Cooling unit for a charging column, and charging column having a cooling unit

Information

  • Patent Grant
  • 11148534
  • Patent Number
    11,148,534
  • Date Filed
    Tuesday, July 3, 2018
    6 years ago
  • Date Issued
    Tuesday, October 19, 2021
    3 years ago
Abstract
A cooling unit for a charging column includes a heat exchanger with first connections and second connections and that is set up for cooling a closed secondary coolant circuit of the charging column if the first connections are fluidically connected to a common primary coolant circuit of the electric filling station and the second connections are fluidically connected to the secondary coolant circuit. Also described herein is a corresponding charging column.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to German Patent Application No. DE 10 2017 115 640.2, filed Jul. 12, 2017, which is incorporated by reference herein in its entirety.


FIELD OF THE INVENTION

The present invention relates to a cooling unit for a charging column. The present invention also relates to a corresponding charging column.


BACKGROUND OF THE INVENTION

In electrical engineering, any stationary device or electrical system which serves for supplying energy to mobile, battery-operated units, machines or motor vehicles by way of simple setting or insertion without it being necessary for the energy store—for example the traction battery of an electric automobile—to be removed is referred to as a charging station. Charging stations for electric automobiles are also referred to colloquially as “electric filling stations” and may comprise multiple charging points which, depending on the type of construction, are characterized as “charging columns”.


Known here in particular are direct-current fast charging/high-performance charging (HPC) systems such as the so-called combined charging system (CCS), which is widespread in Europe. In the case of direct-current charging of this generic type, direct current is fed from the charging column directly into, the vehicle and, for this purpose, is provided by way of a powerful rectifier from the power supply system or by way of large buffer accumulators at solar filling stations. Situated, in the vehicle is a battery management system which communicates with the charging column in order to adapt the current intensity, or to terminate the process when a capacity limit is reached.


According to the prior art, the power electronics required for this purpose are normally integrated in the charging column and able to be loaded up to a power limit of 50 kW.


Since the direct-current connections of the charging column are connected directly to corresponding connections of the traction battery, it is thus possible for high charging currents to be transmitted with little loss, this allowing short charging times but also leading to generation of heat.


In order to keep the weight and the flexibility of the charging cable low for the user, cable cooling systems having charging cables through which liquid flows are described in the literature. CN 206225028, which is incorporated by reference herein, DE 102011100389, which is incorporated by reference herein, US 2012043935, which is incorporated by reference herein, US 2015217654, which is incorporated by reference herein, and US 2017028862, which is incorporated by reference herein, disclose by way of example charging cables of said type, in whose cable sheath a cooling fluid flows.


However, such systems have problems during installation, start-up and maintenance. The charging, cable, in particular, is subject to particularly high wear as a result of regular use, the weather or improper handling. However, the replacement and the installation generally require the fitting of the components of the cooling system or the connection of the cable cooling circuit to the cooling system of the charging column. For this purpose, it is necessary not only for cooling liquid to be introduced but additionally for the cooling circuit to be deaerated for problem-free operation. Said activities are time-consuming, susceptible to errors and commit maintenance teams locally to the charging columns.


Alternatives with leakage-free, or even dead-volume-free, plug connectors, which could avoid fining or deaeration are disproportionately expensive and, sensitive.


SUMMARY OF THE INVENTION

One advantage of the solution described herein is in the creation of an exchangeable cooling system. It is thus possible for the cooling system to be delivered and fitted already filled and deaeration of the cooling circuit on site to be avoided.


For this purpose the cooling circuit of the charging cable is connected via a heat exchanger to the liquid cooling circuit of the charging column, it being possible for the latter circuit to use a different cooling medium. All fasteners and couplings permit quick assembly.


The cooling unit is advantageously situated at a high point in the charging column. The cable together with the cooling unit can thus be lowered into the charging column from above during the assembly on site.


The fixing of the charging cable is realized solely by, a number of fixings of the sheath (with clamping action, at the outlet out of the charging column, and possibly in the supporting arm of the column) and by fixing or suspending the cooling unit in the interior of the charging column. The unit and the charging column are therefore formed in such a way that the cable can be placed and fitted in a rapid process without further complicated assembly steps.





BRIEF DESCRIPTION OF THE DRAWING

One exemplary embodiment of the invention is illustrated in the drawings and be described in more detail below. In the drawings:



FIG. 1 shows the perspective view of a first charging column,



FIG. 2 shows the exploded illustration of a second charging column,



FIG. 3 shows the perspective view of a cooling unit of the second charging column, and



FIG. 4 shows a schematic block diagram of multiple charging columns connected to a primary coolant circuit.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 illustrates the basic structure of the proposed charging column (30). The charging column (30) comprises a cooling unit (10) which cools the closed secondary coolant circuit of the charging column (30) if the charging column (30) is fiuidically connected to the common primary coolant circuit of multiple charging columns of an electric filling station.


A combined view of the slightly different embodiment as per FIG. 2 and its cooling unit (10) illustrated in detail in FIG. 3 illustrates this operating principle: the coding unit (10) is accordingly based on a heat exchanger (20) with first connections (11, 13) and second connections (15, 16). While the first connections (11, 13) are connected—via two hoses (19) with shut-off valves (18)—to the connection points (21) of the primary coolant circuit, the second connections (15, 16) feed the secondary coolant circuit via a pump (14) with a compensation vessel (12), it being intended for the heat of said secondary coolant circuit to be transferred to the primary coolant circuit via the heat exchanger (20). FIG. 4 shows a schematic block diagram of the cooling units of multiple charging columns connected to a primary coolant circuit. While the primary coolant circuit typically conducts a water glycol mixture, the secondary coolant circuit may be filled with a synthetic methoxy heptafluoropropane or nonafluoropropane, hydrofluoroether, or fluorinated ketone, for example distributed under the trade name “Novec”, or some other non-conductive fluid which reacts as slowly as possible.


The cooling unit (10) prefabricated in this way is able to be lowered into the inner frame (34), illustrated in FIG. 2, of the charging column (30) in a simple manner with regard to assembly, the housing of which frame is formed from outer walls (32, 35) with bracket plates (31, 36) composed of sheet molding compound (SMC) bearing externally thereagainst and, in the present case, is accessible via a locking mechanism (37) of the left-hand outer wall (32). An upper cable holder (33) and a roof (38) with a drip edge are arranged in a form-fitting manner between the ends of the bracket plates (31, 36) which are the upper ones according to the drawings. The cable holder (33), in turn, is composed of two injection moldings which receive the cooled charging cable (17) between them by way of two cutouts which are formed in a complementary manner.

Claims
  • 1. A charging column of an electric filling station, the charging column comprising: (i) a housing having side walls in the form of bracket plates, an interior region, a roof positioned between the bracket plates, a cable holder positioned beneath the roof and between the bracket plates, the cable holder being configured for receiving a cooled charging cable,(ii) the cooled charging cable for charging an electric vehicle, and(iii) an exchangeable cooling unit positioned entirely within the interior region, the exchangeable cooling unit comprising a heat exchanger with first connections and second connections, said first connections including hoses that are configured to be connected to a common primary coolant circuit that is shared between multiple charging columns of said electric filling station, and said second connections being configured to be connected to a closed secondary coolant circuit of the charging column including the cooled charging cable; said heat exchanger being configured to transfer heat from fluid in said secondary cooling circuit to a separate fluid in said common primary coolant circuit.
  • 2. The charging column as claimed in claim 1, wherein the cooling unit further comprises a pump, and the pump is fluidically connected to the second connections.
  • 3. The charging column as claimed in claim 2, wherein the cooling unit further comprises a compensation vessel, and the compensation vessel is fluidically connected to the pump.
  • 4. The charging column as claimed in claim 1, wherein the second connections of the cooling unit are fluidically connected to the closed secondary coolant circuit.
  • 5. The charging column as claimed in claim 1, wherein the secondary coolant circuit is filled with a slow-reacting, inert, non-conductive fluid.
  • 6. The charging column as claimed in claim 1, wherein the secondary coolant circuit is filled with methoxy heptafluoropropane, methoxy nonafluoropropane, hydrofluoroether, or fluorinated ketone.
  • 7. The charging column as claimed in claim 1, wherein the hoses have shut-off valves and connection points for connection to the primary coolant circuit, and the shut-off valves are arranged at the connection points.
  • 8. The charging column as claimed in claim 1, wherein the charging column comprises a left-hand outer wall with a left-hand bracket plate of said bracket plates, a right-hand outer wall with a right-hand bracket plate of said bracket plates, and the roof having a drip edge, wherein the bracket plates bear externally against the outer walls, and the roof is arranged in a form-fitting manner between the bracket plates.
  • 9. The charging column as claimed in claim 1, wherein the cable holder includes two injection moldings, and the cable holder is arranged in a form-fitting manner between the bracket plates and is covered by the roof.
  • 10. The charging column as claimed in claim 8, wherein one of the outer walls has a locking mechanism.
Priority Claims (1)
Number Date Country Kind
102017115640.2 Jul 2017 DE national
US Referenced Citations (50)
Number Name Date Kind
5591937 Woody Jan 1997 A
5909099 Watanabe Jun 1999 A
6396241 Ramos et al. May 2002 B1
6546899 Friedrich et al. Apr 2003 B1
7789176 Zhou Sep 2010 B2
8350526 Dyer et al. Jan 2013 B2
9132743 Bianco Sep 2015 B2
9321362 Woo Apr 2016 B2
10029575 Remisch Jul 2018 B2
10081262 Nagel et al. Sep 2018 B2
10611254 Kohler Apr 2020 B2
10717367 Price Jul 2020 B1
10894479 Reber Jan 2021 B2
20090234705 Brunschwiler Sep 2009 A1
20090273310 Flack Nov 2009 A1
20120043935 Dyer Feb 2012 A1
20120043943 Dyer Feb 2012 A1
20130029193 Dyer Jan 2013 A1
20130074525 Johnston et al. Mar 2013 A1
20130207606 Ranga Aug 2013 A1
20130320921 Muller Dec 2013 A1
20140292260 Dyer Oct 2014 A1
20150054460 Epstein Feb 2015 A1
20150217654 Woo Aug 2015 A1
20150306974 Mardall Oct 2015 A1
20160120058 Shedd Apr 2016 A1
20160221458 Lopez Aug 2016 A1
20160305306 Oslislok et al. Oct 2016 A1
20170028862 Nagel Feb 2017 A1
20170088005 Christen Mar 2017 A1
20170338006 Gontarz Nov 2017 A1
20180170201 Miller Jun 2018 A1
20180229616 Rhodes Aug 2018 A1
20180304757 Vaughan Oct 2018 A1
20180334049 Gotz Nov 2018 A1
20180370374 Gotz Dec 2018 A1
20190016219 Gro Jan 2019 A1
20190047429 Torkelson Feb 2019 A1
20190168593 Nakaso Jun 2019 A1
20190217707 Reber Jul 2019 A1
20190241093 Shimauchi Aug 2019 A1
20190326762 Zoon Oct 2019 A1
20190341661 Guerra Nov 2019 A1
20200180457 Waffner Jun 2020 A1
20200238845 Heyne Jul 2020 A1
20200338998 Wainwright Oct 2020 A1
20200343610 Agathocleous Oct 2020 A1
20200361327 Heyne Nov 2020 A1
20200366104 Stanfield Nov 2020 A1
20210100138 Chen Apr 2021 A1
Foreign Referenced Citations (21)
Number Date Country
102790413 Nov 2012 CN
205681158 Nov 2016 CN
205960730 Feb 2017 CN
206225028 Jun 2017 CN
102011100389 May 2012 DE
102012104520 Nov 2013 DE
102015105921 Oct 2016 DE
102015112347 Feb 2017 DE
102015120048 May 2017 DE
0823766 Feb 1998 EP
0823767 Feb 1998 EP
1869391 Dec 2007 EP
2344826 Jul 2011 EP
3017990 May 2016 EP
3282211 Feb 2018 EP
3412494 Dec 2018 EP
H10261534 Sep 1998 JP
2002528326 Sep 2002 JP
2006110090 Oct 2006 WO
2010056183 May 2010 WO
2016163363 Oct 2016 WO
Non-Patent Literature Citations (7)
Entry
Australian Examination Report for Australian Application No. 2018204414, dated Mar. 4, 2019, 3 pages.
Chinese Office Action for Chinese Application No. 2018107512776, dated Sep. 23, 2019, 7 pages.
English translation of Chinese Office Action for Chinese Application No. 2018107512776, dated Jun. 10, 2020, 8 pages.
Notification of Reason for Rejection for Japanese Application No. 2018-129792, dated May 14, 2019, 3 pages.
Extended European Search Report for European Application No. EP 18 02 0057, dated Sep. 26, 2018, with partial English translation, 10 pages.
Australian Examination Report for Australian Application No. 2020201606, dated Oct. 16, 2020, 7 pages.
Chinese Notification of Reexamination for Chinese Application No. 201810751277.6, dated Apr. 21, 2021, with translation, 13 pages.
Related Publications (1)
Number Date Country
20190016222 A1 Jan 2019 US