a first fan that provides focused ventilation for the first cooking element, where the venting appliance further including an area inlet disposed in the housing and a second fan coupled to the controller and configured to draw air through the area inlet to provide area ventilation for the cooktop.
In some embodiments, the repositionable vent arm further includes a distance sensor coupled to the controller and configured to sense a distance to an object disposed on the first cooking element, where the controller is configured to reposition the repositionable vent arm in response to a signal from the distance sensor. In other embodiments, the venting appliance additionally includes a vent arm drive coupled to the controller and configured to move the vent arm in a direction generally perpendicular to the cooktop, where the controller is configured to automatically reposition the vent arm to be closer to the first cooking element by actuating the vent arm drive to move the vent arm in the direction generally perpendicular to the cooktop. In some embodiments, the vent arm drive comprises a belt drive. In other embodiments, the vent arm includes a set of telescoping cylinders that are selectively extended in response to the vent arm drive. In still other embodiments, the vent arm drive comprises a first vent arm drive, where the venting appliance additionally includes a second vent arm drive configured to move the vent arm in a direction generally parallel to the cooktop, and where the controller is configured to automatically reposition the vent arm to be closer to the first cooking element further by actuating the second vent arm drive to move the vent arm generally parallel to the cooktop.
In some embodiments, the repositionable vent arm is rotatable about an axis of rotation that is generally perpendicular to the cooktop, wherein the repositionable vent arm includes a laterally-extending member disposed at an opposite end of the repositionable vent arm from the housing, wherein an inlet of the repositionable vent arm is disposed at an opposite end of the laterally-extending member from the axis of rotation, and wherein rotation of the repositionable vent arm repositions the inlet in a direction generally parallel to the cooktop. In other embodiments, the repositionable vent arm is a first vent arm among plurality of vent arms, each of which disposed above an associated cooking element among the at least of cooking element, and where the controller is configured to automatically reposition each of the plurality of vent arms to be closer to the associated cooking element for such vent arm in response to determining that the associated cooking element for such vent arm is active.
In some embodiments, the venting appliance is disposed on an underside of a microwave oven. In other embodiments, the venting appliance is a vent hood.
Consistent with another aspect of the invention, a venting appliance for use with a cooking appliance of a type including a cooktop with at least one cooking element disposed thereon may include: a housing configured to be positioned above the cooktop; a repositionable vent arm coupled to and extending below the housing, the repositionable vent arm including an inlet disposed at an opposite end of the repositionable vent arm from the housing; a first fan coupled to the repositionable vent arm to draw air through the inlet of the repositionable vent arm to provide focused ventilation proximate the inlet of the repositionable vent arm; an area inlet disposed in the housing; and a second fan configured to draw air through the area inlet to provide area ventilation for the cooktop; wherein the first and second fans are independently controllable by a user.
In some embodiments, the venting appliance additionally includes a controller coupled to the repositionable vent arm and configured to determine that a first cooking element among the at least one cooking element is active, and in response thereto, automatically reposition the vent arm to be closer to the first cooking element. In other embodiments, the venting appliance additionally includes a vent arm drive coupled to the controller and configured to move the vent arm in a direction generally perpendicular to the cooktop, where the controller is configured to automatically reposition the vent arm to be closer to the first cooking element by actuating the vent arm drive to move the vent arm in the direction generally perpendicular to the cooktop.
In some embodiments, the vent arm drive includes a first vent arm drive, and the venting appliance additionally includes a second vent arm drive configured to move the vent arm in a direction generally parallel to the cooktop, and where the controller is configured to automatically reposition the vent arm to be closer to the first cooking element further by actuating the second vent arm drive to move the vent arm generally parallel to the cooktop.
In some embodiments, the controller determines that the first cooking element is active based on a signal from a thermal sensor positioned to detect heat emanating from the first cooking element. In other embodiments, the repositionable vent arm further includes a distance sensor coupled to the controller and configured to sense a distance to an object disposed on the first cooking element, where the controller is configured to reposition the repositionable vent arm in response to a signal from the distance sensor.
Consistent with another aspect of the invention, a method of venting using a venting appliance that includes a housing configured to be positioned above a cooktop of a cooking appliance, a repositionable vent arm coupled to and extending below the housing, and a controller coupled to the repositionable vent arm, includes: determining, by the controller, that a first cooking element of the cooking appliance is active; and automatically repositioning, by the controller, the repositionable vent arm to be closer to the first cooking element in response to the determination.
In some embodiments, the step of determining that the first cooking element is active further includes receiving, by the controller, a signal, from a thermal sensor disposed on the housing, that heat is emanating from the first cooking element. In other embodiments, the step of determining that the first cooking element is active further includes receiving, by the controller, a signal, from the cooking appliance, where the signal comprises a wireless signal generated in response to the first cooking element being put in an active state in response to user input and where the venting appliance further comprises a wireless receiver configured to receive the wireless signal from the cooking appliance.
In some embodiments, the step of automatically repositioning the vent arm further includes: receiving, by the controller, a signal from a distance sensor configured to sense a distance to an object disposed on the first cooking element; and repositioning the vent arm in response to the signal from the distance sensor.
In some embodiments, the method additionally includes activating a fan configured to draw air through the repositionable vent arm, by a controller, in response to the determination that the first cooking element is activate.
In some embodiments, the vent arm further includes a vent arm drive coupled to the controller and configured to move the vent arm in a direction generally perpendicular to the cooktop, and where the automatic repositioning the vent arm further includes repositioning, by the vent arm drive, the vent arm to be closer to the first cooking element by actuating the vent arm drive to move the vent arm in the direction generally perpendicular to the cooktop. In such instances, the vent arm drive may include a first vent arm drive, where the venting appliance further comprises a second vent arm drive configured to move the vent arm in a direction generally parallel to the cooktop, and where the automatic repositioning the vent arm further includes repositioning, by the second vent arm drive, the vent arm to be closer to the first cooking element by actuating the vent arm drive to move the vent arm in the direction generally parallel to the cooktop.
These and other advantages and features, which characterize the invention, are set forth in the claims annexed hereto and forming a further part hereof. However, for a better understanding of the invention, and of the advantages and objectives attained through its use, reference should be made to the Drawings, and to the accompanying descriptive matter, in which there is described example embodiments of the invention. This summary is merely provided to introduce a selection of concepts that are further described below in the detailed description, and is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
Turning now to the drawings, wherein like numbers denote like parts throughout the several views,
Cooking appliance 10 in the illustrated embodiment is a residential-type range, and as such includes a housing 12 and a cooktop 14 including a plurality of cooking elements 16. The cooking appliance may also include an oven accessed via an oven door having a handle (not illustrated). The cooking appliance 10 may also include a storage drawer in some embodiments, or in other embodiments, may include a second oven (also not illustrated). Various types of cooking elements may also be incorporated into cooking appliance 10 for cooking food in the oven, e.g., one or more electric, inductive or gas heating elements.
Cooking appliance 10 may also include various user interface devices, including, for example, control knobs 28 for controlling cooking elements 16, a control panel for controlling the oven and/or cooking elements 16, and a display 32 for providing visual feedback as to the activation state of the cooking appliance 10. It will be appreciated that cooking appliance 10 may include various types of user controls in other embodiments, including various combinations of switches, buttons, knobs and/or sliders, typically disposed at the rear or front (or both) of the cooking appliance. Further, in some embodiments, one or more touch screens may be employed for interaction with a user. As such, in some embodiments, display 32 may be touch sensitive to receive user input in addition to displaying status information and/or otherwise interacting with a user. In still other embodiments, cooking appliance 10 may be controllable remotely, e.g., via a smartphone, tablet, or other networked computing device, e.g., using a web interface or a dedicated app.
Display 32 may also vary in different embodiments, and may include individual indicators, segmented alphanumeric displays, and/or dot matrix displays, and may be based on various types of display technologies, including LEDs, vacuum fluorescent displays, incandescent lights, etc. Further, in some embodiments, audio feedback may be provided to a user via one or more speakers; and in some embodiments, user input may be received through a spoken or a gesture-based interface.
As noted above, cooking appliance 10 of
In turn, a cooking element may be considered to include practically any type of energy-producing element used in residential applications in connection with cooking food, e.g., employing various cooking technologies such as electric, gas, light, microwaves, induction, convection, radiation, etc. In the case of a stovetop, one or more cooking elements therein may be gas, electric, or inductive heating elements in some embodiments. Further, it will be appreciated that any number of cooking elements 16 may be provided in a cooking appliance, and that multiple types of cooking elements may be combined in some embodiments.
Various embodiments of a venting appliance with one or more repositionable vent arms are described herein. Such repositionable vent arms may automatically move in response to the activation of a cooking element sensed by a thermal sensor or the detection of user control activation of the cooking element. The movement of the repositionable vent arms places them in closer proximity to the active cooking element, allowing the repositionable vent arm to provided focused ventilation to the air nearest the active cooking element. In some instances, these repositionable vent arms include their own fan either in addition to or in lieu of a general ventilation fan typically placed in a housing above the cooktop.
The repositionable vent arm 105 may include a focused exhaust conduit 106, which may be coupled to a focused fan 116 in order to provide focused ventilation. The repositionable vent arm 105 may also include a laterally-extending member 109 positioned opposite the housing. This laterally-extending member 109 may additionally include an inlet 107 of the repositionable vent arm that is positioned at an opposite end of the laterally-extending member from the focused exhaust conduit 106; the inlet 107 fluidly coupled to the focused exhaust conduit 106 and configured to draw air through the inlet 107 to provide focused ventilation for the cooktop.
A vent arm drive 122 (e.g. a motor or the like) may allow the repositionable vent arm 105 to move vertically (e.g. perpendicular to the cooktop 14), as indicated by the arrow in
For example, in embodiments utilizing only translational movement, the vent drive 122 may be a belt drive oriented to raise and lower the focused exhaust conduit 106 and repositionable vent arm 105 vertically, while the second vent arm drive 124 may be one or more belt drives (e.g., arranged in a gantry) oriented to move the repositionable vent arm 105 horizontally. In embodiments utilizing only rotation to achieve movement of the vent arm 105 in both vertical and horizontal direction, the vent drive 122 may be a motor that powers rotation in a spiral pattern moving both vertically and horizontally. In embodiments utilizing both translation and rotation to achieve movement of the vent arm 105 in both vertical and horizontal direction, there may be a first vent drive 122, such a belt drive, oriented to raise and lower the focused exhaust conduit 106 and repositionable vent arm 105 vertically, while the second vent arm drive 124 may be a motor that powers rotation axis of rotation that is generally perpendicular to the cooktop.
The repositionable vent arm 205 and telescoping exhaust conduit 210 may be coupled to a focused fan 215 in order to draw air from an inlet 207 of the repositionable vent air and through the telescoping exhaust conduit 210. In some embodiments, such as illustrated in
In some embodiments, such as illustrated in
As illustrated in
Additionally, various sensing technologies may be utilized in the cooking appliance to facilitate positioning of the repositionable vent arm(s) 105, 205, 305n illustrated in
In some embodiments, the venting appliance 100 may include one or more thermal sensors 125 that may be capable of detecting when a particular cooking element 16 emanates heat. Through use of a controller, described in detail with respect to
In some embodiments, the thermal sensor 125 may be incorporated into a thermal imaging system. In other embodiments, such a thermal sensor 125 may be a thermistor, or a thermally sensitive resistor that functions by exhibiting a large, predictable, and precise change in electrical resistance when subjected to a corresponding change temperature. In still other embodiments, the thermal sensor 125 may be a thermocouple, a resistance thermometer, and/or any other type of thermal sensor known in the art. In some embodiments, the thermal sensor may even be disposed on or proximate to the cooktop, rather than in the venting appliance itself.
In some embodiments, the signal from the thermal sensor 125, regardless of the form the sensor takes, may be utilized by the controller to determine which cooking element 16 has been activated. For example, where the thermal sensor 125 is incorporated as part of a thermal imaging system, the thermal sensor may provide one or more signals to the controller regarding if heat and/or how much heat, is emanating from each of the cooking elements 16. In other embodiments, there may a thermal sensor 125 corresponding to each cooking element, in order to facilitate the controller's determination of which cooking element is active.
In other embodiments, the controller may determine which cooking element 16 has been activated based on a signal received from the cooking appliance 10. As a non-limiting example, the cooking appliance may send the controller a wired or wireless signal that a cooking element 16 is active when a user actuates one or more particular user controls.
In some embodiments, the repositionable vent arm 105 may include an ultrasonic or other distance sensor that may be capable of detecting a distance to a pot, pan, skillet, or the like on a cooking element 16. For example, the ultrasonic sensor 130 may utilize a transducer to send a pulse and to receive the echo; the sensor 130 and/or the controller may then determine a distance to a target (in this case a pot, pan, skillet, or the like) by measuring time lapses between the sending and receiving of the ultrasonic pulse. Through use of a controller, described in detail with respect to
It is to be understood that the use of a thermal sensor 125 and an ultrasonic sensor 130 are not mutually exclusive. In some instances, it may be desirable for the venting appliance to utilize both the thermal sensor 125 and the ultrasonic sensor 130, while in other instances only one or the other may be desirable.
In some embodiments, the venting appliance 100, 200, 300 may be disposed on the underside of and integrated with a microwave or other type of oven that is designed to be mounted above a cooktop. In other embodiments, the venting appliance 100, 200, 300 may be a vent hood.
As mentioned previously, a cooking appliance consistent with the invention also generally includes one or more controllers configured to control the cooking elements and otherwise perform cooking operations at the direction of a user. In addition, as will become more apparent below, a controller of a cooking appliance in some embodiments may also be configured to communicate a control signal to selectively actuate one or more repositionable vent arms in connection with the activation of a cooking element(s).
As shown in
In some embodiments, controllers 42, 142 may also be coupled to one or more network interfaces 60, e.g., for interfacing with external devices via wired and/or wireless networks such as Ethernet, Wi-Fi, Bluetooth, NFC, cellular and other suitable networks, collectively represented in
In some embodiments, controllers 42, 142 may operate under the control of an operating system and may execute or otherwise rely upon various computer software applications, components, programs, objects, modules, data structures, etc. In addition, controllers 42, 142 may also incorporate hardware logic to implement some or all of the functionality disclosed herein. Further, in some embodiments, the sequences of operations performed by controllers 42, 142 to implement the embodiments disclosed herein may be implemented using program code including one or more instructions that are resident at various times in various memory and storage devices, and that, when read and executed by one or more hardware-based processors, perform the operations embodying desired functionality. Moreover, in some embodiments, such program code may be distributed as a program product in a variety of forms, and that the invention applies equally regardless of the particular type of computer readable media used to actually carry out the distribution, including, for example, non-transitory computer readable storage media. In addition, it will be appreciated that the various operations described herein may be combined, split, reordered, reversed, varied, omitted, parallelized and/or supplemented with other techniques known in the art, and therefore, the invention is not limited to the particular sequences of operations described herein.
Although described and illustrated as two separate controllers 42, 142, this is not to be understood as limiting. In some embodiments, a single controller may be disposed within the cooking appliance. In such instances, the cooking appliance may send or receive various signals to or from the venting appliance. In other embodiments, a single controller may be disposed within the venting appliance. In such instances, the venting appliance may receive various signals from the cooking appliance (e.g. regarding user actuation of user controls). In some embodiments, these signals may be received via wired communication, while in other embodiments the venting appliance may have a wireless receiver configured to receive these signals wirelessly.
Numerous variations and modifications to the venting appliances 100, 200, 300 illustrated in
Now turning to
Optionally, the repositionable vent arm may include an ultrasonic or other distance sensor that may be capable of detecting a distance to a pot, pan, skillet, or the like on a cooking element, and as such, block 520 may use such a distance sensor to control a height of the vent arm relative to the cooktop surface. For example, the ultrasonic sensor may be used to position the repositionable vent arm within a predetermined distance (e.g. 3 inches, 6 inches, etc.) from the detected object (e.g. pot, pan, etc.).
In some embodiments, such as illustrated at optional block 530, the sequence of operations may additionally include the controller activating a fan in response to the determination that a cooking element is active. Such a fan, when active, may draw air through the repositionable vent arm in order to provide ventilation to an area. In some embodiments, the fan may be a focused fan that is dedicated to one or more vent arms, while in other embodiments the fan may be the same fan as is used for area ventilation. In some embodiments, both types of fans may be simultaneously controlled (e.g., to provide general ventilation for the entire cooktop using one fan and then providing focused ventilation (e.g., at a higher rate) for a particular cooking element.
In some embodiments, the vent arm additionally includes a vent arm drive (e.g. a motor, one or more hydraulic cylinders, one or more pneumatic cylinders, a belt or chain drive, or the like) that is capable of mechanically moving the repositionable vent arm vertically (e.g. generally perpendicular to the cooktop). In such instances, the vent arm drive may be coupled to the controller such that when the controller determines that a cooking element is active the vent arm drive repositions the vent arm to be closer to the cooking element by actuating the vent arm drive to move the vent arm vertically. In other embodiments, there may be a second vent arm drive coupled to the controller that is capable of mechanically moving the repositionable vent arm horizontally (e.g. a direction generally parallel to the cooktop) in response to the controller's determination that a cooking element is active in order to be closer to the cooking element.
At block 540, the controller determines if a cooking element has been deactivated. At block 550, if the cooking element has been deactivated the controller will automatically retract the repositionable vent arm to a storage position. If a cooking element is still active, the controller will continue to wait for an indication that a cooking element has been deactivated. Similar to block 510, the determination that the cooking element has been deactivated may include the controller receiving a signal from a thermal sensor (e.g. thermal sensor 125) that heat is no longer emanating from a cooking element. In other embodiments, the determination that a cooking element has been deactivated may include the controller receiving a signal from the cooking appliance, for example the signal may be generated in response to a user input (e.g. user actuation of one or more user controls). In some embodiments, retracting the repositionable vent arm to a storage position may including moving the repositionable vent arm vertically until the repositionable vent arm is positioned just below the housing. In other embodiments, retracting the repositionable vent arm to a storage position may include moving the repositionable vent arm vertically until the repositionable vent arm is positioned within the housing.
It will be appreciated that various modifications may be made to the embodiments discussed herein, and that a number of the concepts disclosed herein may be used in combination with one another or may be used separately. Therefore, the invention is in the claims hereinafter appended.
Number | Name | Date | Kind |
---|---|---|---|
3698378 | Rosenberg | Oct 1972 | A |
4074680 | Gooding | Feb 1978 | A |
4086847 | Overmyer | May 1978 | A |
4858591 | Fu | Aug 1989 | A |
5482505 | Hedlund | Jan 1996 | A |
5791980 | Kramer, Jr. | Aug 1998 | A |
6524180 | Simms | Feb 2003 | B1 |
6647978 | Khosropour et al. | Nov 2003 | B1 |
6886554 | Cheng | May 2005 | B2 |
7836877 | Gagas et al. | Nov 2010 | B2 |
8020549 | Huber et al. | Sep 2011 | B2 |
8079359 | Chung | Dec 2011 | B2 |
8312873 | Gagas et al. | Nov 2012 | B2 |
9175862 | Chtchetinin | Nov 2015 | B2 |
9677772 | Siegel et al. | Jun 2017 | B2 |
10041687 | Caneba | Aug 2018 | B1 |
20060231553 | Gerami | Oct 2006 | A1 |
20060278215 | Gagas et al. | Dec 2006 | A1 |
20070062513 | Gagas | Mar 2007 | A1 |
20070079823 | Shin | Apr 2007 | A1 |
20100059040 | Shaffer | Mar 2010 | A1 |
20100065038 | Davies | Mar 2010 | A1 |
20170016630 | Yang et al. | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
201925998 | Aug 2011 | CN |
107339731 | Nov 2017 | CN |
1614968 | Jan 2006 | EP |
200329846 | Oct 2003 | KR |
Entry |
---|
Frigidaire, 30 in. Telescopic Downdraft System in Stainless Steel, www.homedepot.com, Retrieved on Jul. 27, 2018. |
Alibaba, Korean Barbecue Grill Exhaust Hood Exhaust Pipe and a Half Copper Hose Retractable | Commerical Barbecue Grill Exhaust Pipe, www.alibaba.com, Retrieved on Jul. 27, 2018. |
Number | Date | Country | |
---|---|---|---|
20200333019 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16223795 | Dec 2018 | US |
Child | 16916523 | US |