The present application claims priority to and incorporates by reference the entire contents of Japanese Patent Application No. 2011-050059 filed in Japan on Mar. 8, 2011 and Japanese Patent Application No. 2011-208534 filed in Japan on Sep. 26, 2011.
1. Field of the Present Invention
The present invention relates to a cooling device and an image forming apparatus including the cooling device.
2. Description of the Related Art
In an image forming apparatus such as a copying machine, a printer, a facsimile, or a MultiFunction Peripherals (MFP) including these, as methods for recording images like letters or symbols in a recording medium like paper or an OHP sheet, various methods are adopted. Among them, the electrophotography is widely used because it allows the high-speed formation of high-definition images. Generally, the image forming process in an electrophotographic image forming apparatus includes a step for scanning image information using an optical device, a step for writing an electrostatic latent image onto a photosensitive element based on the scanned image information, a step for forming a toner image on the photosensitive element with toner supplied from a developing device, a step for transferring the toner image formed on the photosensitive element to a recording medium, and a step for fixing the transferred toner image on the recording medium.
It is known that, when the above-described image forming process is performed, a temperature in the image forming apparatus is increased due to heat generated by the drive of various devices in the apparatus, thus causing various problems. For example, in the optical device, a scanner lamp for scanning an original or a scanner motor for driving the scanner lamp generates heat, while, in a writing device, a motor for rotating a polygon mirror at high speed generates heat. In the developing device, frictional heat is generated when toner is stirred for charging and, in a fixing device, a heater for heat-fixing a toner image generates heat. In the case of duplex printing, a recording medium heated by the fixing device is transferred to a conveying path for duplex printing, and thus a temperature surrounding the conveying path increases. Then, when such heat increases a temperature in the apparatus, toner is softened, thus causing a failed image. Moreover, when melted toner is solidified, a moving part in the developing device is locked, thus causing failure. The increase of a temperature also causes other problems such as the deterioration of oil on shaft bearings, etc., the shortening of the mechanical life of a motor, the malfunction or failure of an IC on an electric substrate, or the deformation of resin components having a low heat-resistant temperature. In order to prevent these problems caused by the increase of a temperature in the image forming apparatus, an air-cooling cooling device with a cooling fan, a duct, etc. is conventionally used for cooling.
However, with the higher-speed processing of printing, etc., the number of heating elements provided in the image forming apparatus has increased recently. The components of the image forming apparatus are more densified to achieve miniaturization and, with this tendency, the optimization of air flow design in the image forming apparatus becomes difficult. Consequently, heat tends to stay in the image forming apparatus. In response to the demand for energy saving, toner having a low melting temperature is developed to decrease energy consumption at the time of image fixing. The use of such toner having a low melting temperature requires further suppression of the increase of a temperature in the image forming apparatus. For these reasons, it is becoming difficult to obtain sufficient cooling effects with the conventional air-cooling system. Thus, as a cooling system having a higher cooling capacity, a liquid-cooling cooling device has been developed (see Japanese Patent Application Laid-open No. 2007-024985, for example).
Generally, a liquid-cooling cooling device includes a heat receiving unit arranged in a part whose temperature is increased in the image forming apparatus, a heat radiating unit for radiating heat of coolant, a circulating path for circulating coolant through the heat receiving unit and the heat radiating unit, and a pump for transferring coolant in the circulating path. The coolant is circulated by the pump through the heat receiving unit and the heat radiating unit, so that the heat radiating unit radiates heat absorbed by the heat receiving unit. Unlike the air-cooling cooling device, the liquid-cooling cooling device transfers heat through a liquid refrigerant (coolant) having a greater heat capacity than air. Thus, the liquid-cooling cooling device has higher heat-receiving properties and can efficiently cool a part whose temperature is increased.
Any joint left unfitted in the production process of a cooling device, for example, will lead to failure such as a case in which a manufactured cooling device cannot transfer liquid normally. Then, in order not to ship cooling devices with failure having occurred as they are, it is verified whether the manufactured cooling devices can transfer liquid normally. It is desirable to verify whether a cooling device transfers liquid normally when it is actually used.
Conventionally, as methods of verifying the liquid transfer of the cooling device, there exist a method of monitoring a load current value of the pump, a method with a flow meter provided in the circulating path of coolant, and a method with a detecting unit having a rotatable impeller called a flow monitor or a flow indicator (see Japanese Utility Model Registration No. 3047889) for verifying the liquid transfer by visual observation.
However, the method of monitoring a load current value of the pump involves the problem of high costs due to the increased number of circuits on a substrate, etc. Similarly, the mounting of a flow meter requires a liquid transfer detector and a circuit for amplifying detection signals of the detector, thus causing the problem of high costs.
By contrast, the method with a detecting unit having a rotatable impeller enables the detection of liquid transfer at low cost. However, the arrangement includes a movable part, and if bubbles are mixed into coolant and attached on the movable part, the coolant can form a bridge at the movable part. Then, when the bridging force generated at that time disables the operation of the movable part, the rotating action, etc. of the impeller is stopped, and it becomes impossible to verify the liquid transfer.
Therefore, there is a need for a cooling device capable of enabling easy verification of liquid transfer at low cost, and an image forming apparatus having the cooling device.
It is an object of the present invention to at least partially solve the problems in the conventional technology.
According to an embodiment, there is provided a cooling device that includes a heat receiving unit arranged to contact with a cooling target to receive heat of the cooling target; a heat radiating unit configured to radiate heat of coolant; a tank configured to store therein the coolant; a circulating path configured to circulate the coolant through the heat receiving unit, the heat radiating unit, and the tank; a pump configured to transfer the coolant in the circulating path; and a liquid transfer detecting unit configured to detect liquid transfer of the coolant. The liquid transfer detecting unit includes a detector arranged above a liquid level of the coolant stored in the tank at a position where the coolant having flowed into the tank is hit when the coolant is transferred. The detector is arranged so as to be visible from the outside of the tank.
According to another embodiment, there is provided a cooling device that includes a heat receiving unit arranged to contact with a cooling target to receive heat of the cooling target; a heat radiating unit configured to radiate heat of coolant; a tank configured to store therein the coolant; a circulating path configured to circulate the coolant through the heat receiving unit, the heat radiating unit, and the tank; a pump configured to transfer the coolant in the circulating path; and a liquid transfer detecting unit configured to detect liquid transfer of the coolant. The liquid transfer detecting unit includes a first detector arranged above a liquid level of the coolant stored in the tank at a position where the coolant having flowed into the tank is hit when the coolant is transferred and a second detector configured to detect hit of the coolant on the second detector.
According to still another embodiment, there is provided an image forming apparatus that includes the cooling device according to any one of the above embodiments.
The above and other objects, features, advantages and technical and industrial significance of this invention will be better understood by reading the following detailed description of presently preferred embodiments of the invention, when considered in connection with the accompanying drawings.
In the following, the present invention will be described with reference to the accompanying drawings. In each drawing, the same component or an equivalent thereof is indicated with the same reference numeral, and repeated explanation is appropriately simplified or omitted.
First, with reference to
A color image forming apparatus 100 illustrated in
Specifically, each of the image forming units 1Y, 1C, 1M, and 1Bk has a drum-shaped photosensitive element 2 as a latent image carrier, a charging device 3 charging the surfaces of the photosensitive element 2, a writing device 6 forming an electrostatic latent image on the surface of the photosensitive element 2, a developing device 4 forming a toner image on the surface of the photosensitive element 2, and a cleaning device 5 cleaning the surface of the photosensitive element 2. In
In the lower part of the drawing of each image forming unit 1Y, 10, 1M, and 1Bk, a transferring device 7 is arranged. The transferring device 7 has an intermediate transfer belt 10 constituted by an endless belt as a transfer member. The intermediate transfer belt 10 is laid across a plurality of rollers in a tensioned state. One of the rollers rotates as a drive roller, so that the intermediate transfer belt 10 moves around (rotates).
At the position facing the four photosensitive elements 2, four primary transfer rollers 11 as primary transfer means are arranged. Each of the primary transfer rollers 11 presses, at the corresponding position, the inner periphery surface of the intermediate transfer belt 10, and a primary transfer nip is formed at a portion at which the pressed part of the intermediate transfer belt 10 contacts with the corresponding photosensitive elements 2. Each of the primary transfer rollers 11 is connected to a power source (not illustrated), and a given direct current (DC) and/or a given alternating current (AC) is applied onto the primary transfer rollers 11.
At the position facing one of the rollers on which the intermediate transfer belt 10 is laid in a tensioned state, a secondary transfer roller 12 as secondary transfer means is arranged. The secondary transfer roller 12 presses the outer periphery surface of the intermediate transfer belt 10, and a secondary transfer nip is formed at a portion at which the secondary transfer roller 12 contacts with the intermediate transfer belt 10. Similarly to the primary transfer rollers 11, the secondary transfer roller 12 is connected to a power source (not illustrated), and a given direct current (DC) and/or a given alternating current (AC) is applied onto the secondary transfer roller 12.
The image forming apparatus 100 includes a paper feeding device 13 feeding a recording medium P such as paper or an OHP sheet to the secondary transfer nip, a pair of registration rollers 14 controlling the transfer timing of the recording medium P fed, and a fixing device 8 fixing an image onto the recording medium P.
With reference to
When the image formation action is started, the rotation of the photosensitive element 2 of each of the image forming units 1Y, 10, 1M, and 1Bk is driven, and the charging device 3 equally charges the surface of each photosensitive element 2 to given polarity. Based on image information of an original scanned by a scanning device (not illustrated), the writing device 6 irradiates the charged surface of each photosensitive element 2 with laser light so that an electrostatic latent image is formed on the surface of each photosensitive element 2. Here, the image information written on the surface of each photosensitive element 2 by the writing device 6 is single-color image information obtained by separating a desired full-color image to each color information of yellow, cyan, magenta, and black. Each developing device 4 feeds toner on the electrostatic latent image formed on the photosensitive element 2 as described above, thus developing (visualizing) the electrostatic latent image as a toner image.
The rotation of one of the rollers across which the intermediate transfer belt 10 is laid in a tensioned state is driven, so that the intermediate transfer belt 10 moves around. A constant voltage with polarity reverse of toner charging polarity or a constant-current controlled voltage is applied on each of the primary transfer rollers 11, and thus transfer electric fields are formed at the primary transfer nips between the respective primary transfer rollers 11 and the respective photosensitive elements 2. Then, due to the transfer electric fields formed at the primary transfer nips, the toner images of respective colors formed on the respective photosensitive elements 2 are overlapped sequentially on the intermediate transfer belt 10 for transfer. Consequently, the intermediate transfer belt 10 carries a full-color toner image on its surface. The toner on each photosensitive element 2 that cannot be sufficiently transferred to the intermediate transfer belt 10 is removed by the cleaning device 5.
When the image formation action is started, the paper feeding device 13 feeds the recording medium P. The pair of registration rollers 14 stops the fed recording medium P temporarily and then, at a controlled timing, transfers it to the secondary transfer nip between the secondary transfer roller 12 and the intermediate transfer belt 10. Here, a transfer voltage with polarity reverse of toner charging polarity of the toner image on the intermediate transfer belt 10 is applied on the secondary transfer roller 12, and thus a transfer electric field is formed at the secondary transfer nip. Then, due to the transfer electric field formed at the secondary transfer nip, the toner image on the intermediate transfer belt 10 is collectively transferred onto the recording medium P. Subsequently, the recording medium P is transferred to the fixing device 8, so that the toner image is fixed on the recording medium P. Then, the recording medium P is discharged to and stocked on a discharge tray (not illustrated) that is at the outside of the apparatus.
While the description above is of the image formation action to form a full-color image on a recording medium, any one of the four image forming units 1Y, 1C, 1M, and 1Bk may be used to form a single-color image, or two or three of them may be used to form a two-color or three-color images.
Next, the arrangement of the cooling device according to an embodiment of the present invention is described.
As illustrated in
Here, the cooling target cooled by the cooling device 9 is the developing device 4 of each of the image forming units 1Y, 1C, 1M, and 1Bk, and the heat receiving unit 31 is arranged so as to be in contact with the corresponding developing device 4. In
The cooling device 9 operates as follows.
The coolant cooled by the heat radiating unit 30 is transferred to the heat receiving unit 31 by the pump 32. Then, at the heat receiving unit 31, the heat of the developing device 4 is transmitted to the coolant, thus cooling the developing device 4. The coolant whose temperature is increased in the heat receiving unit 31 due to the heat from the developing device 4 is transferred, via the tank 35 and then the pump 32, to the heat radiating unit 30 again and cooled therein. In such a way, with the circulation of the coolant through the heat receiving unit 31 and the heat radiating unit 30, the cycle of heat absorption at the heat receiving unit 31 and heat radiation at the heat radiating unit 30 is repeated. As a result, the increase in temperature of the developing device 4 is suppressed, thereby avoiding the occurrence of abnormal images. The tank 35 serves as a storage tank for temporarily storing therein coolant from the radiator 33. Thus, the occurrence of great pressure fluctuation in the circulating path is prevented.
As illustrated in
The discharging port 39 of the liquid transfer pipe 36 is arranged so as to be close to the inner surface of the tank 35. On the inner surface of the tank 35 that faces the discharging port 39 above the liquid level of the stored coolant 20, a detecting unit 40 as the liquid transfer detecting unit is arranged. The detecting unit 40 is like a “target” hit by coolant discharged from the discharging port 39, and its form, material, etc. are not particularly limited. The detecting unit 40 may be of plane such as a mark put on the inner surface of the tank 35. However, depending on the angle from which the detecting unit 40 is visually observed, the visibility is improved by constituting the detecting unit 40 by a member having a certain thickness. In order to improve the visibility, the coolant may be colored with a color of red, green, etc.
The tank 35 is composed of a transparent or semi-transparent resin material so that the detecting unit 40 is visible from the outside. However, the whole of the tank 35 is not necessarily composed of a transparent or semi-transparent material. As long as the detecting unit 40 is visible from the outside, it is also possible that only one part of the tank 35 is composed of a transparent or semi-transparent material, or that a window is provided so as to allow visual observation of the inside of the tank 35. In
The distance between the distal end 36b of the liquid transfer pipe 36 and the detecting unit 40 can be determined by calculation using the following formula:
Y=(g/2V2×cos2θ)×X2+tan θX.
In the formula above, “Y” represents a distance in a vertical direction between the lower end of the distal end 36b (or the discharging port 39) of the liquid transfer pipe 36 and the lower end of the detecting unit 40, “X” a distance in a horizontal direction between the distal end 36b (or the discharging port 39) of the liquid transfer pipe 36 and the detecting unit 40, “V” an initial rate of coolant discharged from the discharging port 39, “θ” a discharge angle relative to the horizontal plane of the coolant discharged from the discharging port 39, and “g” gravitational acceleration. With the setting of values “Y” and “X” using the formula, it is possible to determine the distances in the vertical direction and in the horizontal direction between the distal end 36b of the liquid transfer pipe 36 and the detecting unit 40. It is preferable to set the values “Y” and “X” taking the visibility of the coolant discharged from the discharging port 39, the necessary flow rate of the coolant in the cooling device, etc, into consideration.
When a detecting unit for detecting the amount of the stored coolant 20 in the tank 35 based on the height of the liquid level is provided, if the cooling device is stopped but coolant flows from the upstream side of the tank 35 into the tank 35, the liquid level is changed, thus possibly causing troubles. Then, in such a case, as illustrated in
As illustrated in
In such a way, in the embodiment illustrated in
As illustrated in
In such a way, in the embodiment illustrated in
In the arrangements of the above-described respective embodiments, when the coolant discharged from the discharging port 39 hits the detecting unit 40 and, at that time, bubbles of the coolant are generated due to the splash of the coolant, air can be mixed into the circulating path, thereby possibly causing bad influence on the cooling performance. Thus, it is desirable to provide a liquid splash suppressing unit for suppressing the splash of the coolant from hitting the detecting unit 40. Specifically, the liquid splash can be suppressed by constituting the detecting unit 40 by a member such as sponge, etc. The member constituting the detecting unit 40, and the member such as sponge, etc. as a liquid splash suppressing unit may be separately arranged.
When a liquid hit detector for automatically detecting the hit of coolant on the detecting unit 40 is provided, it becomes unnecessary to verify, by visual observation, whether the coolant hits the detecting unit 40. Thus, human errors can be avoided. As a specific arrangement, for example, the detecting unit 40 is constituted by a pressure-sensitive member changing its color due to the pressure generated when it is hit by coolant, and a color identifying sensor such as a photo interrupter for identifying the color change of the pressure-sensitive member is used as the liquid hit detector. In this case, it is possible, by identifying the color change of the pressure-sensitive member, to determine not only whether the coolant hits it but also the coolant flow rate.
Instead of the pressure-sensitive member and the color identifying sensor, the detecting unit 40 may be constituted by a pair of electrodes, and the liquid hit detector may be constituted by an electric-conduction detecting sensor detecting electric conduction between the electrodes when they are hit by coolant. More specifically, a pair of electrodes is provided at a portion hit by coolant, and a certain voltage is applied on one of the electrodes. Then, when coolant is discharged and the coolant hits the pair of electrodes, electric conduction is established between the electrodes. The mechanism is such that the hit of coolant can be verified by detecting electric conduction using another detector. With plural pairs of electrodes placed in a height direction, it becomes possible, by detecting electric conduction between the electrodes arranged at a height at which the coolant hits them, to detect the coolant flow rate.
Based on detection information by the liquid hit detector, various parameters such as the heat radiation amount of the heat radiating unit or the liquid transfer amount of the pump may be controlled. As one example,
In the flowchart illustrated in
When the flow rate is not zero, it is determined next whether the flow rate is lower than the predetermined lower limit (Step S6). As a result, when the flow rate is lower than the lower limit, the air amount of the fan is increased (Step S7) and then the liquid transfer amount of the pump is increased (Step S8) to improve the cooling capacity.
When the flow rate is not lower than the lower limit, it is determined whether the flow rate exceeds the predetermined upper limit (Step S9). As a result, when the flow rate exceeds the upper limit, the air amount of the fan is decreased (Step S10) and then the liquid transfer amount of the pump is decreased (Step S11) to lower the cooling capacity.
When the air amount of the fan and the liquid transfer amount of the pump are increased or decreased, as described above, the flow rate is measured again (Step S3) and the same process is then repeated until the cooling is finished (Step S12).
In such a way, the air amount of the fan and the liquid transfer amount of the pump are controlled based on the flow rate of coolant, making it possible to appropriately control the temperature of the cooling device and thus improving the reliability of the device. The parameter controlled based on detection results may be any one of the heat radiation amount of the heat radiating unit (the air amount of the fan) and the liquid transfer amount of the pump, or other parameter may be added.
The embodiments of the present invention are described above. However, the present invention is not limited to the above-described embodiments, and it is obvious that various changes may be made without departing from the scope of the present invention. An image forming apparatus having the cooling device of the present invention is not limited to a four-color-tandem electrophotography image forming apparatus with four image forming units placed laterally as illustrated in
In the following, the present invention is described more specifically with reference to an example. However, the present invention is not limited to the following example.
In this example, the arrangement of the embodiment illustrated in
In the example, the heat receiving unit 31 is constituted by a copper block of 30 mm×330 mm×14 mm having a U-shaped passage with φ6 inside. As the heat radiating unit 30, three aluminum-corrugated (with 20 mm in thickness) radiators 33 having a square shape with a side of 120 mm are arranged in series. As the fan 34, an axial flow fan (at a flow velocity of 2.3 m/s) having a square shape with a side of 120 mm, which is the same size as of the radiator 33, is used. A piston micro pump having a resin wetted portion contacting coolant with a shutoff pump head of 25 kPa is used as the pump 32, and a polypropylene tank having a capacity of 900 mL (with a polyethylene cap) is used as the tank 35. The metal pipe 37 is constituted by an aluminum pipe and, instead of the resin tube 38, a rubber tube having the mixed composition of isobutylene-isoprene rubber and EPDM is used here. As coolant, an anti-freeze solution for −30° C.-nonfreezing, composed mainly of propylene glycol and containing a rust-preventive agent, is used. As illustrated in
With the above-described arrangement, using toner with a softening start temperature of 45° C., color duplex printing was continually conducted at a speed of 75 paper sheets per minute for three hours in a room temperature of 32° C. Here, the maximum temperature of the toner of each color in the corresponding developing device resulted in 42° C. for yellow, 42° C. for cyan, 43° C. for magenta, and 43° C. for black, and the temperature of the toner of any color was not higher than its softening start temperature. Consequently, a white-linear image due to the adhesion of toner, which is observed when the toner temperature becomes equal to or higher than its softening start temperature, did not occur. Any abnormal image due to electrical noise did not occur either. During the operation of the cooling device 9, the coolant discharged from the discharging port 39 of the liquid transfer pipe 36 hit the detecting unit 40 and, by visually observing this from the outside of the tank 35, the liquid transfer was able to be verified.
As described above, according to embodiments of the present invention, at the failure examination in the cooling device production process or at the actual use of the cooling device, the situation in which the coolant discharged from the discharging port 39 of the liquid transfer pipe 36 hits the detecting unit 40 is observed visually, and thus liquid transfer can be verified easily. In such a way, the present invention requires no device for monitoring the load current of the pump or a flow meter. Thus, it is possible to achieve, at low cost, easy verification of liquid transfer without requiring any electric power. In the embodiments of the present invention, even if bubbles are mixed into the coolant, there is no possibility of malfunction, unlike the conventional liquid transfer verifying method using an impeller. Thus, the reliability is improved.
When a liquid hit detector for detecting the hit of coolant on the detecting unit 40 is provided, automatic detection is possible without visual observation. Thus, it is possible to save troubles and avoid human errors.
As in the above-described embodiments, the discharging port 39 of the liquid transfer pipe 36 is arranged close to the detecting unit 40. Thus, it becomes possible that the coolant stably hits the detecting unit 40, thereby improving detection accuracy. As illustrated in
According to the embodiments, liquid transfer can be easily verified by visually observing coolant having flowed into the tank hitting the detecting unit or by detecting the coolant with the liquid hit detector. In this manner, the embodiment does not require a device for monitoring a load current of the pump or a flow meter. Thus, it is possible to achieve easy verification of liquid transfer at low cost. In the embodiment, even if bubbles are mixed into the coolant, there is no possibility of malfunction, unlike the conventional liquid-transfer verifying method using an impeller. Thus, the reliability is improved.
Although the invention has been described with respect to specific embodiments for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2011-050059 | Mar 2011 | JP | national |
2011-208534 | Sep 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8036564 | Takehara | Oct 2011 | B2 |
8068759 | Takehara et al. | Nov 2011 | B2 |
20100008694 | Okano et al. | Jan 2010 | A1 |
20100008695 | Okano et al. | Jan 2010 | A1 |
20100183323 | Fujiya et al. | Jul 2010 | A1 |
20110030927 | Okano et al. | Feb 2011 | A1 |
20110052247 | Saitoh et al. | Mar 2011 | A1 |
20110052248 | Nishimura et al. | Mar 2011 | A1 |
20110052249 | Iijima et al. | Mar 2011 | A1 |
20110164896 | Hirasawa et al. | Jul 2011 | A1 |
20110170895 | Fujiya et al. | Jul 2011 | A1 |
20110188880 | Suzuki et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
3047889 | Feb 1998 | JP |
2007-24985 | Feb 2007 | JP |
Entry |
---|
U.S. Appl. No. 13/427,048, filed Mar. 22, 2012, Fujiya, et al. |
Number | Date | Country | |
---|---|---|---|
20120227927 A1 | Sep 2012 | US |