Field
The present invention relates to a cooling system.
Description of the Related Art
Conventionally, in cooling systems for vehicles, there is one disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2011-073537) for example. This includes a radiator, a grill that leads cooling air to cooling fins of the radiator, a fan that is provided on the rear side of the radiator and draws the cooling air, and a shroud that is provided between the radiator and the fan and forms a path of the cooling air.
However, although the shroud of Patent Document 1 has an air guiding function of cooling air, the amount of heat generation of the engine increases for example, when the size of the engine of the vehicle is increased, and therefore heat of a cooling medium for cooling the engine cannot always be sufficiently released with only the radiator.
On the other hand, it will also be possible to increase the size of the radiator in order to improve the cooling performance of the cooling medium. However, it is often difficult to mount a large radiator because of the layout of the vehicle.
Therefore, improving the cooling performance of the cooling medium is desired.
The present invention intends to improve the cooling performance of a cooling medium in a cooling system including a radiator mounted in a vehicle, a fan that generates cooling air to cool the radiator, and a shroud that is provided between the fan and the radiator and guides the cooling air.
As a solution to the above-described problems, an embodiment invention provides a cooling system including a radiator that is mounted in a vehicle and circulates a cooling medium to release heat of the cooling medium. A fan generates cooling air to cool the radiator, and a shroud is provided between the fan and the radiator and guides the cooling air. In the cooling system, the shroud has a double structure having an internal space which allows the cooling medium to pass through the internal space when the cooling medium circulates.
In another embodiment, the shroud includes, as the double structure, an inner portion having a tubular shape and an outer portion that is provided outside the inner portion in the radial direction and has a tubular shape. The internal space is formed between the inner portion and the outer portion.
Another embodiment includes partition wall parts that divide the internal space into a first internal space through which the cooling medium is caused to pass and a second internal space through which the cooling medium that has passed through the first internal space is caused to pass.
In another embodiment, the partition wall parts divide the internal space into upper and lower spaces, and the second internal space is disposed under the first internal space.
In another embodiment, the invention is configured to cause the cooling medium to flow in order of the first internal space, the radiator, and the second internal space.
In another embodiment, a radiating fin that releases the heat of the cooling medium is provided on a surface facing an air guiding space to which the cooling air is guided in the shroud.
In yet another embodiment, the radiator is mounted in a saddle-type vehicle and a second radiator that circulates the cooling medium common with the radiator is provided at a front part of the saddle-type vehicle.
In another embodiment, the fan is disposed on the upstream side relative to the radiator in the flow direction of the cooling air.
According to some embodiments, the shroud has the double structure having the internal space and the internal space allows the cooling medium to pass through the internal space when the cooling medium circulates. This allows the cooling medium passing through the internal space to be cooled by the cooling air at the surface of the shroud. Therefore, the shroud can be allowed to have a cooling function and the cooling performance of the cooling medium can be improved.
In other embodiments, the internal space is formed between the inner portion and the outer portion. This allows the cooling medium passing through the internal space to be cooled by the cooling air at the surface facing the air guiding space in the inner portion (inner side surface in the radial direction) or the surface facing the air guiding space in the outer portion (outer side surface in the radial direction). Therefore, with the simple structure including the inner portion and the outer portion as the double structure, the shroud can be allowed to have the cooling function and the cooling performance of the cooling medium can be improved.
Certain embodiments are such that the shroud includes the partition wall parts that divide the internal space into the first internal space through which the cooling medium is caused to pass and the second internal space through which the cooling medium that has passed through the first internal space is caused to pass. Due to this, the cooling medium passing through the first internal space can be cooled by the cooling air at the surface of the part forming the first internal space of the shroud. In addition, the cooling medium that has passed through the first internal space can be further cooled by the cooling air at the surface of the part forming the second internal space of the shroud. Therefore, the cooling medium can be cooled at two stages and the cooling performance of the cooling medium can be further improved.
In some embodiments, the partition wall parts divide the internal space into upper and lower spaces and the second internal space is disposed under the first internal space. This allows the cooling medium to flow from the first internal space to the second internal space by utilizing the gravitational force. Thus, the cooling medium can be caused to efficiently flow from the first internal space toward the second internal space.
Some embodiments are such that the cooling system is configured to cause the cooling medium to flow in order of the first internal space, the radiator, and the second internal space. Due to this, the cooling medium passing through the first internal space can be cooled by the cooling air at the surface of the part forming the first internal space of the shroud. In addition, the cooling medium that has passed through the first internal space can be further cooled by circulating the cooling medium by the radiator. Then, the cooling medium that has circulated in the radiator can be further cooled by the cooling air at the surface of the part forming the second internal space of the shroud. Therefore, the cooling medium can be cooled at three stages and the cooling performance of the cooling medium can be further improved.
In certain embodiments, the radiating fin that releases heat of the cooling medium is provided on the surface facing the air guiding space to which the cooling air is guided in the shroud. This increases the surface area of the surface facing the air guiding space in the shroud and thus can improve the heat release effect of the cooling medium.
In some embodiments, the radiator is mounted in the saddle-type vehicle and the second radiator that circulates the cooling medium common with the radiator is provided at the vehicle front part. This can reduce the size of the second radiator compared with the case in which only one radiator is provided. Thus, it becomes easy to make the vehicle front part compact, which allows improvement in the appearance.
In embodiments where the fan is disposed on the upstream side relative to the radiator in the flow of the cooling air, this allows the cooling medium passing through the internal space to be cooled by the cooling air before passing through the radiator (before being warmed due to the passing through the radiator). Thus, the cooling performance of the cooling medium can be further improved.
Embodiments of the present invention will be described below with reference to the drawings. Directions such as the front, rear, left, and right directions in the following description are the same as directions in a vehicle to be described below unless otherwise noted. Furthermore, at appropriate positions in the drawings used for the following description, an arrow FR indicating the vehicle front side, an arrow LH indicating the vehicle left side, and an arrow UP indicating the vehicle upper side are shown.
Referring to
Steering-system parts including the bar handle 2 and the front wheel 3 are pivotally supported steerably by a head pipe 11 at the front end of a vehicle body frame 10. The power unit 5 is disposed at the central part of the vehicle body frame 10 in the front-rear direction. At the rear part of the power unit 5, a swingarm 6 is pivotally supported swingably in the upward-downward direction around a pivot shaft 6a. A cushion unit 7 is set between the front part of the swingarm 6 and the rear part of the vehicle body frame 10.
In this example, the vehicle body frame 10 is formed by joining plural kinds of steel materials into a monolithic body by welding or the like. The vehicle body frame 10 includes the head pipe 11, a pair of left and right main frames 12 extending from the head pipe 11 toward the lower rear side, and a pair of left and right pivot plates 13 that are connected to the rear end parts of the pair of left and right main frames 12 and extend downward. A pair of left and right sub-frames 14 extend from the head pipe 11 and the front parts of the pair of left and right main frames 12 in such a manner that a part closer to the lower side is located closer to the rear side (in such a manner that a part closer to the lower side has a larger separation distance from the main frame 12). A pair of left and right seat frames 15 are connected to the upper parts of the pair of left and right pivot plates 13 and extend toward the upper rear side.
The power unit 5 is attached to the pair of left and right pivot plates 13 and the pair of left and right sub-frames 14. An air cleaner box 8 that cleans intake air of a throttle body (not shown) is provided above the power unit 5 and between the pair of left and right main frames 12 in the vehicle width direction.
A front radiator 20 (second radiator) that circulates cooling water (cooling medium) for cooling the engine and releases heat of the cooling water is provided on the front side of the pair of left and right sub-frames 14 (vehicle front part). A front fan (not shown) that draws cooling air to cool the front radiator 20 is provided on the rear side of the front radiator 20. A front shroud 21 that forms an intake path of the cooling air from the front fan is provided between the front radiator 20 and the front fan and between the pair of left and right sub-frames 14 in the vehicle width direction. The front radiator 20 circulates the cooling water common with a rear radiator 30 to be described later. For example, a Long Life Coolant (LLC) is used as the cooling water.
In
The cooling system 100 is provided between the front part of the rear fender 26 and the cushion unit 7 and above the swingarm 6 and between the pair of left and right seat frames 15 in the vehicle width direction (vehicle rear part). The cooling system 100 is attached to the vehicle body frame 10 with the intermediary of brackets 28, support members 29, and so forth.
Referring to
Symbol CP in the diagrams denotes the center of the fan 40 as viewed along the axial direction. Furthermore, symbol CL in the diagrams denotes the rotation axis line of the fan 40. Hereinafter, the rotation axis line CL will be referred to simply as the “axis line” and the direction along the axis line CL will be referred to as the “axis line direction.” In addition, the direction orthogonal to the axis line CL will be referred to as the “radial direction” and the direction of revolving around the axis line CL will be referred to as the “circumferential direction.” The axis line CL is equivalent to the rotation axis line of a motor 41 configuring the fan 40.
Furthermore, arrows W in the diagrams denote the flow of the cooling air and arrows K denote the flow of the cooling water.
The fan 40 is so disposed that the axis line CL is along the vehicle front-rear direction. In the flow direction of the cooling air, the fan 40 is disposed on the upstream side relative to the rear radiator 30. The fan 40 is disposed on the front side of the rear radiator 30 and is configured to send the cooling air toward the rear radiator 30. In side view of
The fan 40 includes the motor 41 that forms the axis line CL and a propeller 42 that rotates on the basis of driving of the motor 41.
The propeller 42 has a hub 42a that is fixed to a shaft part of the motor 41 and has a cylindrical shape, plural (for example, six, in the present embodiment) blades 42b provided to be lined in the circumferential direction on the outer circumferential part of the hub 42a, a casing 44 that forms a ring-shaped flow path 40s between the hub 42a and the casing 44, and a fixing member 43 that fixes the motor 41 and the casing 44.
In
As viewed along the axis line direction of
Referring to
As viewed along the axis line direction of
In side view of
The casing 44 includes a casing main body 45 that forms the ring-shaped flow path 40s between the hub 42a and the casing 44 and has a cylindrical shape, the flange portion 46 that protrudes outward in the radial direction from the front end part of the casing main body 45, and a joining wall 47 that extends from the rear end part of the casing main body 45 in such a manner that the diameter of a part closer to the rear side increases more outward in the radial direction, and joins the rear end part of the casing main body 45 and the front end part of the shroud 50.
As viewed along the axis line direction of
In side view of
Referring to
The rear radiator 30 includes a core 31 having a rectangular parallelepiped shape, upper and lower plates 32 and 33 provided at both upper and lower ends of the core 31, an upper tank 34 joined to the upper plate 32, a lower tank 35 joined to the lower plate 33, and left and right plates 36 and 37 provided at both left and right ends of the core 31.
The rear radiator 30 disperses and releases, in the core 31, heat of the cooling water sent by a water pump of the engine from a water jacket of the engine (neither is shown) via the front radiator 20 (see
The core 31 is so disposed that the short sides are along the vehicle width direction and the long sides are inclined with respect to the axis line CL (specifically, inclined rearward with respect to the vehicle upward-downward direction).
The upper and lower plates 32 and 33 extend in the vehicle width direction along the short sides of the core 31 and fix tubes and fins (neither is shown) configuring the core 31. The upper plate 32 joins the upper end part of the core 31 and the upper tank 34. The lower plate 33 joins the lower end part of the core 31 and the lower tank 35.
The upper tank 34 and the lower tank 35 extend in the vehicle width direction along the upper and lower plates 32 and 33, respectively.
The left and right plates 36 and 37 each extend along the longer sides of the core 31, and join the upper tank 34 and the lower tank 35 and join the upper plate 32 and the lower plate 33.
The upper tank 34 temporarily reserves the cooling water that has passed through the first internal space S11 to be described later and guides the reserved cooling water to the core 31. An inlet part 34a that causes the cooling water from the first internal space S11 to flow into the upper tank 34 is formed at the left end part of the front side of the upper tank 34. A water filling port (filler neck, not shown) may be made in the upper tank 34.
The lower tank 35 collects the cooling water that has passed through the tubes configuring the core 31 and causes the cooling water to flow out to a second internal space S12 to be described later. An outlet part 35a that causes the cooling water from the tubes to flow out to the second internal space S12 is formed at the right end part of the front side of the lower tank 35. A drain cock (not shown) may be made in the lower tank 35.
Referring to
The shroud 50 includes, as the double structure, an inner portion 51 having a tubular shape and an outer portion 52 that is provided outside the inner portion 51 in the radial direction and has a tubular shape. The internal space S10 is formed between the inner portion 51 and the outer portion 52.
In one example, the shroud 50 is formed of a metal such as aluminum. The shroud 50 can be formed by casting and welding. The internal space S10 can be formed by carrying out casting in a state in which one end part of the inner portion 51 and the outer portion 52 in the axis line direction is opened and then sealing the open part to make a hollow area between the inner portion 51 and the outer portion 52.
In the sectional view of
In the sectional view of
In the sectional view of
In the sectional view of
Referring to
This allows the cooling air to be guided along the plural radiating fins 53 even in the case in which the flow of the cooling air is likely to become unstable due to that the air guiding space A10 becomes wider as the position gets closer to the rear side. Thus, the flow of the cooling air can be inhibited from becoming unstable and the air guiding function of the cooling air can be kept.
The front end parts of the plural radiating fins 53 are separate from the front end of the inner portion 51 by a predetermined distance (for example, distance equivalent to the tube diameter of a first cooling water passing part 55 and a fourth cooling water passing part 58 to be described later), and the rear end parts of the plural radiating fins 53 are close to the rear end of the inner portion 51 (core 31).
Referring to
In
The shroud 50 has plural (for example, three, in the present embodiment) partition walls 54a, 54b, and 54c (first partition wall 54a, second partition wall 54b, and third partition wall 54c) that divide the internal space S10 into the first internal space S11 and the second internal space S12, which will be described later.
In
The respective partition walls 54a, 54b, and 54c can also be referred to as “partition wall parts.”
The first partition wall 54a is disposed between the inner left wall 51c and the outer left wall 52c. The second partition wall 54b and the third partition wall 54c are disposed between the inner right wall 51d and the outer right wall 52d separately from each other in the upward-downward direction.
In
In
The respective walls of the outer portion 52 are opposed to the respective walls of the inner portion with the intermediary of a substantially equal interval and the area between them serves as the internal space S10.
Referring to
Referring to
In side view of
Referring to
In
In
Specifically, the cooling water that has passed through the rear radiator 30 after passing through the first internal space S11 is caused to pass through the second internal space S12. As above, the cooling system 100 is configured to cause the cooling water to flow in order of the first internal space S11, the rear radiator 30, and the second internal space S12.
Referring to
The first cooling water passing part 55 is provided on the outer right wall 52d.
The second cooling water passing part 56 is provided on the outer upper wall 52a.
The third cooling water passing part 57 is provided on the outer lower wall 52b.
The fourth cooling water passing part 58 is provided on the outer left wall 52c.
In
In
In
In
As viewed along the axis line direction of
As viewed along the axis line direction of
The circulation route of the cooling water for cooling the engine will be described below.
In
The first pipe 61 extends with curving in the vehicle width direction, with one end part joined to the left side part of the water jacket (not shown) of the engine and with the other end part joined to the pipe joining portion 66.
The second pipe 62 extends with curving in the front-rear direction, with one end part joined to the right side part of the water jacket and with the other end part joined to the pipe joining portion 66.
The third pipe 63 extends with curving in the front-rear direction, with one end part (rear end part) joined to the pipe joining portion 66 and with the other end part (front end part) joined to the right end part of the front radiator 20 (for example, an inlet pipe of a right tank 20b). The third pipe 63 functions as a confluent pipe of the first pipe 61 and the second pipe 62.
The fourth pipe 64 extends with curving in the front-rear direction, with one end part (front end part) joined to the left side end part of the front radiator 20 (for example, an outlet pipe of a left tank 20c) and with the other end part (rear end part) joined to the front end part of the first cooling water passing part 55.
The fifth pipe 65 extends with bending in the front-rear direction, with one end part (rear end part) joined to the front end part of the fourth cooling water passing part 58 and with the other end part (front end part) joined to the water pump (not shown) on the front side.
The cooling water that has become hot due to the engine flows in the first pipe 61 and the second pipe 62 and converges to the third pipe 63. The cooling water that has converged to the third pipe 63 flows in the third pipe 63 and flows into the right tank 20b via the inlet pipe of the front radiator 20.
The cooling water that has flowed into the right tank 20b passes through tubes configuring a core 20a of the front radiator 20 and flows into the left tank 20c. The cooling water that has flowed into the left tank 20c flows into the fourth pipe 64 via the outlet pipe.
The cooling water that has flowed into the fourth pipe 64 flows in the fourth pipe 64 and flows into the first internal space S11 (see
Referring also to
The cooling water that has flowed into the upper tank 34 passes through the tubes configuring the core 31 of the rear radiator 30 and flows into the lower tank 35.
The cooling water that has flowed into the lower tank 35 flows into the second internal space S12 via the outlet part 35a of the lower tank 35 and the downstream passage 57a of the third cooling water passing part 57.
The cooling water that has flowed into the second internal space S12 flows in the second internal space S12 and flows into the fifth pipe 65 via the fourth cooling water passing part 58. The cooling water that has flowed into the fifth pipe 65 flows in the fifth pipe 65 and flows into the water pump of the engine. The cooling water that has flowed into the water pump is pressure-fed toward the water jacket of the engine.
Referring also to
As described above, in the above-described embodiment, in the cooling system 100 including the rear radiator 30 that is mounted in the vehicle 1 and circulates the cooling water to release heat of the cooling water, the fan 40 that generates the cooling air to cool the rear radiator 30, and the shroud 50 that is provided between the fan 40 and the rear radiator 30 and guides the cooling air, the shroud 50 has the double structure having the internal space S10 and the internal space S10 allows the cooling water to pass through the internal space S10 when the cooling water circulates.
According to this configuration, due to that the shroud 50 has the double structure having the internal space S10 and the internal space S10 allows the cooling water to pass through the internal space S10 when the cooling water circulates, the cooling water passing through the internal space S10 can be cooled by the cooling air at the surface of the shroud 50. Therefore, the shroud 50 can be allowed to have a cooling function and the cooling performance of the cooling water can be improved.
Furthermore, in the above-described embodiments, the internal space S10 is formed between the inner portion 51 and the outer portion 52. This allows the cooling water passing through the internal space S10 to be cooled by the cooling air at the surface facing the air guiding space A10 in the inner portion 51 (inner side surface in the radial direction). Therefore, with the simple structure including the inner portion 51 and the outer portion 52 as the double structure, the shroud 50 can be allowed to have the cooling function and the cooling performance of the cooling water can be improved.
Moreover, in the above-described embodiments, the shroud 50 includes the partition walls 54a, 54b, and 54c that divide the internal space S10 into the first internal space S11 through which the cooling water is caused to pass and the second internal space S12 through which the cooling water that has passed through the first internal space S11 is caused to pass. Due to this, the cooling water passing through the first internal space S11 can be cooled by the cooling air at the surface of the part forming the first internal space S11 of the shroud 50. In addition, the cooling water that has passed through the first internal space S11 can be further cooled by the cooling air at the surface of the part forming the second internal space S12 of the shroud 50. Therefore, the cooling water can be cooled at two stages and the cooling performance of the cooling water can be further improved.
In addition, in the above-described embodiments, the partition walls 54a, 54b, and 54c divide the internal space S10 into upper and lower spaces and the second internal space S12 is disposed under the first internal space S11. This allows the cooling water to flow from the first internal space S11 to the second internal space S12 by utilizing the gravitational force. Thus, the cooling water can be caused to efficiently flow from the first internal space S11 toward the second internal space S12.
Furthermore, in the above-described embodiments, the cooling system 100 is configured to cause the cooling water to flow in order of the first internal space S11, the rear radiator 30, and the second internal space S12. Due to this, the cooling water passing through the first internal space S11 can be cooled by the cooling air at the surface of the part forming the first internal space S11 of the shroud 50. In addition, the cooling water that has passed through the first internal space S11 can be further cooled by circulating the cooling water by the rear radiator 30. Then, the cooling water that has circulated in the rear radiator 30 can be further cooled by the cooling air at the surface of the part forming the second internal space S12 of the shroud 50. Therefore, the cooling water can be cooled at three stages and the cooling performance of the cooling water can be further improved.
Moreover, in the above-described embodiments, the radiating fin 53 that releases heat of the cooling water is provided on the surface facing the air guiding space A10 to which the cooling air is guided in the shroud 50. This increases the surface area of the surface facing the air guiding space A10 in the shroud 50 and thus can improve the heat release effect of the cooling water.
In addition, in the above-described embodiments, the rear radiator 30 is mounted in the motorcycle 1 and the front radiator 20 that circulates the cooling water common with the rear radiator 30 is provided at the vehicle front part. This can reduce the size of the front radiator 20 compared with the case in which only one radiator is provided. Thus, it becomes easy to make the vehicle front part compact, which allows improvement in the appearance.
Furthermore, in the above-described embodiments, the fan 40 is disposed on the upstream side relative to the rear radiator 30 in the flow of the cooling air. This allows the cooling water passing through the internal space S10 to be cooled by the cooling air before passing through the rear radiator 30 (before being warmed due to the passing through the rear radiator 30). Thus, the cooling performance of the cooling water can be further improved.
In the above-described embodiments, the cooling water is used as the cooling medium. However, the cooling medium is not limited thereto and a coolant comparable to the cooling water, such as an antifreeze liquid, may be used.
Furthermore, although only one shroud 50 is provided between the fan 40 and the rear radiator 30 in the above-described embodiment, the configuration is not limited thereto. For example, a pair of left and right plate-shaped shrouds may be provided between the fan 40 and the rear radiator 30 or a pair of upper and lower plate-shaped shrouds may be provided between the fan 40 and the rear radiator 30. In this case, the cooling water passing through the internal space S10 can be cooled by the cooling air at the surface facing the air guiding space A10 in the outer portion 52 (outer side surface in the radial direction).
Moreover, in the above-described embodiments, the internal space S10 is divided into two spaces, i.e. the first internal space S11 through which the cooling water is caused to pass and the second internal space S12 through which the cooling water that has passed through the first internal space S11 is caused to pass. However, the internal space S10 is not limited thereto and may be divided into three or more spaces.
In addition, although the internal space S10 is divided into upper and lower spaces in the above-described embodiment, the internal space S10 is not limited thereto and may be divided into left and right spaces.
Furthermore, in the above-described embodiments, the fan 40 is configured to send the cooling air toward the rear radiator 30. However, the configuration is not limited thereto and the fan 40 may be configured to draw the cooling air from the rear radiator 30. In other words, although the fan 40 is disposed on the upstream side relative to the rear radiator 30 in the flow of the cooling air, the configuration is not limited thereto and the fan 40 may be disposed on the downstream side relative to the rear radiator 30.
Moreover, although a down-flow type is used as the rear radiator 30 in the above-described embodiments, the rear radiator 30 is not limited thereto and a side-flow type may be used.
The present invention is not limited to the above-described embodiments. For example, the above-described saddle-type vehicles include overall vehicles a driver rides astride the vehicle body, and include not only motorcycles (including motorized bicycles and scooter-type vehicles) but also three-wheeled vehicles (including also vehicles with front two wheels and rear one wheel besides vehicles with front one wheel and rear two wheels).
Furthermore, the configuration in the above-described embodiments are examples of the present invention and it is possible to make various changes such as replacement of a constituent element of the embodiments by a well-known constituent element without departing from the gist of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2015-146151 | Jul 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2260594 | Young | Oct 1941 | A |
3692004 | Tangue | Sep 1972 | A |
3777808 | Izumi | Dec 1973 | A |
3800866 | Ireland | Apr 1974 | A |
3829236 | MacLennan | Aug 1974 | A |
4184541 | Beck | Jan 1980 | A |
4397348 | Klem | Aug 1983 | A |
4909311 | Nakamura | Mar 1990 | A |
4947931 | Vitacco | Aug 1990 | A |
5012768 | Roschinski | May 1991 | A |
5046554 | Iwasaki | Sep 1991 | A |
5129473 | Boyer | Jul 1992 | A |
5216983 | Nilson | Jun 1993 | A |
5519269 | Lindberg | May 1996 | A |
5649587 | Plant | Jul 1997 | A |
5660149 | Lakerdas | Aug 1997 | A |
5960748 | Lewis | Oct 1999 | A |
5971062 | Sadr | Oct 1999 | A |
6016774 | Bokkers | Jan 2000 | A |
6041744 | Oota | Mar 2000 | A |
6189492 | Brown | Feb 2001 | B1 |
6499956 | Nakamura | Dec 2002 | B2 |
6676371 | Brown | Jan 2004 | B1 |
6732681 | Hendricks, Sr. | May 2004 | B1 |
6832643 | Zobel | Dec 2004 | B1 |
6896095 | Shah | May 2005 | B2 |
6908283 | Soofer | Jun 2005 | B2 |
6910529 | Stone | Jun 2005 | B2 |
6938727 | Xia | Sep 2005 | B2 |
7017707 | Zia | Mar 2006 | B2 |
7047914 | Komorowski | May 2006 | B2 |
7404463 | Saiki | Jul 2008 | B2 |
8141670 | Hayashi | Mar 2012 | B2 |
8182217 | Schaffer | May 2012 | B2 |
8256551 | Entriken | Sep 2012 | B2 |
8454718 | Buchmann | Jun 2013 | B2 |
8763409 | Newman | Jul 2014 | B2 |
8807113 | Cassell, Jr. | Aug 2014 | B2 |
8936121 | Vacca | Jan 2015 | B2 |
8991534 | Morey | Mar 2015 | B2 |
9487076 | Matsuo | Nov 2016 | B2 |
9751393 | Nakata | Sep 2017 | B2 |
20010018022 | Nakamura | Aug 2001 | A1 |
20030029393 | Komorowski | Feb 2003 | A1 |
20030183446 | Shah | Oct 2003 | A1 |
20030221905 | Xia | Dec 2003 | A1 |
20040012125 | Plant | Jan 2004 | A1 |
20040129407 | Stone | Jul 2004 | A1 |
20050079051 | Soofer | Apr 2005 | A1 |
20060048924 | Desai | Mar 2006 | A1 |
20060065455 | Saiki | Mar 2006 | A1 |
20080066696 | Hirayama | Mar 2008 | A1 |
20080066698 | Hirayama | Mar 2008 | A1 |
20080236518 | Schaffer | Oct 2008 | A1 |
20100242866 | Buchmann | Sep 2010 | A1 |
20100247351 | Kleber | Sep 2010 | A1 |
20110155081 | Entriken | Jun 2011 | A1 |
20110240252 | Borski | Oct 2011 | A1 |
20120241128 | Vacca | Sep 2012 | A1 |
20130008631 | Newman | Jan 2013 | A1 |
20140182956 | Morey | Jul 2014 | A1 |
20150068830 | Nakata | Mar 2015 | A1 |
20150328979 | Matsuo | Nov 2015 | A1 |
20160177810 | Gullberg | Jun 2016 | A1 |
20160208674 | Kim | Jul 2016 | A1 |
20170022876 | Hoshi | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
995895 | Apr 2000 | EP |
S5029936 | Mar 1975 | JP |
S51116602 | Jan 1978 | JP |
S5333738 | Mar 1978 | JP |
S50029936 | Jan 1980 | JP |
2009241901 | Oct 2009 | JP |
2011-073537 | Apr 2011 | JP |
02012241570 | Dec 2012 | JP |
2012241570 | Dec 2012 | JP |
2013173473 | Sep 2013 | JP |
2001019244 | Mar 2001 | KR |
2013126202 | Nov 2013 | KR |
Number | Date | Country | |
---|---|---|---|
20170022876 A1 | Jan 2017 | US |