This Application claims the benefit of and priority to Finnish Application No. 20155775, filed on Oct. 30, 2015, all of which is incorporated by reference herein in its entirety.
This invention relates to cooking vessel such as to a kettle, frying-pan or pot which is used for preparing foodstuff on an induction heater.
Induction heaters heat cooking vessels by magnetic induction which is obtained with an alternating electric current fed through a coil. The resulting field induces eddy currents in the cooking vessel, in particular in the bottom of the cooking vessel, which contribute in heating the cooking vessel. In order to provide an induction heating capability for a cooking vessel the materials used in the cooking vessel need consideration. In praxis many prior art cooking vessels are made of ferritic stainless steel or at least contain ferritic stainless steel in a bottom section while the remaining part of the cooking vessel is manufactured of another material.
Previously it is known to provide under a cooking support of an induction heater a measuring instrument with an measuring coil. This measuring instrument produces an induction measuring resonant circuitry which interacts with the cooking vessel. The measuring resonant circuitry has a resonant frequency which is dependent on the permeability or inductivity of the cooking vessel. This permeability of the cooking vessel is in turn dependent on the temperature of the cooking vessel that is heated. The relationship between the resonant frequency and the temperature of the cooking vessel can be utilized to determine the temperature of the cooking vessel based on the frequency. In practical implementations the used induction heater and/or the user can be provided with information about the current temperature based on the measured frequency.
A problem with temperature measurements carried out in this way is the accuracy. Practical tests with prior art cooking vessels have shown that in prior art solutions there is a hysteresis between heating and cooling a cooking vessel. At a particular frequency the actual temperature may vary with as much as 70° C. depending on if the cooking vessel is being heated from 20° C. to 250° C. or if it is cooling down from 250° C. to 20° C. Due to this hysteresis it is not possible to determine the correct temperature of a cooking vessel at each moment based on the frequency, at least not with an accuracy which would be preferable while heating foodstuff.
An object of the present invention is to solve the above mentioned drawback and to provide a cooking vessel with an induction heating capability and whose temperature can be simply and reliably determined during induction heating. This object is achieved with a cooking vessel according to independent claim 1.
The use of a bottom section manufactured of unalloyed or low-alloyed steel gives excellent properties for a cooking vessel, as it becomes possible to accurately determine the temperature of the cooking vessel based on the frequency both while the temperature of the cooking vessel increases and while it decreases.
In the following the present invention will be described in closer detail by way of example and with reference to the attached drawings, in which
In
The illustrated cooking vessel 1 comprises a receptacle 3 of a first material. During use this receptacle 3 receives foodstuff. For this purpose the receptacle has a tight bottom 4 and edges 5 protruding upwards from the bottom 4 in order to ensure that the foodstuff does not leak out of the receptacle 1 during use. Additionally, though not illustrated, the receptacle may be provided with a lid, for instance. The first material used for manufacturing the receptacle 3 may be any material commonly used in cooking vessels. Consequently the first material may be aluminum or stainless steel, for instance. The material thickness of the bottom 4 and edges 5 may be about 3-6 mm, for instance. If necessary, a coating layer of a non-stick material may be provided to cover the inner surface of the receptacle 3 in order to prevent foodstuff from being stuck on the inner surface.
The cooking vessel 1 additionally comprises a bottom section 6 of a second material. The thickness of the bottom section may be more than 0.1 mm, preferably about 0.5 mm, though it is possible to utilize bottom sections which are even thicker. The bottom section 6 provides an induction heating capability for the cooking vessel 1. Therefore, the receptacle 3 may be of aluminum for instance, as the bottom section 6 ensures that the cooking vessel 1 indeed can be heated with an induction heater even though aluminum is not suitable for heating with an induction heater. The second material used in the bottom section 6 is unalloyed or low-alloyed steel. Practical tests have shown that once unalloyed or low-alloyed steel is used in the bottom section 6, it becomes possible to accurately determine the temperature of the cooking vessel 1 on an induction heater based on the frequency both while the temperature of the cooking vessel 1 increases and while it decreases. According to practical tests the temperature of the cooking vessel can in this way be measured with an error of less than 5° C. Therefore, no similar hysteresis between heating and cooling is present as in prior art cooking vessels where the bottom section comprises ferritic stainless steel, for instance. Therefore it is possible to determine the temperature very accurately with a measuring resonant circuitry based on the measured frequency.
In this connection the terms unalloyed steel and low-alloyed steel refer to a steel which contains carbon, but the steel has not been processed or provided with additives that prevent corrosion when exposed to air and moisture. One alternative is that this steel contains carbon in the range of 0.1-5% and where the total share of the alloying components, such as Si, Mn, Al, Ti and Cu, does not exceed 8%. Another alternative is that the steel is an unalloyed steel commonly referred to as an electrical steel, in other words a steel which contains less than 0.005% carbon but which contains silicon.
In the illustrated example, the bottom section 6 is attached to the receptacle 3 by a coating layer 7. On alternative is to utilize a coating layer 7 of chromium, nickel, aluminum or copper. This makes it possible to attach the receptacle 3 to the bottom section 6 by means of the coating layer 7 alone. Consequently no additional mechanical or other attachment means are needed for this attachment. One alternative is to carry out the attachment by impact bonding. In impact bonding the bottom section 6 and the receptacle 3 are arranged on top of each other with the coating layer 7 between them. In this position a high pressure is utilized to press the parts together, such that friction between the parts leads to a situation where the parts are bonded together.
The thickness of the coating layer 7 may vary depending on the implementation. In case a receptacle 3 of aluminum is used, this receptacle may be attached to a bottom section 6 of unalloyed or low-alloyed steel by impact bonding when a coating layer 7 of chromium, nickel, aluminum or copper is arranged between the receptacle 3 and bottom part 6. In that case the amount of chromium, nickel, aluminum or copper may be about 50-180 mg/m2, which in practical implementation will result in a coating layer 7 which may be very thin, in praxis about 0.2 nm-30 μm. However, coating layers of other thicknesses may be used in other implementations.
In
An advantage of utilizing an ECCS plate for manufacturing the bottom section 6′ is that the manufacturing process becomes very simple. It is sufficient to cut a bottom section 6′ of a suitable size and to attach this bottom section 6′ to the receptacle 3 by impact bonding.
In
In
The illustrated cooking vessel may be manufactured by initially providing a receptacle 4 of a first material for receiving foodstuff, as illustrated in
A “coating layer” refers to a material layer which is applied by a suitable coating process, such as spraying or electrolytic coating, on top of a surface of an object, such as on the bottom of the receptacle or on a surface of the bottom section. Consequently, the raw material is a compound consisting practically of chromium, nickel, aluminum or copper alone. In praxis the amount of chromium, nickel, aluminum or copper in the coating layer in most cases exceeds 50%.
Once the bottom section and the receptacle are arranged on top of each other with a coating layer between them, the bottom section and the receptacle are attached to each other. This may be implemented by impact bonding, such that the coating layer attaches the receptacle to the bottom section without any additional attachment means.
In
On the inner side of the receptacle a first ECCS plate 9 is arranged to cover the inner bottom surface of the receptacle 4. This plate may have upper and lower coating layers of chromium. In that case it is not necessary to provide any additional coating layers within the receptacle, but instead the foodstuff may be allowed to directly contact the upper surface of the ECCS plate 9. Naturally, if desired, an additional coating layer may be arranged to cover the upper surface of the ECCS plate 9.
The outer bottom surface of the receptacle 4 is covered by second ECCS plate which provides the bottom section 6′ and the coating layers 7′, as has previously been explained in connection with
Similarly as has been explained in connection with the previous embodiments, the cooking vessel 1′″ may be manufactured by arranging the ECCS plates and the receptacle in the positions illustrated in
It is to be understood that the above description and the accompanying figures are only intended to illustrate the present invention. It will be obvious to a person skilled in the art that the invention can be varied and modified without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
20155775 | Oct 2015 | FI | national |
Number | Name | Date | Kind |
---|---|---|---|
2917818 | Thomson | Dec 1959 | A |
3650710 | Doucerain | Mar 1972 | A |
3684853 | Welch | Aug 1972 | A |
3742174 | Harnden, Jr. | Jun 1973 | A |
3742178 | Harnden, Jr. | Jun 1973 | A |
3745290 | Harnden, Jr. | Jul 1973 | A |
3773500 | Kanazawa | Nov 1973 | A |
3777094 | Peters, Jr. | Dec 1973 | A |
3897280 | Gondo | Jul 1975 | A |
3966426 | McCoy | Jun 1976 | A |
3983275 | Winter | Sep 1976 | A |
4354082 | Tellert | Oct 1982 | A |
4552284 | Rummelsburg | Nov 1985 | A |
4564001 | Maeda | Jan 1986 | A |
4574777 | Bohl | Mar 1986 | A |
4614852 | Matsushita | Sep 1986 | A |
4686152 | Matsubayashi | Aug 1987 | A |
5064055 | Bessenbach | Nov 1991 | A |
5139889 | Imazu | Aug 1992 | A |
5770837 | Hatta | Jun 1998 | A |
6099924 | Nakamaki | Aug 2000 | A |
6267830 | Groll | Jul 2001 | B1 |
6427904 | Groll | Aug 2002 | B1 |
6764730 | Sato | Jul 2004 | B2 |
6793093 | Tsai | Sep 2004 | B2 |
6906295 | Ge | Jun 2005 | B2 |
6942935 | Ge | Sep 2005 | B2 |
7026036 | Leech | Apr 2006 | B2 |
7097064 | Cheng | Aug 2006 | B2 |
7416619 | Lei | Aug 2008 | B2 |
7906221 | Groll | Mar 2011 | B2 |
7906748 | Imura | Mar 2011 | B2 |
7919729 | Hsu | Apr 2011 | B2 |
7960034 | Groll | Jun 2011 | B2 |
8602248 | Mathieu | Dec 2013 | B2 |
8796598 | England | Aug 2014 | B2 |
8851319 | Berrux | Oct 2014 | B2 |
8993118 | Hirano | Mar 2015 | B2 |
9758681 | Le Bris | Sep 2017 | B2 |
10292528 | Perillon | May 2019 | B2 |
20040229079 | Groll | Nov 2004 | A1 |
20120273483 | Pimae | Nov 2012 | A1 |
20150083711 | Moon et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
2305125 | Jan 1999 | CN |
2770525 | Apr 2006 | CN |
101263972 | Sep 2008 | CN |
201223273 | Apr 2009 | CN |
101911727 | Dec 2010 | CN |
201798510 | Apr 2011 | CN |
203555609 | Apr 2014 | CN |
204181435 | Mar 2015 | CN |
104603612 | May 2015 | CN |
4 405 101 | Jul 1994 | DE |
2113181 | Nov 2009 | EP |
1 329 522 | Sep 1973 | GB |
08-056844 | Mar 1996 | JP |
09-199264 | Jul 1997 | JP |
2004-009097 | Jan 2004 | JP |
WO-2004019742 | Mar 2004 | WO |
Entry |
---|
English-language machine translation of DE 4 405 101-A1, Emmel, Thomas (Jul. 7, 1994). |
Finnish Search Report, App. No. 20155775, Fiskars Finland Oy Ab, 1 page (dated Apr. 27, 2016). |
Extended European Search Report, EP 16196141.2, Fiskars Finland Oy Ab, 6 pages (dated Mar. 1, 2017). |
Office Action for EP Application No. 16196141.2, dated Apr. 9, 2019, 6 pages. |
English Translation of Notification of the Reasons for Rejection for KR Application No. 10-2016-0142904, dated Jun. 14, 2019, 5 pages. |
English Translation of Office Action Received for Chinese Application No. 201610959335.5, dated Oct. 28, 2019, 8 pages. |
Office Action and its English Translation for Chinese Application No. 201610959335.5, dated Jul. 3, 2020, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20170119190 A1 | May 2017 | US |