The field of the invention relates generally to an internal combustion engine and, more particularly, to a system and method for cooling a turbocharged engine.
Internal combustion engines such as, but not limited to, turbocharged diesel engines as utilized with locomotives, require cooling systems to limit the temperatures of various engine components. Such engines are designed with water jackets and/or internal cooling passages for the circulation of a coolant to remove heat energy from the engine components, such as, but not limited to, the engine block and cylinder heads. Lubricating oil is circulated throughout the engine to reduce friction between moving parts and to remove heat from components such as the pistons and bearings. The lubricating oil must be cooled to maintain its lubricity and to extend the interval between oil changes.
Some internal combustion engines utilize turbochargers to increase engine power output by compressing the intake combustion air to a higher density. Such compression results in the heating of the combustion air, which must then be cooled prior to entering the combustion chamber to enable the engine to have high volumetric efficiency and low emissions of exhaust pollutants. For mobile applications such as, but not limited to, locomotives, it is known to use a pumped cooling medium such as water to transport heat to finned radiator tubes. The radiator tubes then transfer the heat to the ambient air, often using forced convection provided by a fan. This may be accomplished using a two stage intercooler for conditioning the combustion air entering the engine. A first coolant loop may include a first stage intercooler and a second coolant loop may include a second stage intercooler. This two stage system provides a level of control for maintaining the engine, lubricating oil and combustion air temperatures within respective limits without excessive fan cycling.
Means for lowering manifold air temperature (MAT) have been incorporated in turbocharged piston engine powered vehicles for many decades. Lowering MAT can increase the power available from a given size engine and/or increase the durability of the engine at very high power loads by limiting the temperatures to which components, such as aluminum pistons, are exposed. For light weight vehicles such as piston powered military aircraft and racing automobiles, the need is usually for a large reduction in MAT for a short period of time. For such applications it has been feasible to carry a small amount of water that is injected into the hot intake air when needed. The injected water changes to steam due to the high temperature, thereby absorbing heat and lowering the intake charge temperature. For heavy mobile vehicles such as, but not limited to, turbocharged diesel powered locomotives, which are designed to produce a maximum power output for an indefinite amount of time, it originally sufficed to use water based coolant circuits to transport the heat from an intercooler to a fan cooled radiator, with the coolant from the radiator used for both engine and intercooler alike.
Though internal combustion engines are used in locomotives, these engines are also used in a vast array of other applications where a prime mover is used, such as but not limited to off-highway vehicles, marine vessels, stationary power plants, agricultural vehicles, and transportation vehicles. Further reductions in NOx emissions are being required worldwide when prime movers are operated. In the case of stationary power plants and marine vessels utilizing diesel engines, it is still possible in many cases to meet reduced NOx limits with water based cooling systems that exchange heat to the environment using river, lake, or ocean water that rarely exceeds 26.67 degrees Celsius (80.01 degrees Fahrenheit).
However, the approach used with stationary power plants and marine vessels is not practical for a locomotive due to the need to haul the supply of water along with the train. Towards this end, to eliminate a need for a significant amount of coolant, locomotive and/or train operators and owners would benefit from having a cooling system that does not require a coolant based intercooler and/or intermediate ducts.
Exemplary embodiments of the invention are directed towards a system and method for cooling an engine on a vehicle without a coolant based intercooler and intermediate duct. The system an air-to-oil radiator system configured to cool oil that flows through an engine. An air-to-air radiator system is provided to cool air that flows through the engine and further configured to operate in conjunction with the air-to-oil radiator system to provide cool air for use with the air-to-oil radiator. A slow flow coolant radiator is configured to cool a coolant provided to cool the engine and further provided to operate in conjunction with the air-to-oil radiator system.
In another embodiment, a system for cooling an engine on a powered system without a coolant based intercooler and intermediate duct is disclosed. The system has an air-to-oil radiator system configured to cool oil that flows through an engine. An engine oil sump is provided having a plurality of segregated regions to manage a flow of oil through the air-to-oil radiator system. The segregated regions are configured to maintain, restore and/or retain oil as determined by a temperature of the oil.
In yet another embodiment, a method for cooling oil in an engine without a coolant based intercooler and intermediate duct is disclosed. The method includes accumulating hot oil returning from an engine in a first region of an engine oil sump. Cool oil returning from one or more air-to-oil radiators is accumulated in a second region of the engine oil sump. Hot oil accumulated in the first region of the engine oil sump is directed through one or more air-to-oil radiators. A flow rate imbalance is managed therebetween the first region and the second region. A suction dynamic flow therebetween the first region and the second region is reduced.
A more particular description of exemplary embodiments of the invention briefly described above will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
In a first circuit, oil leaves the oil sump and flows into an oil pre-lube pump.
The oil then is provided to an oil-cooling selector valve 30. This valve is used to divert oil from the air-to-oil radiator 16 while the locomotive is within a tunnel. When in a tunnel, the oil is directed to a pre-lube check valve 32. The oil is then provided to an oil filter 34 and then to an engine manifold 36 and/or engine 38 (e.g., through one or more engine jackets), which returns the oil to the oil sump 24. Oil is diverted during tunnel operation because air temperature is too high where using the air-to-oil radiator 16 is not going sufficiently cool the oil.
In another circuit, the oil is directed from the oil sump 24 to the second engine pump 28. The second engine pump 28 directs the oil to an oil cooler 20. The oil cooler 20 is supplied with an inlet 40 to accept water that is used to cool the oil and an outlet 42 to remove the water. The oil is then provided to the oil filter 34 and then to the engine manifold 36 and/or the engine 38, which returns the oil to the oil sump 24. A controller (not illustrated) is provided to determine which cooling configuration should be utilized.
As further illustrated in
As is also illustrated in
At high load and low ambient conditions the mass air flow may be too great, resulting in high cylinder pressures at higher horsepower. A waste gate valve 52 at the entrance to an engine manifold 36 is provided to lower the mass flow into the engine 38 so that full horsepower is maintained through all ambient conditions, excluding tunnel conditions. Providing the waste gate valve 52 could eliminate the manifold heater 50, as is further illustrated in
If air leaving the air-to-air radiator 15 is still below a specified temperature the waste gate valve 52 is opened. The manifold pressure should be below ambient pressure at idle and low loads. Opening the waste gate valve 52 will draw warm engine room air 55 from the baggie filters 59 and mix it with the still too cool manifold air providing some level of heating. As disclosed above, this combination could result in the elimination of the manifold heater 50.
As is further illustrated, hot oil leaving the engine 38 falls into the oil sump 24, as acted upon by gravity and/or gravitational forces. Oil falling over the first region 62, or hot region, falls unhindered, but oil falling over the second region 63, or cold region, falls onto a “roof” sheet, or cover, 68 that directs the hot oil to the first region, or hot side, of the oil sump 24. The hot side oil is pumped out of the oil sump 24 and into the air-to-oil radiator 16 and after being cooled is returned to the second region 63 cold side of the oil sump 24. The second region 63, or cold region, of the oil sump is used to supply oil back into the engine 38. A surge tank 64 is also provided for overflow oil. Also disclosed in
When the engine 38 is running and the air-to-oil system is running, the air-to-oil system is filled with oil that comes from the oil sump 24. The oil level in the oil sump 24 will eventually fall below the thermal baffle 65. The volume of oil in the surge tank 64 will remain level with the volume in the oil sump 24. The surge tank 64 could be tied to either the first region 62 or the second region 63 of the oil sump 24 to take advantage of the area with maximum drawdown depth. This could maximize the storage capability of the surge tank 64.
In operation, for example, if the locomotive is idling in cold ambient temperature, a coolant based oil system may be utilized since the coolant will heat up the oil. As the locomotive transitions to a loaded condition where it experiences a moderate temperature, the coolant based oil cooler is no longer used and an air to oil cooler is used instead. When the locomotive is within a tunnel, horsepower is reduced and the air to oil cooler is turned off. The coolant based cooler is turned on. A control strategy is used to determine which cooling strategy is to be applied. Furthermore, the engine coolant temperature will rise when compared to the oil temperature when the oil leaves the engine. This in turn drives a reverse delta temperature, between the cylinder jacket and the piston. Use of coolant and air-to-oil cooling allows a change to the packaging while also resulting in minimizing the use of the air-to-oil in lower power notches, which in turn reduces duty cycle leak potential.
Though the examples and exemplary embodiments disclosed above are directed towards a locomotive, those skilled in the art will readily recognize that they may also be used with other vehicles, or powered systems, such as but not limited to marine vessels, off-highway vehicles, transportation vehicles, stationary power stations, and agricultural vehicles. Furthermore, though diesel engines are disclosed specific to locomotives, those skilled in the art will readily recognize that embodiments of the invention may also be utilized with non-diesel powered engines, such as but not limited to natural gas powered systems, bio-diesel powered systems, etc.
While the invention has been described with reference to various exemplary embodiments, it will be understood by those skilled in the art that various changes, omissions and/or additions may be made and equivalents may be substituted for elements thereof without departing from the spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, unless specifically stated any use of the terms first, second, etc., do not denote any order or importance, but rather the terms first, second, etc., are used to distinguish one element from another.
This application claims priority to U.S. Provisional Application No. 60/974,842 filed Sep. 24, 2007.
Number | Name | Date | Kind |
---|---|---|---|
2874804 | Haas | Feb 1959 | A |
3638760 | Lamm | Feb 1972 | A |
5301642 | Matsushiro et al. | Apr 1994 | A |
6536381 | Langervik | Mar 2003 | B2 |
6604515 | Marsh et al. | Aug 2003 | B2 |
6938605 | Al-Khateeb | Sep 2005 | B2 |
7131403 | Banga et al. | Nov 2006 | B1 |
7617679 | Kardos et al. | Nov 2009 | B2 |
7806091 | Esau et al. | Oct 2010 | B2 |
20020195090 | Marsh et al. | Dec 2002 | A1 |
20030029412 | Kato et al. | Feb 2003 | A1 |
Number | Date | Country |
---|---|---|
0 166 698 | Jan 1986 | EP |
0 499 071 | Aug 1992 | EP |
Number | Date | Country | |
---|---|---|---|
20090078219 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
60974842 | Sep 2007 | US |