The present disclosure relates to a coordinate measuring machine, and more particularly to a portable articulated arm coordinate measuring machine having a probe end to which a camera and a distance meter are attached and in which distances between points within images captured by the camera may be determined.
Portable articulated arm coordinate measuring machines (AACMMs) have found widespread use in the manufacturing or production of parts where there is a need to rapidly and accurately verify the dimensions of the part during various stages of the manufacturing or production (e.g., machining) of the part. Portable AACMMs represent a vast improvement over known stationary or fixed, cost-intensive and relatively difficult to use measurement installations, particularly in the amount of time it takes to perform dimensional measurements of relatively complex parts. Typically, a user of a portable AACMM simply guides a probe along the surface of the part or object to be measured. The measurement data are then recorded and provided to the user. In some cases, the data are provided to the user in visual form, for example, three-dimensional (3-D) form on a computer screen. In other cases, the data are provided to the user in numeric form, for example when measuring the diameter of a hole, the text “Diameter=1.0034” is displayed on a computer screen.
An example of a prior art portable articulated arm CMM is disclosed in commonly assigned U.S. Pat. No. 5,402,582 ('582), which is incorporated herein by reference in its entirety. The '582 patent discloses a 3-D measuring system comprised of a manually-operated articulated arm CMM having a support base on one end and a measurement probe at the other end. Commonly assigned U.S. Pat. No. 5,611,147 ('147), which is incorporated herein by reference in its entirety, discloses a similar articulated arm CMM. In the '147 patent, the articulated arm CMM includes a number of features including an additional rotational axis at the probe end, thereby providing for an arm with either a two-two-two or a two-two-three axis configuration (the latter case being a seven axis arm).
Three-dimensional surfaces may be measured using non-contact techniques as well. One type of non-contact device, sometimes referred to as a laser line probe, emits a laser light either on a spot, or along a line. An imaging device, such as a charge-coupled device (CCD) for example, is positioned adjacent the laser to capture an image of the reflected light from the surface. The surface of the object being measured causes a diffuse reflection. The image on the sensor will change as the distance between the sensor and the surface changes. By knowing the relationship between the imaging sensor and the laser and the position of the laser image on the sensor, triangulation methods may be used to measure points on the surface.
While existing CMMs are suitable for their intended purposes, what is needed is a portable AACMM that has certain features of embodiments of the present invention.
In accordance with one embodiment of the invention, a three-dimensional (3D) measuring device includes an articulated arm coordinate measurement machine (AACMM), the AACMM including a base and a manually positionable arm portion having opposed first and second ends, the arm portion including a plurality of connected arm segments, each arm segment including at least one position transducer for producing a position signal, the first end attached to the base, a camera coupled to the second end, a non-contact 3D measurement device coupled to the second end, the noncontact 3D measurement device having a light source, the noncontact 3D measurement device configured to determine a distance to an object point based at least in part on the speed of light in air, and an electronic circuit which receives the position signal from the at least one position transducer and provides data corresponding to a position of the camera and the non-contact 3D measurement device; a processor system including at least one of an AACMM processor, an external computer, and a cloud computer configured for remote access, wherein the processor system is responsive to executable instructions which when executed by the processor system is operable to: cause the light source to send a first beam of light to a first object point; cause the noncontact 3D measurement device to receive a first reflected light and determine a first distance to the first object point in response, the first reflected light being a portion of the first beam of light reflected by the first object point; determine an angle of the first beam of light relative to the AACMM based at least in part on first position signals from the transducers; determine first 3D coordinates of the first object point based at least in part on the first distance and a first angle of the first beam of light relative to the AACMM; cause the camera to obtain a first 2D image of a first surface, the first 2D image having a first spot of light caused by the first beam of light intersecting the first surface at the first object point; and associate the first 3D coordinates to the first spot of light.
Referring now to the drawings, exemplary embodiments are shown which should not be construed to be limiting regarding the entire scope of the disclosure, and wherein the elements are numbered alike in several FIGURES:
Portable articulated arm coordinate measuring machines (“AACMM”) are used in a variety of applications to obtain measurements of objects. Embodiments of the present invention provide advantages in allowing an operator to easily and quickly couple accessory devices to a probe end of the AACMM that use structured light to provide for the non-contact measurement of a three-dimensional object. Embodiments of the present invention provide further advantages in providing for communicating data representing a distance to an object measured by the accessory. Embodiments of the present invention provide still further advantages in providing power and data communications to a removable accessory without having external connections or wiring.
Each bearing cartridge within each bearing cartridge grouping 110, 112, 114 typically contains an encoder system (e.g., an optical angular encoder system). The encoder system (i.e., transducer) provides an indication of the position of the respective arm segments 106, 108 and corresponding bearing cartridge groupings 110, 112, 114 that all together provide an indication of the position of the probe 118 with respect to the base 116 (and, thus, the position of the object being measured by the AACMM 100 in a certain frame of reference—for example a local or global frame of reference). The arm segments 106, 108 may be made from a suitably rigid material such as but not limited to a carbon composite material for example. A portable AACMM 100 with six or seven axes of articulated movement (i.e., degrees of freedom) provides advantages in allowing the operator to position the probe 118 in a desired location within a 360° area about the base 116 while providing an arm portion 104 that may be easily handled by the operator. However, it should be appreciated that the illustration of an arm portion 104 having two arm segments 106, 108 is for exemplary purposes, and the claimed invention should not be so limited. An AACMM 100 may have any number of arm segments coupled together by bearing cartridges (and, thus, more or less than six or seven axes of articulated movement or degrees of freedom).
The probe 118 is detachably mounted to the measurement probe housing 102, which is connected to bearing cartridge grouping 112. A handle 126 is removable with respect to the measurement probe housing 102 by way of, for example, a quick-connect interface. As will be discussed in more detail below, the handle 126 may be replaced with another device configured to provide non-contact distance measurement of an object, thereby providing advantages in allowing the operator to make both contact and non-contact measurements with the same AACMM 100. In exemplary embodiments, the probe 118 is a contacting measurement device and is removable. The probe 118 may have different tips 118 that physically contact the object to be measured, including, but not limited to: ball, touch-sensitive, curved and extension type probes. In other embodiments, the measurement is performed, for example, by a non-contacting device such as an interferometer or an absolute distance measurement (ADM) device. In an embodiment, the handle 126 is replaced with the coded structured light scanner device using the quick-connect interface. Other types of measurement devices may replace the removable handle 126 to provide additional functionality. Examples of such measurement devices include, but are not limited to, one or more illumination lights, a temperature sensor, a thermal scanner, a bar code scanner, a projector, a paint sprayer, a camera, or the like, for example.
As shown in
In various embodiments, each grouping of bearing cartridges 110, 112, 114 allow the arm portion 104 of the AACMM 100 to move about multiple axes of rotation. As mentioned, each bearing cartridge grouping 110, 112, 114 includes corresponding encoder systems, such as optical angular encoders for example, that are each arranged coaxially with the corresponding axis of rotation of, e.g., the arm segments 106, 108. The optical encoder system detects rotational (swivel) or transverse (hinge) movement of, e.g., each one of the arm segments 106, 108 about the corresponding axis and transmits a signal to an electronic data processing system within the AACMM 100 as described in more detail herein below. Each individual raw encoder count is sent separately to the electronic data processing system as a signal where it is further processed into measurement data. No position calculator separate from the AACMM 100 itself (e.g., a serial box) is required, as disclosed in commonly assigned U.S. Pat. No. 5,402,582 ('582).
The base 116 may include an attachment device or mounting device 120. The mounting device 120 allows the AACMM 100 to be removably mounted to a desired location, such as an inspection table, a machining center, a wall or the floor for example. In one embodiment, the base 116 includes a handle portion 122 that provides a convenient location for the operator to hold the base 116 as the AACMM 100 is being moved. In one embodiment, the base 116 further includes a movable cover portion 124 that folds down to reveal a user interface, such as a display screen.
In accordance with an embodiment, the base 116 of the portable AACMM 100 contains or houses an electronic circuit having an electronic data processing system that includes two primary components: a base processing system that processes the data from the various encoder systems within the AACMM 100 as well as data representing other arm parameters to support three-dimensional (3-D) positional calculations; and a user interface processing system that includes an on-board operating system, a touch screen display, and resident application software that allows for relatively complete metrology functions to be implemented within the AACMM 100 without the need for connection to an external computer.
The electronic data processing system in the base 116 may communicate with the encoder systems, sensors, and other peripheral hardware located away from the base 116 (e.g., a noncontact distance measurement device that can be mounted to the removable handle 126 on the AACMM 100). The electronics that support these peripheral hardware devices or features may be located in each of the bearing cartridge groupings 110, 112, 114 located within the portable AACMM 100.
As shown in
Also shown in
In an embodiment shown in
The base processor board 204 also manages all the wired and wireless data communication with external (host computer) and internal (display processor 202) devices. The base processor board 204 has the capability of communicating with an Ethernet network via an Ethernet function 320 (e.g., using a clock synchronization standard such as Institute of Electrical and Electronics Engineers (IEEE) 1588), with a wireless local area network (WLAN) via a LAN function 322, and with Bluetooth module 232 via a parallel to serial communications (PSC) function 314. The base processor board 204 also includes a connection to a universal serial bus (USB) device 312.
The base processor board 204 transmits and collects raw measurement data (e.g., encoder system counts, temperature readings) for processing into measurement data without the need for any preprocessing, such as disclosed in the serial box of the aforementioned '582 patent. The base processor 204 sends the processed data to the display processor 328 on the user interface board 202 via an RS485 interface (IF) 326. In an embodiment, the base processor 204 also sends the raw measurement data to an external computer.
Turning now to the user interface board 202 in
The electronic data processing system 210 shown in
Though shown as separate components, in other embodiments all or a subset of the components may be physically located in different locations and/or functions combined in different manners than that shown in
Referring now to
The handle portion 404 also includes buttons or actuators 416, 418 that may be manually activated by the operator. The actuators 416, 418 are coupled to the controller 408 that transmits a signal to a controller 420 within the probe housing 102. In the exemplary embodiments, the actuators 416, 418 perform the functions of actuators 422, 424 located on the probe housing 102 opposite the device 400. It should be appreciated that the device 400 may have additional switches, buttons or other actuators that may also be used to control the device 400, the AACMM 100 or vice versa. Also, the device 400 may include indicators, such as light emitting diodes (LEDs), sound generators, meters, displays or gauges for example. In one embodiment, the device 400 may include a digital voice recorder that allows for synchronization of verbal comments with a measured point. In yet another embodiment, the device 400 includes a microphone that allows the operator to transmit voice activated commands to the electronic data processing system 210.
In one embodiment, the handle portion 404 may be configured to be used with either operator hand or for a particular hand (e.g. left handed or right handed). The handle portion 404 may also be configured to facilitate operators with disabilities (e.g. operators with missing finders or operators with prosthetic arms). Further, the handle portion 404 may be removed and the probe housing 102 used by itself when clearance space is limited. As discussed above, the probe end 401 may also comprise the shaft of an axis of rotation for AACMM 100.
The probe end 401 includes a mechanical and electrical interface 426 having a first connector 429 (
The electrical connector 434 extends from the first surface 430 and includes one or more connector pins 440 that are electrically coupled in asynchronous bidirectional communication with the electronic data processing system 210 (
The mechanical coupler 432 provides relatively rigid mechanical coupling between the device 400 and the probe housing 102 to support relatively precise applications in which the location of the device 400 on the end of the arm portion 104 of the AACMM 100 preferably does not shift or move. Any such movement may typically cause an undesirable degradation in the accuracy of the measurement result. These desired results are achieved using various structural features of the mechanical attachment configuration portion of the quick connect mechanical and electronic interface of an embodiment of the present invention.
In one embodiment, the mechanical coupler 432 includes a first projection 444 positioned on one end 448 (the leading edge or “front” of the device 400). The first projection 444 may include a keyed, notched or ramped interface that forms a lip 446 that extends from the first projection 444. The lip 446 is sized to be received in a slot 450 defined by a projection 452 extending from the probe housing 102 (
Opposite the first projection 444, the mechanical coupler 432 may include a second projection 454. The second projection 454 may have a keyed, notched-lip or ramped interface surface 456 (
The probe housing 102 includes a collar 438 arranged co-axially on one end. The collar 438 includes a threaded portion that is movable between a first position (
To couple the device 400 to the probe housing 102, the lip 446 is inserted into the slot 450 and the device is pivoted to rotate the second projection 454 toward surface 458 as indicated by arrow 464 (
Embodiments of the interface 426 allow for the proper alignment of the mechanical coupler 432 and electrical connector 434 and also protect the electronics interface from applied stresses that may otherwise arise due to the clamping action of the collar 438, the lip 446 and the surface 456. This provides advantages in reducing or eliminating stress damage to circuit board 476 mounted electrical connectors 434, 442 that may have soldered terminals. Also, embodiments provide advantages over known approaches in that no tools are required for a user to connect or disconnect the device 400 from the probe housing 102. This allows the operator to manually connect and disconnect the device 400 from the probe housing 102 with relative ease.
Due to the relatively large number of shielded electrical connections possible with the interface 426, a relatively large number of functions may be shared between the AACMM 100 and the device 400. For example, switches, buttons or other actuators located on the AACMM 100 may be used to control the device 400 or vice versa. Further, commands and data may be transmitted from electronic data processing system 210 to the device 400. In one embodiment, the device 400 is a video camera that transmits data of a recorded image to be stored in memory on the base processor 204 or displayed on the display 328. In another embodiment the device 400 is an image projector that receives data from the electronic data processing system 210. In addition, temperature sensors located in either the AACMM 100 or the device 400 may be shared by the other. It should be appreciated that embodiments of the present invention provide advantages in providing a flexible interface that allows a wide variety of accessory devices 400 to be quickly, easily and reliably coupled to the AACMM 100. Further, the capability of sharing functions between the AACMM 100 and the device 400 may allow a reduction in size, power consumption and complexity of the AACMM 100 by eliminating duplicity.
In one embodiment, the controller 408 may alter the operation or functionality of the probe end 401 of the AACMM 100. For example, the controller 408 may alter indicator lights on the probe housing 102 to either emit a different color light, a different intensity of light, or turn on/off at different times when the device 400 is attached versus when the probe housing 102 is used by itself. In one embodiment, the device 400 includes a range finding sensor (not shown) that measures the distance to an object. In this embodiment, the controller 408 may change indicator lights on the probe housing 102 in order to provide an indication to the operator how far away the object is from the probe tip 118. In another embodiment, the controller 408 may change the color of the indicator lights based on the quality of the image acquired by the coded structured light scanner device. This provides advantages in simplifying the requirements of controller 420 and allows for upgraded or increased functionality through the addition of accessory devices.
Referring to
The device 500 further includes an enclosure 501 with a handle portion 510. In one embodiment, the device 500 may further include an interface 426 on one end that mechanically and electrically couples the device 500 to the probe housing 102 as described herein above. The interface 426 provides advantages in allowing the device 500 to be coupled and removed from the AACMM 100 quickly and easily without requiring additional tools. In other embodiments, the device 500 may be integrated into the probe housing 102.
The device 500 includes an electromagnetic radiation transmitter, such as a light source 502 that emits coherent or incoherent light, such as a laser light or white light for example. The light from light source 502 is directed out of the device 500 towards an object to be measured. The device 500 may include an optical assembly 504 and an optical receiver 506. The optical assembly 504 may include one or more lenses, beam splitters, dichromatic mirrors, quarter wave plates, polarizing optics and the like. The optical assembly 504 splits the light emitted by the light source and directs a portion towards an object, such as a retroreflector for example, and a portion towards the optical receiver 506. The optical receiver 506 is configured receive reflected light and the redirected light from the optical assembly 504 and convert the light into electrical signals. The light source 502 and optical receiver 506 are both coupled to a controller 508. The controller 508 may include one or more microprocessors, digital signal processors, memory and signal conditioning circuits.
Further, it should be appreciated that the device 500 is substantially fixed relative to the probe tip 118 so that forces on the handle portion 510 do not influence the alignment of the device 500 relative to the probe tip 118. In one embodiment, the device 500 may have an additional actuator (not shown) that allows the operator to switch between acquiring data from the device 500 and the probe tip 118.
The device 500 may further include actuators 512, 514 which may be manually activated by the operator to initiate operation and data capture by the device 500. In one embodiment, the optical processing to determine the distance to the object is performed by the controller 508 and the distance data is transmitted to the electronic data processing system 210 via bus 240. In another embodiment optical data is transmitted to the electronic data processing system 210 and the distance to the object is determined by the electronic data processing system 210. It should be appreciated that since the device 500 is coupled to the AACMM 100, the electronic processing system 210 may determine the position and orientation of the device 500 (via signals from the encoders) which when combined with the distance measurement allow the determination of the X, Y, Z coordinates of the object relative to the AACMM.
In one embodiment, the device 500 shown in
In an embodiment, the device 500 is an incremental interferometer. The incremental interferometer has a measured distance D calculated using D=a+(m+p)*(lambda/2)*c/n, where “a” is a constant, “m” is the integer number of counts that have transpired in the movement of a target, “p” is the fractional part of a cycle (a number 0 to 1 corresponding to a phase angle of 0 to 360 degrees), “lambda” is the wavelength of the light in vacuum, “c” is the speed of light in vacuum, and “n” is the index of refraction of the air at wavelength of the light 524 at the temperature, barometric pressure, and humidity of the air through which the light 524 passes. The index of refraction is defined as the speed of light in vacuum divided by the speed of light in a local medium (in this case air), and so it follows that the calculated distance D depends on the speed of light in air “c/n”. In an embodiment, light 518 from a light source 502 passes through a interferometer optic 504, travels to a remote retroreflector 516, passes through the interferometer optic 504 in a return path, and enters an optical receiver. The optical receiver is attached to a phase interpolator. Together the optical receiver and phase interpolator include optics and electronics to decode the phase of the returning light and to keep track of the number of half-wavelength counts. Electronics within the phase interpolator or elsewhere within the articulated arm 100 or in an external computer determine the incremental distance moved by the retroreflector 516. The incremental distance traveled by the retroreflector 516 of
In one embodiment of an incremental interferometer, the interferometer is a homodyne type of the device such that the light source 502 is a laser that operates on a single frequency. In other embodiments, the device may be a heterodyne type of device and the laser operates on at least two frequencies to produce two overlapping beams that are polarized and orthogonal. The light source 502 emits a light 518 that is directed into a beam splitting device 520. Here, a first portion 522 of the light is reflected and transmitted to the optical receiver 506. The first portion 522 is reflected off of at least one mirror 523 to direct the first portion to the optical receiver 506. In the exemplary embodiment, the first portion 522 is reflected off a plurality of mirrors 523 and the beam splitter 520. This first portion 522 is a reference beam of light that used for comparison with a returned or reflected light.
A second portion 524 of the light is transmitted through the beam splitting device 520 and is directed towards the retroreflector 516. It should be appreciated that the optical assembly 504 may further include other optical components, such as but not limited to lenses, quarter wave plates, filters and the like (not shown) for example. The second portion 524 of light travels to the retroreflector 516, which reflects the second portion 524 back towards the device 500 along a path 527 that is parallel to the outgoing light. The reflected light is received back through the optical assembly where it is transmitted through the beam splitting device 520 to the optical receiver 506. In the exemplary embodiment, as the returning light is transmitted through the beam splitting device 520, it joins a common optical path with the light of first portion 522 to the optical receiver 502. It should be appreciated that the optical assembly 504 may further include additional optical components (not shown), such as an optic that produces a rotating plane of polarization for example, between the beam splitting device 520 and the optical receiver 506. In these embodiments, the optical receiver 506 may be composed of multiple polarization sensitive receivers that allow for power normalization functionality.
The optical receiver 506 receives both the first portion 522 and the second portion 524 light. Since the two light portions 522, 524 each have a different optical path length, the second portion 524 will have a phase shift when compared to the first portion 522 at the optical receiver 506. In an embodiment where the device 500 is a homodyne interferometer, the optical receiver 506 generates an electrical signal based on the change in intensity of the two portions of light 522, 524. In an embodiment where the device 500 is a heterodyne interferometer, the receiver 506 may allow for phase or frequency measurement using a technique such as a Doppler shifted signal for example. In some embodiments, the optical receiver 506 may be a fiber optic pickup that transfers the received light to a phase interpolator 508 or spectrum analyzer for example. In still other embodiments, the optical receiver 506 generates an electrical signal and transmits the signal to a phase interpolator 508.
In an incremental interferometer, it is necessary to keep track of the change in the number of counts m (from the equation described hereinabove). For the case of which the beam of light is kept on a retroreflector 516, the optics and electronics within the optical receiver 506 may be used to keep track of counts. In another embodiment, another type of measurement is used, in which the light from the distance meter is sent directly onto the object to be measured. The object, which might be metallic, for example, may reflect light diffusely so that only a relatively small fraction of the light returns to an optical receiver. In this embodiment, the light returns directly on itself so that the returning light is substantially coincident with the outgoing light. As a result, it may be necessary to provide a means to reduce the amount of light feeding back into the light source 502, such as with a Faraday isolator for example.
One of the difficulties in measuring the distance to a diffuse target is that it is not possible to count fringes. In the case of a retroreflector target 516, it is known that the phase of the light changes continuously as the retroreflector is moved away from the tracker. However, if a beam of light is moved over an object, the phase of the returning light may change discontinuously, for example, when the light passes by an edge. In this instance, it may be desired to use a type of interferometer known as an absolute interferometer. An absolute interferometer simultaneously emits multiple wavelengths of light, the wavelengths configured to create a “synthetic wavelength,” which might be on the order of a millimeter, for example. An absolute interferometer has the same accuracy as an incremental interferometer except that it is not necessary to count fringes for each half wavelength of movement. Measurements can be made anywhere within a region corresponding to one synthetic wavelength.
In an embodiment, the optical assembly 504 may include a steering mirror (not shown), such as a micro-electromechanical system (MEMS) mirror that allows light from an absolute interferometer to be reflected from the scanner and received back by the scanner to measure rapidly over an area.
In one embodiment the device may include an optional image acquisition device, such as a camera 529, which is used in combination with an absolute interferometer. The camera 529 includes a lens and a photosensitive array. The lens is configured to image the illuminated object point on a photosensitive array. The photosensitive array is configured to be responsive to the wavelengths of light emitted by the absolute interferometer. By noting the position of the imaged light on the photosensitive array, it is possible to determine the ambiguity range of the object point. For example, suppose that an absolute interferometer has an ambiguity range of 1 mm. Then as long as the distance to the target is known to within one millimeter, there is no problem in using the interferometer to find the distance to the target. However, suppose that the distance to the target is not known to within the ambiguity range of one millimeter. In one embodiment, a way to find the distance to the target to within the ambiguity range is to place the camera 529 near the point of emission of the beam of light. The camera forms an image of the scattered light on the photosensitive array. The position of the imaged spot of light depends on the distance to the optical target and thereby provides a way of determining the distance to the target to within the ambiguity range.
In an embodiment, the distance measurement device uses coherent light (e.g. a laser) in the determination of the distance to the object. In one embodiment, the device varies the wavelength of a laser as a function of time, for example, linearly as a function of time. Some of the outgoing laser beam is sent to an optical detector and another part of the outgoing laser beam that travels to the retroreflector is also sent to the detector. The optical beams are mixed optically in the detector and an electrical circuit evaluates the signal from the optical detector to determine the distance from the distance meter to the retroreflector target.
In one embodiment the device 500 is an absolute distance meter (ADM) device. An ADM device typically uses an incoherent light and determines a distance to an object based on the time required to travel from the distance meter to the target and back. Although ADM devices usually have lower accuracy than interferometers, an ADM provides an advantage in directly measuring distance to an object rather than measuring a change in distance to the object. Thus, unlike an interferometer, an ADM does not require a known initial position.
One type of ADM is a pulsed time-of-flight (TOF) ADM. With a pulsed TOF ADM, a laser emits a pulse of light. Part of the light is sent to an object, scatters off the object, and is picked up by an optical detector that converts the optical signal into an electrical signal. Another part of the light is sent directly to the detector (or a separate detector), where it is converted into an electrical signal. The time dt between the leading edge of the two electrical pulse signals is used to determine the distance to from the distance meter to the object point. The distance D is just D=a+dt*c/(2n), where a is a constant, c is the speed of light in vacuum, and n is the index of refraction of light in air.
Another type of ADM is a phase-based ADM. A phased-based ADM is one in which a sinusoidal modulation is directly applied to a laser to modulate the optical power of the emitted laser beam. The modulation is applied as either a sinusoid or a rectangle. The phase associated with the fundamental frequency of the detected waveform is extracted. The fundamental frequency is the main or lowest frequency of the waveform. Typically, the phase associated with the fundamental frequency is obtained by sending the light to an optical detector to obtain an electrical signal, condition the light (which might include sending the light through amplifiers, mixer, and filters), converting the electrical signals into digitized samples using an analog-to-digital converter, and then calculating the phase using a computational method.
The phase-based ADM has a measured distance D equal to D=a+(s+p)*c/(2*f*n), where “a” is a constant, “s” and “p” are integer and fractional parts of the “ambiguity range” of an object point, and “f” is the frequency of modulation, “c” is the speed of light in vacuum, and n is the index of refraction. The quantity R=c/(2*f*n) is the ambiguity range. If, for example, the modulation frequency is f=3 GHz, then from the formula the ambiguity range is approximately 50 mm. The formula for “D” shows that calculated distance depends on the speed of light in air, “c/n”. As in the case of the absolute interferometer, one of the parameters that it is desirable to determine is the ambiguity range for the object point under investigation. For an AACMM 100 used to measure the coordinates of a diffuse surface, the beam of light from the device 500 may in the course of a few milliseconds be directed to objects separated by several meters. If the ambiguity range was not determined, such a large change would likely exceed the ambiguity range of the device and hence would leave the ADM without knowledge of the distance to the object point.
In one embodiment the emitted light is modulated at a plurality of frequencies so that the ambiguity range may be determined in real time. For example, in one embodiment four different modulation frequencies may be simultaneously applied to laser light. By known means of sampling and extraction procedures, the absolute distance to the target can be determined by calculating the phase for each of these four frequencies. In other embodiments, fewer than four frequencies are used. Phase-based ADMs may be used at either near or far ranges. Modulation and processing methods are possible with other types of incoherent distance meters. Such distance meters are well known in the art and are not discussed further.
In one embodiment shown in
In one embodiment, the light from the device 500 is sent to a retroreflector rather than a non-cooperative (diffusely scattering) target. In this case, a position detector 542 may be included to receive a small amount of light reflected off a beamsplitter 540. The signal received by the position detector 542 may be used by a control system to cause the light beam from the device 500 to track a moving retroreflector 516. If a scattering target is used rather than a retroreflective target, the beamsplitter 540 and the position detector 542 may be omitted.
In one embodiment, the ADM device 500 incorporates a configuration such as that described in commonly owned U.S. Pat. No. 7,701,559 which is incorporated herein by reference. It should be appreciated that both the interferometer devices and the ADM devices determine the distance to the object at least in part based on the speed of light in air.
Another type of distance meter is one based on a focusing method. Examples of focusing distance meters are a chromatic focusing meter, a contrast focusing meter, and an array sensing focusing meter. A device using a chromatic focusing method such as the one shown in
Another type of focusing distance meter shown in
In one embodiment, the device 500 may be an array sensing focusing meter. In this type of device, a source of light sends light through a lens and a beam splitter. Part of the light strikes the object, reflects off the beam splitter, and travels to a photosensitive array. If the object under inspection is at the focal position of the spot of light, the light on the photosensitive array will be very small. Hence the AACMM 100 could be used to capture the 3D coordinates whenever the spot on the array was sufficiently small.
In still another embodiment, the device 500 may be a conoscopic holography device. In this type of device, the surface of the object is probed by a laser point. The laser light is diffusely reflected by the surface to form a point light source. The light cone emanating from this point is widened by an optical system. A birefringent crystal is arranged between two circular polarizers to split the light into an ordinary beam and an extraordinary beam. After transmitting through the second polarizing lens, the two beams superimpose to generate a holographic fringe pattern that may be acquired by a photosensitive sensor, such as a CCD camera. The distance to the object is determined from the interference fringes by image processing.
It should be appreciated that while the focusing devices and the conoscopic holography devices may depend on the index of refraction of light in air, the determination of distance for these devices is independent of the speed of light in air.
The reach of an AACMM is often relatively short in comparison to the environment in which it is located. For example, an articulated arm may be used to measure large tooling structures for an aircraft, the tooling structures being located within a large hangar or manufacturing facility. In such situations, it is often necessary to move the AACMM from one location to another while measuring the same component. For example, for the large tooling structure described above, the AACMM may be moved from a left side of the tooling structure to a middle part of the structure and to provide the three-dimensional coordinates measured by the AACMM within a common frame of reference. In the past, various methods have been established for doing this, and although these methods have been generally suitable for their intended purpose, they have not satisfied the need for doing this while moving the AACMM over large distances.
In an embodiment, a distance meter is attached to the end of the AACMM. The AACMM has an origin having three translational degrees of freedom. The AACMM also has an orientation, which has three orientational degrees of freedom. The AACMM is located within an environment having its own frame of reference, referred to herein as a target frame of reference. For example, in the example given above, the large tooling structure may be described by a CAD model or by a model obtained from prior 3D measurements. In relation to the CAD model or measured model, the target frame of reference is assigned. The target frame of reference has a target origin, usually assigned Cartesian coordinates (0,0,0) within the target frame of reference. The target frame of reference will also have an orientation, which may be described in terms of three Cartesian axes x, y, and z.
The AACMM has an AACMM origin and an AACMM orientation in relation to the target frame of reference. In other words, the AACMM origin is offset from the target frame of reference by some amount dx, dy, dz, and the three axes of the AACMM frame of reference may be described by three rotation angles relative to the axes of the target frame of reference.
It is often desirable to know the AACMM frame of reference within the target frame of reference, for example, when trying to compare measured values to those indicated in a CAD model. By such means, the AACMM may determine whether a component or tool has been manufactured within specified tolerances. For the case in which the AACMM is moved from a first AACMM frame of reference to a second AACMM frame of reference, it is useful to know both the first and second AACMM frame of reference in the target frame of reference.
A distance meter attached to the end of the AACMM may be used to provide the mathematical transformations needed to move from one frame to another. To do this, the distance meter measures the distance to at least three targets having 3D coordinates known at least approximately within the target frame of reference. In some cases, the locations of the at least three targets are arbitrary and are not known even approximately. In some cases, a CAD model shows nominal 3D coordinates of features on an object. By measuring 3D coordinates of at least three features, the arm may construct x, y, and z (or equivalent) axes for a target coordinate system. For example, a first measured point may establish the origin. A second measured point may be used to establish the x axis in the target frame of reference. The third measured point may be used to establish the y and z axes. (The y axis is perpendicular to the x axis, and the z axis is perpendicular to both the x and y axes.) In other cases, a large number of points may be measured with the arm, and a best fit procedure used to determine a best fit to a CAD model. This best fit then provides a basis for the target frame of reference.
Regardless of the method used, by measuring with the AACMM the 3D coordinates of at least three points, the arm may determine the position and orientation of the AACMM frame of reference in the target frame of reference. In some cases, this may be done over a region extending beyond an individual tool or component and may extend to an entire building. For example, a building might have multiple targets measured by distance meters to establish a frame of reference for all objects within the building.
The operation of moving an articulated arm is moved to more than one position is referred to as relocation, and the method of establishing a common frame of reference following relocation is often referred to as registration.
In an embodiment, at least three targets are provided within the target frame of reference. These targets may be cooperative or non-cooperative targets. An example of a cooperative target is a retroreflector—for example, a cube corner retroreflector. An example of a non-cooperative target is a feature on an object—for example, a sphere or a hole. An example of a target that may be considered cooperative or non-cooperative is a highly reflective target, for example, a highly reflective circular target. Such targets are often referred to as retroreflective targets even though they do not reflect as much light as a cube corner retroreflector, for example. In some cases, non-cooperative targets are natural features of an object—for example, the point of intersection of three planar surfaces.
Although an AACMM is often used to measure relatively small parts with a tactile probe or scanner attached to the end of the arm, it is sometimes helpful to obtain 3D data may be obtained on a larger scale by measuring distances to relatively far-away objects. By combining this information with the information provided by the collection of angular encoders in the articulated arm CMM, it is possible to obtain 3D coordinates of relatively distant points.
In some cases, it is useful to combine a distance measured by a distance meter such as the ADM of
In an embodiment, a processor system 1500 of
In some cases, a single distance measurement to a point may provide enough information to determine one or more dimensions of an imaged object. For example, suppose that a cylindrical column or a cylindrical pipe is shown in an image on the camera 529 of
To obtain the desired accuracy, the distance d may be the distance from the perspective center of the camera 529 to the object point rather than the distance from the ADM 500 to the object point. (The perspective center of the camera 529 is the point within the camera through which paraxial rays of light from object points appear to pass in traveling through the lens to the photosensitive array.) Because the distance to the ADM 500 and the position and orientation of the camera 529 are known, it is possible to determine the distance from the camera perspective center to the object point.
In the case of the column, the cylindrical geometry or symmetry of the column enabled the width of the column to be determined. A sphere has a similar known geometry that is invariant with direction of view, and this geometrical feature enables its radius or diameter to be determined with a single measurement of a distance d combined with a single image from the camera 529. In a similar manner, other symmetries without a scene may be used to extract dimensional features by measuring a distance with the ADM 500 and an angular subtense with the camera 529 of one or more points, dimensional quantities may be determined. In addition, the angular measurements provided by the AACMM provide additional information that speed dimensional measurements or improve accuracy.
As another example of how symmetries of objects in camera images may be used to extract dimensional data, consider the case of an articulated arm sitting on a table with a wall straight ahead, walls to the left and right, a ceiling and floor also in the foreground. In an embodiment, the AACMM is positioned far enough away to see portions of all these surfaces. An operator may use the ADM 500 and the angle measurement of the AACMM to determine 3D coordinates on three points of the wall straight ahead. These three 3D coordinates determine provide enough information to determine an equation for a plane of the wall in the frame of reference of the AACMM. A user may then select any point on the image of the front wall and get in return 3D coordinates of that point. For example, once the equation of the plane of the wall is known, the 2D image of the mark by the camera 529 provides enough information to determine the 3D coordinates of the mark. As another example, a user might be interested in knowing whether a piece of equipment would fit between two points on the wall. This could also be determined using the method described hereinabove.
The equations of the planes that represent the left wall, right wall, floor and ceiling may likewise be determine based on three points, or the constraint that the walls, ceiling, and floor be mutually perpendicular may be used to reduce the number of points collected in subsequent measurements. For example, to determine the equation of the plane of the front wall, three or more points are needed. With this done, the equation of the plane of the right side wall may be determined by two points based on constraints of perpendicularity. With this done, the equation of the plane of the floor may be determined by one point based on constraints of perpendicularity with the front wall and right side wall. In this way, an AACMM may be used to quickly determine the dimensions of a room, the positions of doors, windows, and other features.
The 3D coordinates of points in an environment are based on the distance readings of the ADM 500 and the angle readings of the AACMM, but the symmetries (or geometries) of the surroundings are revealed by the camera image. Information on the observed symmetry may be provided either before or after 3D points are collected by the AACMM. For example, a user may measure three points on the wall straight ahead and then give a command “fit to a plane,” which causes software to fit the three points to a plane. Alternatively, the user may first select the command “fit to a plane” and then measure the three 3D points. In some cases, automated methods, such as those executed in software for example, may be provided to facilitate rapid measurement of commonly viewed features or structures. For example, computer executed software may be used to lead a user to select points to locate walls, doors, windows, etc. In most cases, the user will need to state the type of symmetry or geometry in the association between the camera image and AACMM measurements. In the example given above, for example, by selecting the command “fit to a plane,” the user was identifying the region being measured as a plane. Stated another way, the user was saying that the region being measured was characterized by a “planar geometry” or a “planar symmetry.”
To supplement the structural representation based on 3D points obtained from the combination of ADM distance readings, AACMM angle readings, and camera-revealed geometries (symmetries), it is possible to determine the 3D structure based on visual cues provided in overlapping camera images. For example, suppose that a wall had a number of distinctive features—doors, windows, light fixtures, tables, etc. When those features are seen in two or more overlapping images, mathematical techniques may be used to extract “cardinal points” that match in each of the two or more overlapping images. An example of such a mathematical technique is SIFT (scale invariant feature transform) disclosed in U.S. Pat. No. 6,711,293. Other examples include edge detection, blob detection, and ridge detection. Furthermore for images collected sequentially as overlapping images as the AACMM is camera position and orientation is changed, methods such “optical flow,” adapted from the studies of American psychologist James Gibson in the 1940s. A tutorial on optical flow estimation as used today is given in “Mathematical Models in Computer Vision: The Handbook” by N. Paragios, Y. Chen, and O. Faugeras (editors), Chapter 15, Springer 2005, pp. 239-258, the contents of which are incorporated by reference herein. It is generally true that 3D data provided by the articulated arm CMM is on its own sufficient to register multiple camera images, but pixel-by-pixel registration may be improved by using methods such as SIFT, optical flow, and edge detection. In addition, such methods may be used to extend the 3D coordinates of points beyond those directly measured with the ADM 500 and AACMM angle measurements.
A camera image (or multiple registered camera images) may be displayed and the user enabled to obtain dimensional information. For example, a user may point to a corner at which the left wall, front wall, and floor intersect and have displayed the 3D coordinates of that point. As a second step, the user may point to a second point at which the right wall, front wall, and floor intersect and have displayed the distance between the first point and the second point. As another example, a user may ask for the volume or floor area of the room and have it automatically calculated. Automated processes may be provided, such as computer executed software for example, to automatically look for and measure certain features. In the room example, the software may look for and automatically provide the dimensions of locations of every door and window in the room.
Dimensions, lines, or other information may be presented to the user along with a camera image, which may include a collection of registered images and may also include lines, annotation, or measured values superimposed on the registered images. The collection of registered images may be adjusted in perspective according to a position and direction of the AACMM. With the base of the AACMM fixed in place, for example, on a table, the probe end of the AACMM may be moved around and the perspective changed accordingly. For example, if the AACMM is rotated from facing the front wall to facing the back wall, the registered images may be correspondingly rotated to show the image of the side wall. This change in direction and perspective is easily and precisely done with an AACMM because the AACMM knows the six degrees-of-freedom (position and orientation) of the probe end (or camera or any other part of the AACMM) at all times.
In the present invention, the term 3D structural image is used to refer to a 3D image obtained based at least in part on ADM 500 distance measurements, AACMM angle measurements, and 2D visual images obtained from an AACMM camera, all combined with provided knowledge of geometry or symmetry of measured features. In an embodiment, the 3D structural image may be further based on a matching of cardinal points seen in overlapping 2D visual images.
In many cases, it can be useful to combine the capabilities for measuring with the ADM 500 with the ability to measure detailed characteristics of objects with a tactile probe or scanner attached to the AACMM. For example, a contractor may be hired to install within a kitchen cabinets and a countertop. In a first step, an operator may mount the AACMM on a platform in the kitchen and take a scan of the surrounding walls, cabinets, and appliances. The operator may use a scanner or tactile probe to measure the position of plumbing and other elements in relation to cabinets and walls. Based on these measurements, a contractor or design consultant may develop a rendered image showing the proposed location and appearance of additions or replacements in the kitchen, which may include new countertops. After the plans are approved, the contractor may remove old cabinets (if necessary) and replace them with new cabinets. The contractor may then measure the as-built cabinets and plumbing using the articulated arm probing accessories, which might include a tactile probe and a scanner, for example, a laser line probe or a structured light (area) scanner. A traditional way of determining the required dimensions for countertops is to construct a mock-up assembly having the desired shape. Such a mock-up assembly might be constructed for example of plywood or particle board. An articled arm provides a faster and more accurate way to make such measurements.
As another example of the use of AACMM probing accessories with the ADM 500 measurements, consider the case of measurement of a large object with the AACMM probing accessories. A tactile probe or scanner attached to the AACMM may measure detailed features of an object from each of several registration positions. The ADM 500 and the angle measuring capability of the AACMM may be used in combination to measure the 3D coordinates of each of several surfaces, features, or geometries. By performing this measurement at each of the multiple registration positions, the AACMM measurements made with the probing accessories may be put into a common frame of reference. In some cases, the visual images of the 2D camera images may be matched to further improve registration, as discussed above with regard to optical flow, cardinal points, and the like. By methods such as these, the AACMM probing accessories can measure a larger object than would otherwise be possible.
An ADM 500 may be used in combination with the angle measuring capabilities of the AACMM to provide visualization through augmented reality (AR). In an embodiment, an AACMM having a distance meter 500 is used to measure surfaces and features that define a volume of interest. Representations of objects for which CAD or rendered models are available or representations of objects for which 3D measurements have been made, for example using a tactile probe or scanner attached to the AACMM, may be superimposed over a representation of the background environment on a computer display. The superimposed representation is referred to herein as the “superimposed 3D representation,” and the representation of the background environment is referred to as the “background 3D representation.” The background 3D representation may a fixed representation obtained from a CAD or rendered model or from a 3D model constructed using the ADM 500 in combination with the angle measuring capability of the AACMM as discussed hereinabove. A user may view the AR image on a computer display from multiple positions and directions, thereby enabling all sides of the object to be seen. A mouse, thumb wheel, or other user control may be used to change the position and orientation of the user with respect to the superimposed 3D representation. In so doing, the background representation is automatically changed to provide the proper perspective. One application for this capability is checking whether new equipment (as measured or designed) will properly fit into a factory floor. Another application is to support attaching of the new equipment to walls or other equipment. A user may adjust the position of a superimposed 3D representation in relation to the background representation on a computer display and then indicate on the display where a connection should be made to a wall or other equipment. The position at which holes are to be drilled, brackets attached, or other construction tasks performed to properly attach the different elements may be indicated on an AR image on a computer display in multiple ways. In an embodiment an operator may provide a recognizable “mark” that the camera of the AACMM (or a separate camera) may recognize. In an embodiment, the recognizable mark is an LED marker carried by the user and readily recognized by image processing software applied to the camera 2D image. In another embodiment, the recognizable mark is provided by a spot of light directed from the light source in the distance meter 500 onto the desired connection point. In an embodiment, the user directs the AACMM to point the beam of light from the light source of the ADM 500 to the desired connection point. In an alternative embodiment, a beam steering device attached to the end of the AACMM, for example a steering mirror or MEMS steering device, directs the beam of light from the ADM 500 to the desired connection point. In the case that precise connection operations are necessary, the AACMM may be moved near to the location of the connection operations to provide greater measurement accuracy, for example, by using the tactile probe or scanner of the AACMM. In this case, a MEMS device may be used to project a detailed construction pattern on the object or objects involved.
In some cases, a user display, for example on a laptop computer, tablet, smartphone, or specialty device, may include positioning and orientation capability that enables a user to enable a camera image to provide the background 3D representation. Then while walking around a superimposed 3D representation, the position and orientation information may be used to position the superimposed 3D image on the real-time camera image. In an embodiment, such positioning and orientation capability may be provided by position/orientation sensors within the device. Such a sensor may include accelerometers (inclinometers), gyroscopes, magnetometers, and altimeters. The readings from all of the separate sensor devices may be fused together by software, which may include for example a Kalman filter. A three-axis accelerometer and a three-axis gyroscope are often combined in a device referred to as an inertial measurement unit (IMU). In many cases, the magnetometer and altimeter are also included in what is referred to as an IMU. The magnetometer is used to measure heading. The altimeter is usually a pressure sensor. Some smart devices also include GPS or other means of determining location (for example, from cellular signals). However, these signals are often not available indoors and so some indoor facilities have provided indoor GPS systems, which may be of a variety of types, such as a device with an external antenna that retransmits the GPS signals indoors for example. In an industrial setting, the location and orientation of a device (such as the display device described above) may be provided through the use of photogrammetry by mounting cameras around a factory and viewing reflectors (such as LEDs of photogrammetry dots or spheres) on the display device. Another way to refresh position information is by the use of near-field communication (NFC) tags, which may be located at defined positions within a facility. An enhanced position/orientation sensor may include not only the accelerometer, gyroscope, magnetometer, and altimeter described above, but also a position location system, which might be a GPS system, a local GPS system or a photogrammetry system. Such an enhanced position/orientation sensor may also provide for refreshing position information based on accessing of NFC tags in the environment.
If the position and orientation of a display device is known, a camera may be used to provide the background 3D representation as the user walks around a superimposed 3D representation that appears in the AR image on the display device. The AACMM with distance meter 500 and a tactile probe or scanner may be used to collect all the 3D information needed to represent the superimposed 3D representation and to place the superimposed representation within a building or other environment. For example, suppose that an articulated arm CMM were used to scan dinosaur bones to provide a detailed 3D representation of the assembled bones. If desired, the scanned 3D images may be rendered using colors from a camera 529 on the AACMM or a different camera. The scanned image may provide the superimposed 3D representation in an augmented reality (AR) image on a user display. The ADM 500 and angle measuring capability of the AACMM may be used in combination to position the AR object within a museum or similar structure. As an observer walks around the AR object, a display held by the user captures the background 3D image with a camera integrated into the display device while superimposing the 3D superimposed representation over the live camera image.
An AR display may also be provided as an on-line experience. In an embodiment, an AACMM having an ADM 500 and a tactile probe or scanner is used to scan an object such as the dinosaur bones described above. The ADM 500 and distance measuring capability of the AACMM are used in combination to locate the desired position and orientation of the AR image within the background environment. In an embodiment, a detailed 3D image is of the background structure is captured by a TOF scanner, which is a type of scanner that steers a laser beam to a variety of locations while measuring the angle of the beam with two angle encoders and measuring the distance with an absolute distance meter based on TOF. In this way, an observer may view a detailed 3D view not only of the dinosaur bones but also of the background structure, which may be a museum.
While the invention has been described with reference to example embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
The present application is a continuation-in-part of U.S. patent application Ser. No. 14/223,067, filed Mar. 24, 2014, which is a continuation-in-part of U.S. patent application Ser. No. 13/524,028, filed Jun. 15, 2012, now U.S. Pat. No. 8,677,643, and claims the benefit of U.S. Provisional Patent Application No. 61/296,555, filed Jan. 20, 2010, U.S. Provisional Patent Application No. 61/355,279, filed Jun. 16, 2010, and U.S. Provisional Patent Application No. 61/351,347, filed on Jun. 4, 2010. The present application is also a continuation-in-part of PCT Application No. PCT/US13/040321 filed on May 9, 2013. The contents of all of the above are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1535312 | Hosking | Apr 1925 | A |
1538758 | Taylor | May 1925 | A |
1918813 | Kinzy | Jul 1933 | A |
2316573 | Egy | Apr 1943 | A |
2333243 | Glab | Nov 1943 | A |
2702683 | Green et al. | Feb 1955 | A |
2748926 | Leahy | Jun 1956 | A |
2983367 | Paramater et al. | Jun 1958 | A |
2924495 | Haines | Sep 1958 | A |
2966257 | Littlejohn | Dec 1960 | A |
3066790 | Armbruster | Dec 1962 | A |
3447852 | Barlow | Jun 1969 | A |
3458167 | Cooley, Jr. | Jul 1969 | A |
3830567 | Riegl | Aug 1974 | A |
3899145 | Stephenson | Aug 1975 | A |
3945729 | Rosen | Mar 1976 | A |
4138045 | Baker | Feb 1979 | A |
4178515 | Tarasevich | Dec 1979 | A |
4340008 | Mendelson | Jul 1982 | A |
4379461 | Nilsson et al. | Apr 1983 | A |
4424899 | Rosenberg | Jan 1984 | A |
4430796 | Nakagawa | Feb 1984 | A |
4457625 | Greenleaf et al. | Jul 1984 | A |
4506448 | Topping et al. | Mar 1985 | A |
4537233 | Vroonland et al. | Aug 1985 | A |
4561776 | Pryor | Dec 1985 | A |
4606696 | Slocum | Aug 1986 | A |
4659280 | Akeel | Apr 1987 | A |
4663852 | Guarini | May 1987 | A |
4664588 | Newell et al. | May 1987 | A |
4667231 | Pryor | May 1987 | A |
4676002 | Slocum | Jun 1987 | A |
4714339 | Lau et al. | Dec 1987 | A |
4733961 | Mooney | Mar 1988 | A |
4736218 | Kutman | Apr 1988 | A |
4751950 | Bock | Jun 1988 | A |
4767257 | Kato | Aug 1988 | A |
4790651 | Brown et al. | Dec 1988 | A |
4816822 | Vache et al. | Mar 1989 | A |
4870274 | Hebert et al. | Sep 1989 | A |
4882806 | Davis | Nov 1989 | A |
4891509 | Jones et al. | Jan 1990 | A |
4954952 | Ubhayakar et al. | Sep 1990 | A |
4982841 | Goedecke | Jan 1991 | A |
4984881 | Osada et al. | Jan 1991 | A |
4996909 | Vache et al. | Mar 1991 | A |
4999491 | Semler et al. | Mar 1991 | A |
5021641 | Swartz et al. | Jun 1991 | A |
5025966 | Potter | Jun 1991 | A |
5027951 | Johnson | Jul 1991 | A |
5068971 | Simon | Dec 1991 | A |
5069524 | Watanabe et al. | Dec 1991 | A |
5155684 | Burke et al. | Oct 1992 | A |
5168532 | Seppi et al. | Dec 1992 | A |
5189797 | Granger | Mar 1993 | A |
5205111 | Johnson | Apr 1993 | A |
5211476 | Coudroy | May 1993 | A |
5213240 | Dietz et al. | May 1993 | A |
5216479 | Dotan et al. | Jun 1993 | A |
5218427 | Koch | Jun 1993 | A |
5219423 | Kamaya | Jun 1993 | A |
5239855 | Schleifer et al. | Aug 1993 | A |
5289265 | Inoue et al. | Feb 1994 | A |
5289855 | Baker et al. | Mar 1994 | A |
5313261 | Leatham et al. | May 1994 | A |
5319445 | Fitts | Jun 1994 | A |
5329347 | Wallace et al. | Jul 1994 | A |
5329467 | Nagamune et al. | Jul 1994 | A |
5332315 | Baker et al. | Jul 1994 | A |
5371347 | Plesko | Dec 1994 | A |
5372250 | Johnson | Dec 1994 | A |
5373346 | Hocker | Dec 1994 | A |
5402365 | Kozikaro et al. | Mar 1995 | A |
5402582 | Raab | Apr 1995 | A |
5412880 | Raab | May 1995 | A |
5416505 | Eguchi et al. | May 1995 | A |
5430384 | Hocker | Jul 1995 | A |
5446846 | Lennartsson | Aug 1995 | A |
5455670 | Payne et al. | Oct 1995 | A |
5455993 | Link et al. | Oct 1995 | A |
5510977 | Raab | Apr 1996 | A |
5517297 | Stenton | May 1996 | A |
5528354 | Uwira | Jun 1996 | A |
5528505 | Granger et al. | Jun 1996 | A |
5535524 | Carrier et al. | Jul 1996 | A |
5611147 | Raab | Mar 1997 | A |
5615489 | Breyer et al. | Apr 1997 | A |
5623416 | Hocker, III | Apr 1997 | A |
5629756 | Kitajima | May 1997 | A |
5668631 | Norita et al. | Sep 1997 | A |
5675326 | Juds et al. | Oct 1997 | A |
5677760 | Mikami et al. | Oct 1997 | A |
5682508 | Hocker, III | Oct 1997 | A |
5716036 | Isobe et al. | Feb 1998 | A |
5724264 | Rosenberg et al. | Mar 1998 | A |
5734417 | Yamamoto et al. | Mar 1998 | A |
5745225 | Watanabe et al. | Apr 1998 | A |
5752112 | Paddock et al. | May 1998 | A |
5754449 | Hoshal et al. | May 1998 | A |
5768792 | Raab | Jun 1998 | A |
5793993 | Broedner et al. | Aug 1998 | A |
5804805 | Koenck et al. | Sep 1998 | A |
5825666 | Freifeld | Oct 1998 | A |
5829148 | Eaton | Nov 1998 | A |
5831719 | Berg et al. | Nov 1998 | A |
5832416 | Anderson | Nov 1998 | A |
5844591 | Takamatsu et al. | Dec 1998 | A |
5856874 | Tachibana et al. | Jan 1999 | A |
5887122 | Terawaki et al. | Mar 1999 | A |
5894123 | Ohtomo et al. | Apr 1999 | A |
5898484 | Harris | Apr 1999 | A |
5898490 | Ohtomo et al. | Apr 1999 | A |
5909939 | Fugmann | Jun 1999 | A |
5926782 | Raab | Jul 1999 | A |
5933267 | Ishizuka | Aug 1999 | A |
5936721 | Ohtomo et al. | Aug 1999 | A |
5940170 | Berg et al. | Aug 1999 | A |
5940181 | Tsubono et al. | Aug 1999 | A |
5949530 | Wetteborn | Sep 1999 | A |
5956857 | Raab | Sep 1999 | A |
5969321 | Danielson et al. | Oct 1999 | A |
5973788 | Pettersen et al. | Oct 1999 | A |
5978748 | Raab | Nov 1999 | A |
5983936 | Schwieterman et al. | Nov 1999 | A |
5988862 | Kacyra et al. | Nov 1999 | A |
5991011 | Damm | Nov 1999 | A |
5996790 | Yamada et al. | Dec 1999 | A |
5997779 | Potter | Dec 1999 | A |
6040898 | Mrosik et al. | Mar 2000 | A |
D423534 | Raab et al. | Apr 2000 | S |
6050615 | Weinhold | Apr 2000 | A |
6057915 | Squire et al. | May 2000 | A |
6060889 | Hocker | May 2000 | A |
6067116 | Yamano et al. | May 2000 | A |
6069700 | Rudnick et al. | May 2000 | A |
6077306 | Metzger et al. | Jun 2000 | A |
6112423 | Sheehan | Sep 2000 | A |
6115511 | Sakai et al. | Sep 2000 | A |
6125337 | Rosenberg et al. | Sep 2000 | A |
6131299 | Raab et al. | Oct 2000 | A |
6134507 | Markey, Jr. et al. | Oct 2000 | A |
6138915 | Danielson et al. | Oct 2000 | A |
6149112 | Thieltges | Nov 2000 | A |
6151789 | Raab et al. | Nov 2000 | A |
6163294 | Talbot | Dec 2000 | A |
6166504 | Iida et al. | Dec 2000 | A |
6166809 | Pettersen et al. | Dec 2000 | A |
6166811 | Long et al. | Dec 2000 | A |
6204651 | Marcus et al. | Mar 2001 | B1 |
6204961 | Anderson et al. | Mar 2001 | B1 |
6219928 | Raab et al. | Apr 2001 | B1 |
D441632 | Raab et al. | May 2001 | S |
6240651 | Schroeder et al. | Jun 2001 | B1 |
6253458 | Raab et al. | Jul 2001 | B1 |
6282195 | Miller et al. | Aug 2001 | B1 |
6285390 | Blake | Sep 2001 | B1 |
6298569 | Raab et al. | Oct 2001 | B1 |
6339410 | Milner et al. | Jan 2002 | B1 |
6349249 | Cunningham | Feb 2002 | B1 |
6366831 | Raab | Apr 2002 | B1 |
6408252 | De Smet | Jun 2002 | B1 |
6418774 | Brogaardh et al. | Jul 2002 | B1 |
6438507 | Imai | Aug 2002 | B1 |
6438856 | Kaczynski | Aug 2002 | B1 |
6442419 | Chu et al. | Aug 2002 | B1 |
6445446 | Kumagai et al. | Sep 2002 | B1 |
6460004 | Greer et al. | Oct 2002 | B2 |
6470584 | Stoodley | Oct 2002 | B1 |
6477784 | Schroeder et al. | Nov 2002 | B2 |
6480270 | Studnicka et al. | Nov 2002 | B1 |
6483106 | Ohtomo et al. | Nov 2002 | B1 |
6497394 | Dunchock | Dec 2002 | B1 |
6504602 | Hinderling | Jan 2003 | B1 |
6512575 | Marchi | Jan 2003 | B1 |
6519860 | Bieg et al. | Feb 2003 | B1 |
D472824 | Raab et al. | Apr 2003 | S |
6547397 | Kaufman et al. | Apr 2003 | B1 |
6598306 | Eaton | Jul 2003 | B2 |
6611346 | Granger | Aug 2003 | B2 |
6611617 | Crampton | Aug 2003 | B1 |
D479544 | Raab et al. | Sep 2003 | S |
6612044 | Raab et al. | Sep 2003 | B2 |
6621065 | Fukumoto et al. | Sep 2003 | B1 |
6626339 | Gates et al. | Sep 2003 | B2 |
6633051 | Holloway et al. | Oct 2003 | B1 |
6649208 | Rodgers | Nov 2003 | B2 |
6650402 | Sullivan et al. | Nov 2003 | B2 |
6668466 | Bieg et al. | Dec 2003 | B1 |
6675122 | Markendorf et al. | Jan 2004 | B1 |
6681495 | Masayuki et al. | Jan 2004 | B2 |
6710859 | Shirai et al. | Mar 2004 | B2 |
D490831 | Raab et al. | Jun 2004 | S |
D491210 | Raab et al. | Jun 2004 | S |
6750873 | Bernardini et al. | Jun 2004 | B1 |
6753876 | Brooksby et al. | Jun 2004 | B2 |
6759649 | Hipp | Jul 2004 | B2 |
6759979 | Vashisth et al. | Jul 2004 | B2 |
6764185 | Beardsley et al. | Jul 2004 | B1 |
6789327 | Roth et al. | Sep 2004 | B2 |
6820346 | Raab et al. | Nov 2004 | B2 |
6822749 | Christoph | Nov 2004 | B1 |
6825923 | Hamar et al. | Nov 2004 | B2 |
6826664 | Hocker, III et al. | Nov 2004 | B2 |
6847436 | Bridges | Jan 2005 | B2 |
6856381 | Christoph | Feb 2005 | B2 |
6858836 | Hartrumpf | Feb 2005 | B1 |
6859269 | Ohtomo et al. | Feb 2005 | B2 |
6862097 | Yanagisawa et al. | Mar 2005 | B2 |
6868359 | Raab | Mar 2005 | B2 |
6879933 | Steffey et al. | Apr 2005 | B2 |
6889903 | Koenck | May 2005 | B1 |
6892465 | Raab et al. | May 2005 | B2 |
6894767 | Ishinabe et al. | May 2005 | B2 |
6895347 | Dorny et al. | May 2005 | B2 |
6901673 | Cobb et al. | Jun 2005 | B1 |
6904691 | Raab et al. | Jun 2005 | B2 |
6914678 | Ulrichsen et al. | Jul 2005 | B1 |
6917415 | Gogolla et al. | Jul 2005 | B2 |
6920697 | Raab et al. | Jul 2005 | B2 |
6925722 | Raab et al. | Aug 2005 | B2 |
6931745 | Granger | Aug 2005 | B2 |
6935036 | Raab et al. | Aug 2005 | B2 |
6935748 | Kaufman et al. | Aug 2005 | B2 |
6948255 | Russell | Sep 2005 | B2 |
6957496 | Raab et al. | Oct 2005 | B2 |
6965843 | Raab et al. | Nov 2005 | B2 |
6973734 | Raab et al. | Dec 2005 | B2 |
6988322 | Raab et al. | Jan 2006 | B2 |
6989890 | Riegl et al. | Jan 2006 | B2 |
7003892 | Eaton et al. | Feb 2006 | B2 |
7006084 | Buss et al. | Feb 2006 | B1 |
7024032 | Kidd et al. | Apr 2006 | B2 |
7029126 | Tang | Apr 2006 | B2 |
7032321 | Raab et al. | Apr 2006 | B2 |
7040136 | Forss et al. | May 2006 | B2 |
7051447 | Kikuchi et al. | May 2006 | B2 |
7069124 | Whittaker et al. | Jun 2006 | B1 |
7076420 | Snyder et al. | Jul 2006 | B1 |
7106421 | Matsuura et al. | Sep 2006 | B2 |
7117107 | Dorny et al. | Oct 2006 | B2 |
7120092 | del Prado Pavon et al. | Oct 2006 | B2 |
7127822 | Kumagai et al. | Oct 2006 | B2 |
7136153 | Mori et al. | Nov 2006 | B2 |
7140213 | Feucht et al. | Nov 2006 | B2 |
7142289 | Ando et al. | Nov 2006 | B2 |
7145926 | Vitruk et al. | Dec 2006 | B2 |
7152456 | Eaton | Dec 2006 | B2 |
7174651 | Raab et al. | Feb 2007 | B2 |
7180072 | Persi et al. | Feb 2007 | B2 |
7184047 | Crampton | Feb 2007 | B1 |
7190465 | Froehlich et al. | Mar 2007 | B2 |
7191541 | Weekers et al. | Mar 2007 | B1 |
7193690 | Ossig et al. | Mar 2007 | B2 |
7196509 | Teng | Mar 2007 | B2 |
7199872 | Van Cranenbroeck | Apr 2007 | B2 |
7200246 | Cofer et al. | Apr 2007 | B2 |
7202941 | Munro | Apr 2007 | B2 |
7230689 | Lau | Jun 2007 | B2 |
7242590 | Yeap et al. | Jul 2007 | B1 |
7246030 | Raab et al. | Jul 2007 | B2 |
7249421 | MacManus et al. | Jul 2007 | B2 |
7256899 | Faul et al. | Aug 2007 | B1 |
7269910 | Raab et al. | Sep 2007 | B2 |
D551943 | Hodjat et al. | Oct 2007 | S |
7285793 | Husted | Oct 2007 | B2 |
7296364 | Seitz et al. | Nov 2007 | B2 |
7296955 | Dreier | Nov 2007 | B2 |
7296979 | Raab et al. | Nov 2007 | B2 |
7306339 | Kaufman et al. | Dec 2007 | B2 |
7307701 | Hoffman, II | Dec 2007 | B2 |
7312862 | Zumbrunn et al. | Dec 2007 | B2 |
7313264 | Crampton | Dec 2007 | B2 |
D559657 | Wohlford et al. | Jan 2008 | S |
7319512 | Ohtomo et al. | Jan 2008 | B2 |
7330242 | Reichert et al. | Feb 2008 | B2 |
7337344 | Barman et al. | Feb 2008 | B2 |
7342650 | Kern et al. | Mar 2008 | B2 |
7348822 | Baer | Mar 2008 | B2 |
7352446 | Bridges et al. | Apr 2008 | B2 |
7360648 | Blaschke | Apr 2008 | B1 |
7372558 | Kaufman et al. | May 2008 | B2 |
7372581 | Raab et al. | May 2008 | B2 |
7383638 | Granger | Jun 2008 | B2 |
7388654 | Raab et al. | Jun 2008 | B2 |
7389870 | Slappay | Jun 2008 | B2 |
7395606 | Crampton | Jul 2008 | B2 |
7400384 | Evans et al. | Jul 2008 | B1 |
7403269 | Yamashita et al. | Jul 2008 | B2 |
7430068 | Becker et al. | Sep 2008 | B2 |
7430070 | Soreide et al. | Sep 2008 | B2 |
7441341 | Eaton | Oct 2008 | B2 |
7443555 | Blug et al. | Oct 2008 | B2 |
7447931 | Rischar et al. | Nov 2008 | B1 |
7449876 | Pleasant et al. | Nov 2008 | B2 |
7454265 | Marsh | Nov 2008 | B2 |
7463368 | Morden et al. | Dec 2008 | B2 |
7477359 | England et al. | Jan 2009 | B2 |
7480037 | Palmateer et al. | Jan 2009 | B2 |
7508496 | Mettenleiter et al. | Mar 2009 | B2 |
7508971 | Vaccaro et al. | Mar 2009 | B2 |
7515256 | Ohtomo et al. | Apr 2009 | B2 |
7525276 | Eaton | Apr 2009 | B2 |
7527205 | Zhu et al. | May 2009 | B2 |
7528768 | Wakayama et al. | May 2009 | B2 |
7541830 | Fahrbach et al. | Jun 2009 | B2 |
7545517 | Rueb et al. | Jun 2009 | B2 |
7546689 | Ferrari et al. | Jun 2009 | B2 |
7551771 | England, III | Jun 2009 | B2 |
7552644 | Haase et al. | Jun 2009 | B2 |
7557824 | Holliman | Jul 2009 | B2 |
7561598 | Stratton et al. | Jul 2009 | B2 |
7564250 | Hocker | Jul 2009 | B2 |
7568293 | Ferrari | Aug 2009 | B2 |
7578069 | Eaton | Aug 2009 | B2 |
D599226 | Gerent et al. | Sep 2009 | S |
7589595 | Cutler | Sep 2009 | B2 |
7589825 | Orchard et al. | Sep 2009 | B2 |
7591077 | Pettersson | Sep 2009 | B2 |
7591078 | Crampton | Sep 2009 | B2 |
7599106 | Matsumoto et al. | Oct 2009 | B2 |
7600061 | Honda | Oct 2009 | B2 |
7602873 | Eidson | Oct 2009 | B2 |
7604207 | Hasloecher et al. | Oct 2009 | B2 |
7610175 | Eidson | Oct 2009 | B2 |
7614157 | Granger | Nov 2009 | B2 |
7624510 | Ferrari | Dec 2009 | B2 |
7625335 | Deichmann et al. | Dec 2009 | B2 |
7626690 | Kumagai et al. | Dec 2009 | B2 |
D607350 | Cooduvalli et al. | Jan 2010 | S |
7656751 | Rischar et al. | Feb 2010 | B2 |
7659995 | Knighton et al. | Feb 2010 | B2 |
D610926 | Gerent et al. | Mar 2010 | S |
7693325 | Pulla et al. | Apr 2010 | B2 |
7697748 | Dimsdale et al. | Apr 2010 | B2 |
7701592 | Saint Clair et al. | Apr 2010 | B2 |
7712224 | Hicks | May 2010 | B2 |
7721396 | Fleischman | May 2010 | B2 |
7728833 | Verma et al. | Jun 2010 | B2 |
7728963 | Kirschner | Jun 2010 | B2 |
7733544 | Becker et al. | Jun 2010 | B2 |
7735234 | Briggs et al. | Jun 2010 | B2 |
7743524 | Eaton et al. | Jun 2010 | B2 |
7752003 | MacManus | Jul 2010 | B2 |
7756615 | Barfoot et al. | Jul 2010 | B2 |
7765707 | Tomelleri | Aug 2010 | B2 |
7769559 | Reichert | Aug 2010 | B2 |
7774949 | Ferrari | Aug 2010 | B2 |
7779548 | Ferrari | Aug 2010 | B2 |
7779553 | Jordil et al. | Aug 2010 | B2 |
7784194 | Raab et al. | Aug 2010 | B2 |
7787670 | Urushiya | Aug 2010 | B2 |
7793425 | Bailey | Sep 2010 | B2 |
7798453 | Maningo et al. | Sep 2010 | B2 |
7800758 | Bridges et al. | Sep 2010 | B1 |
7804602 | Raab | Sep 2010 | B2 |
7805851 | Pettersson | Oct 2010 | B2 |
7805854 | Eaton | Oct 2010 | B2 |
7809518 | Zhu et al. | Oct 2010 | B2 |
7834985 | Morcom | Nov 2010 | B2 |
7847922 | Gittinger et al. | Dec 2010 | B2 |
RE42055 | Raab | Jan 2011 | E |
7869005 | Ossig et al. | Jan 2011 | B2 |
RE42082 | Raab et al. | Feb 2011 | E |
7881896 | Atwell et al. | Feb 2011 | B2 |
7889324 | Yamamoto | Feb 2011 | B2 |
7891248 | Hough et al. | Feb 2011 | B2 |
7900714 | Milbourne et al. | Mar 2011 | B2 |
7903245 | Miousset et al. | Mar 2011 | B2 |
7903261 | Saint Clair et al. | Mar 2011 | B2 |
7908757 | Ferrari | Mar 2011 | B2 |
7933055 | Jensen et al. | Apr 2011 | B2 |
7935928 | Seger et al. | May 2011 | B2 |
7965747 | Kumano | Jun 2011 | B2 |
7982866 | Vogel | Jul 2011 | B2 |
D643319 | Ferrari et al. | Aug 2011 | S |
7990397 | Bukowski et al. | Aug 2011 | B2 |
7994465 | Bamji et al. | Aug 2011 | B1 |
7995834 | Knighton et al. | Aug 2011 | B1 |
8001697 | Danielson et al. | Aug 2011 | B2 |
8020657 | Allard et al. | Sep 2011 | B2 |
8022812 | Beniyama et al. | Sep 2011 | B2 |
8028432 | Bailey et al. | Oct 2011 | B2 |
8036775 | Matsumoto et al. | Oct 2011 | B2 |
8045762 | Otani et al. | Oct 2011 | B2 |
8051710 | Van Dam et al. | Nov 2011 | B2 |
8052857 | Townsend | Nov 2011 | B2 |
8064046 | Ossig et al. | Nov 2011 | B2 |
8065861 | Caputo | Nov 2011 | B2 |
8082673 | Desforges et al. | Dec 2011 | B2 |
8099877 | Champ | Jan 2012 | B2 |
8117668 | Crampton et al. | Feb 2012 | B2 |
8123350 | Cannell et al. | Feb 2012 | B2 |
8152071 | Doherty et al. | Apr 2012 | B2 |
D659035 | Ferrari et al. | May 2012 | S |
8171650 | York et al. | May 2012 | B2 |
8179936 | Bueche et al. | May 2012 | B2 |
D662427 | Bailey et al. | Jun 2012 | S |
8218131 | Otani et al. | Jul 2012 | B2 |
8224032 | Fuchs et al. | Jul 2012 | B2 |
8260483 | Barfoot et al. | Sep 2012 | B2 |
8269984 | Hinderling et al. | Sep 2012 | B2 |
8276286 | Bailey et al. | Oct 2012 | B2 |
8284407 | Briggs et al. | Oct 2012 | B2 |
8310653 | Ogawa et al. | Nov 2012 | B2 |
8321612 | Hartwich et al. | Nov 2012 | B2 |
8346392 | Walser et al. | Jan 2013 | B2 |
8346480 | Trepagnier et al. | Jan 2013 | B2 |
8352212 | Fetter et al. | Jan 2013 | B2 |
8353059 | Crampton et al. | Jan 2013 | B2 |
D676341 | Bailey et al. | Feb 2013 | S |
8379191 | Braunecker et al. | Feb 2013 | B2 |
8381704 | Debelak et al. | Feb 2013 | B2 |
8384914 | Becker et al. | Feb 2013 | B2 |
D678085 | Bailey et al. | Mar 2013 | S |
8391565 | Purcell et al. | Mar 2013 | B2 |
8402669 | Ferrari et al. | Mar 2013 | B2 |
8422035 | Hinderling et al. | Apr 2013 | B2 |
8497901 | Pettersson | Jul 2013 | B2 |
8533967 | Bailey et al. | Sep 2013 | B2 |
8537374 | Briggs et al. | Sep 2013 | B2 |
8619265 | Steffey et al. | Dec 2013 | B2 |
8645022 | Yoshimura et al. | Feb 2014 | B2 |
8659748 | Dakin et al. | Feb 2014 | B2 |
8659752 | Cramer et al. | Feb 2014 | B2 |
8661700 | Briggs et al. | Mar 2014 | B2 |
8677643 | Bridges et al. | Mar 2014 | B2 |
8683709 | York | Apr 2014 | B2 |
8699007 | Becker et al. | Apr 2014 | B2 |
8705012 | Greiner et al. | Apr 2014 | B2 |
8705016 | Schumann et al. | Apr 2014 | B2 |
8718837 | Wang et al. | May 2014 | B2 |
8784425 | Ritchey et al. | Jul 2014 | B2 |
8797552 | Suzuki et al. | Aug 2014 | B2 |
8830485 | Woloschyn | Sep 2014 | B2 |
20010004269 | Shibata et al. | Jun 2001 | A1 |
20020032541 | Raab et al. | Mar 2002 | A1 |
20020059042 | Kacyra et al. | May 2002 | A1 |
20020087233 | Raab | Jul 2002 | A1 |
20020128790 | Woodmansee | Sep 2002 | A1 |
20020143506 | D'Aligny et al. | Oct 2002 | A1 |
20020149694 | Seo | Oct 2002 | A1 |
20020170192 | Steffey et al. | Nov 2002 | A1 |
20020176097 | Rodgers | Nov 2002 | A1 |
20030002055 | Kilthau et al. | Jan 2003 | A1 |
20030033104 | Gooche | Feb 2003 | A1 |
20030043386 | Froehlich et al. | Mar 2003 | A1 |
20030053037 | Blaesing-Bangert et al. | Mar 2003 | A1 |
20030066954 | Hipp | Apr 2003 | A1 |
20030090646 | Riegl et al. | May 2003 | A1 |
20030125901 | Steffey et al. | Jul 2003 | A1 |
20030137449 | Vashisth et al. | Jul 2003 | A1 |
20030142631 | Silvester | Jul 2003 | A1 |
20030172536 | Raab et al. | Sep 2003 | A1 |
20030172537 | Raab et al. | Sep 2003 | A1 |
20030179361 | Ohtomo et al. | Sep 2003 | A1 |
20030208919 | Raab et al. | Nov 2003 | A1 |
20040004727 | Yanagisawa et al. | Jan 2004 | A1 |
20040022416 | Lemelson et al. | Feb 2004 | A1 |
20040027554 | Ishinabe et al. | Feb 2004 | A1 |
20040040166 | Raab et al. | Mar 2004 | A1 |
20040135990 | Ohtomo et al. | Jul 2004 | A1 |
20040139265 | Hocker, III et al. | Jul 2004 | A1 |
20040158355 | Holmqvist et al. | Aug 2004 | A1 |
20040162700 | Rosenberg et al. | Aug 2004 | A1 |
20040179570 | Vitruk et al. | Sep 2004 | A1 |
20040221790 | Sinclair et al. | Nov 2004 | A1 |
20040246462 | Kaneko et al. | Dec 2004 | A1 |
20040259533 | Nixon et al. | Dec 2004 | A1 |
20050024625 | Mori et al. | Feb 2005 | A1 |
20050028393 | Raab et al. | Feb 2005 | A1 |
20050046823 | Ando et al. | Mar 2005 | A1 |
20050058332 | Kaufman et al. | Mar 2005 | A1 |
20050082262 | Rueb et al. | Apr 2005 | A1 |
20050085940 | Griggs et al. | Apr 2005 | A1 |
20050111514 | Matsumoto et al. | May 2005 | A1 |
20050141052 | Becker et al. | Jun 2005 | A1 |
20050144799 | Raab et al. | Jul 2005 | A1 |
20050150123 | Eaton | Jul 2005 | A1 |
20050151963 | Pulla et al. | Jul 2005 | A1 |
20050166413 | Crampton | Aug 2005 | A1 |
20050172503 | Kumagai et al. | Aug 2005 | A1 |
20050188557 | Raab et al. | Sep 2005 | A1 |
20050190384 | Persi et al. | Sep 2005 | A1 |
20050259271 | Christoph | Nov 2005 | A1 |
20050276466 | Vaccaro et al. | Dec 2005 | A1 |
20050283989 | Pettersson | Dec 2005 | A1 |
20060016086 | Raab et al. | Jan 2006 | A1 |
20060017720 | Li | Jan 2006 | A1 |
20060026851 | Raab et al. | Feb 2006 | A1 |
20060028203 | Kawashima et al. | Feb 2006 | A1 |
20060053647 | Raab et al. | Mar 2006 | A1 |
20060056459 | Stratton et al. | Mar 2006 | A1 |
20060056559 | Pleasant et al. | Mar 2006 | A1 |
20060059270 | Pleasant et al. | Mar 2006 | A1 |
20060061566 | Verma et al. | Mar 2006 | A1 |
20060088044 | Hammerl et al. | Apr 2006 | A1 |
20060096108 | Raab et al. | May 2006 | A1 |
20060103853 | Palmateer | May 2006 | A1 |
20060109536 | Mettenleiter et al. | May 2006 | A1 |
20060123649 | Muller | Jun 2006 | A1 |
20060129349 | Raab et al. | Jun 2006 | A1 |
20060132803 | Clair et al. | Jun 2006 | A1 |
20060145703 | Steinbichler et al. | Jul 2006 | A1 |
20060169050 | Kobayashi et al. | Aug 2006 | A1 |
20060169608 | Carnevali et al. | Aug 2006 | A1 |
20060170870 | Kaufman et al. | Aug 2006 | A1 |
20060186301 | Dozier et al. | Aug 2006 | A1 |
20060193521 | England, III et al. | Aug 2006 | A1 |
20060241791 | Pokorny et al. | Oct 2006 | A1 |
20060245717 | Ossig et al. | Nov 2006 | A1 |
20060279246 | Hashimoto et al. | Dec 2006 | A1 |
20060282574 | Zotov et al. | Dec 2006 | A1 |
20060287769 | Yanagita et al. | Dec 2006 | A1 |
20060291970 | Granger | Dec 2006 | A1 |
20070019212 | Gatsios et al. | Jan 2007 | A1 |
20070030841 | Lee et al. | Feb 2007 | A1 |
20070043526 | De Jonge et al. | Feb 2007 | A1 |
20070050774 | Eldson et al. | Mar 2007 | A1 |
20070055806 | Stratton et al. | Mar 2007 | A1 |
20070058154 | Reichert et al. | Mar 2007 | A1 |
20070058162 | Granger | Mar 2007 | A1 |
20070064976 | England, III | Mar 2007 | A1 |
20070097382 | Granger | May 2007 | A1 |
20070100498 | Matsumoto et al. | May 2007 | A1 |
20070105238 | Mandl et al. | May 2007 | A1 |
20070118269 | Gibson et al. | May 2007 | A1 |
20070122250 | Mullner | May 2007 | A1 |
20070142970 | Burbank et al. | Jun 2007 | A1 |
20070147265 | Eidson et al. | Jun 2007 | A1 |
20070147435 | Hamilton et al. | Jun 2007 | A1 |
20070147562 | Eidson | Jun 2007 | A1 |
20070150111 | Wu et al. | Jun 2007 | A1 |
20070151390 | Blumenkranz et al. | Jul 2007 | A1 |
20070153297 | Lau | Jul 2007 | A1 |
20070163134 | Eaton | Jul 2007 | A1 |
20070163136 | Eaton et al. | Jul 2007 | A1 |
20070171394 | Steiner et al. | Jul 2007 | A1 |
20070176648 | Baer | Aug 2007 | A1 |
20070177016 | Wu | Aug 2007 | A1 |
20070181685 | Zhu et al. | Aug 2007 | A1 |
20070183459 | Eidson | Aug 2007 | A1 |
20070185682 | Eidson | Aug 2007 | A1 |
20070217169 | Yeap et al. | Sep 2007 | A1 |
20070221522 | Yamada et al. | Sep 2007 | A1 |
20070223477 | Eidson | Sep 2007 | A1 |
20070229929 | Soreide et al. | Oct 2007 | A1 |
20070247615 | Bridges et al. | Oct 2007 | A1 |
20070248122 | Hamilton | Oct 2007 | A1 |
20070256311 | Ferrari | Nov 2007 | A1 |
20070257660 | Pleasant et al. | Nov 2007 | A1 |
20070258378 | Hamilton | Nov 2007 | A1 |
20070282564 | Sprague et al. | Dec 2007 | A1 |
20070294045 | Atwell et al. | Dec 2007 | A1 |
20080046221 | Stathis | Feb 2008 | A1 |
20080052808 | Leick et al. | Mar 2008 | A1 |
20080052936 | Briggs et al. | Mar 2008 | A1 |
20080066583 | Lott et al. | Mar 2008 | A1 |
20080068103 | Cutler | Mar 2008 | A1 |
20080075325 | Otani et al. | Mar 2008 | A1 |
20080075326 | Otani et al. | Mar 2008 | A1 |
20080080562 | Burch et al. | Apr 2008 | A1 |
20080098272 | Fairbanks et al. | Apr 2008 | A1 |
20080148585 | Raab et al. | Jun 2008 | A1 |
20080179206 | Feinstein et al. | Jul 2008 | A1 |
20080183065 | Goldbach | Jul 2008 | A1 |
20080196260 | Pettersson | Aug 2008 | A1 |
20080204699 | Benz et al. | Aug 2008 | A1 |
20080216552 | Ibach et al. | Sep 2008 | A1 |
20080228331 | McNerney et al. | Sep 2008 | A1 |
20080235969 | Jordil et al. | Oct 2008 | A1 |
20080235970 | Crampton | Oct 2008 | A1 |
20080240321 | Narus et al. | Oct 2008 | A1 |
20080245452 | Law et al. | Oct 2008 | A1 |
20080246943 | Kaufman et al. | Oct 2008 | A1 |
20080252671 | Cannell et al. | Oct 2008 | A1 |
20080257023 | Jordil et al. | Oct 2008 | A1 |
20080263411 | Baney et al. | Oct 2008 | A1 |
20080271332 | Jordil et al. | Nov 2008 | A1 |
20080273758 | Fuchs et al. | Nov 2008 | A1 |
20080282564 | Pettersson | Nov 2008 | A1 |
20080295349 | Uhl et al. | Dec 2008 | A1 |
20080298254 | Eidson | Dec 2008 | A1 |
20080302200 | Tobey | Dec 2008 | A1 |
20080309460 | Jefferson et al. | Dec 2008 | A1 |
20080309546 | Wakayama et al. | Dec 2008 | A1 |
20090000136 | Crampton | Jan 2009 | A1 |
20090010740 | Ferrari et al. | Jan 2009 | A1 |
20090013548 | Ferrari | Jan 2009 | A1 |
20090016475 | Rischar et al. | Jan 2009 | A1 |
20090021351 | Beniyama et al. | Jan 2009 | A1 |
20090031575 | Tomelleri | Feb 2009 | A1 |
20090046140 | Lashmet et al. | Feb 2009 | A1 |
20090046752 | Bueche et al. | Feb 2009 | A1 |
20090046895 | Pettersson et al. | Feb 2009 | A1 |
20090049704 | Styles et al. | Feb 2009 | A1 |
20090051938 | Miousset et al. | Feb 2009 | A1 |
20090083985 | Ferrari | Apr 2009 | A1 |
20090089004 | Vook et al. | Apr 2009 | A1 |
20090089078 | Bursey | Apr 2009 | A1 |
20090089233 | Gach et al. | Apr 2009 | A1 |
20090089623 | Neering et al. | Apr 2009 | A1 |
20090095047 | Patel et al. | Apr 2009 | A1 |
20090100949 | Shirai et al. | Apr 2009 | A1 |
20090109797 | Eidson | Apr 2009 | A1 |
20090113183 | Barford et al. | Apr 2009 | A1 |
20090113229 | Cataldo et al. | Apr 2009 | A1 |
20090122805 | Epps et al. | May 2009 | A1 |
20090125196 | Velazquez et al. | May 2009 | A1 |
20090133276 | Bailey et al. | May 2009 | A1 |
20090133494 | Van Dam et al. | May 2009 | A1 |
20090139105 | Granger | Jun 2009 | A1 |
20090157419 | Bursey | Jun 2009 | A1 |
20090161091 | Yamamoto | Jun 2009 | A1 |
20090165317 | Little | Jul 2009 | A1 |
20090177435 | Heininen | Jul 2009 | A1 |
20090177438 | Raab | Jul 2009 | A1 |
20090185741 | Nahari et al. | Jul 2009 | A1 |
20090187373 | Atwell | Jul 2009 | A1 |
20090241360 | Tait et al. | Oct 2009 | A1 |
20090249634 | Pettersson | Oct 2009 | A1 |
20090265946 | Jordil et al. | Oct 2009 | A1 |
20090273771 | Gittinger et al. | Nov 2009 | A1 |
20090299689 | Stubben et al. | Dec 2009 | A1 |
20090322859 | Shelton et al. | Dec 2009 | A1 |
20090323121 | Valkenburg et al. | Dec 2009 | A1 |
20090323742 | Kumano | Dec 2009 | A1 |
20100030421 | Yoshimura et al. | Feb 2010 | A1 |
20100040742 | Dijkhuis et al. | Feb 2010 | A1 |
20100049891 | Hartwich et al. | Feb 2010 | A1 |
20100057392 | York | Mar 2010 | A1 |
20100078866 | Pettersson | Apr 2010 | A1 |
20100095542 | Ferrari | Apr 2010 | A1 |
20100122920 | Butter et al. | May 2010 | A1 |
20100134596 | Becker | Jun 2010 | A1 |
20100135534 | Weston et al. | Jun 2010 | A1 |
20100148013 | Bhotika et al. | Jun 2010 | A1 |
20100188504 | Dimsdale et al. | Jul 2010 | A1 |
20100195086 | Ossig et al. | Aug 2010 | A1 |
20100207938 | Yau et al. | Aug 2010 | A1 |
20100208062 | Pettersson | Aug 2010 | A1 |
20100208318 | Jensen et al. | Aug 2010 | A1 |
20100245851 | Teodorescu | Sep 2010 | A1 |
20100277472 | Kaltenbach et al. | Nov 2010 | A1 |
20100277747 | Rueb et al. | Nov 2010 | A1 |
20100281705 | Verdi et al. | Nov 2010 | A1 |
20100286941 | Merlot | Nov 2010 | A1 |
20100312524 | Siercks et al. | Dec 2010 | A1 |
20100318319 | Maierhofer | Dec 2010 | A1 |
20100325907 | Tait | Dec 2010 | A1 |
20110000095 | Carlson | Jan 2011 | A1 |
20110001958 | Bridges et al. | Jan 2011 | A1 |
20110007305 | Bridges et al. | Jan 2011 | A1 |
20110007326 | Daxauer et al. | Jan 2011 | A1 |
20110013199 | Siercks et al. | Jan 2011 | A1 |
20110019155 | Daniel et al. | Jan 2011 | A1 |
20110023578 | Grasser | Feb 2011 | A1 |
20110025905 | Tanaka | Feb 2011 | A1 |
20110043515 | Stathis | Feb 2011 | A1 |
20110066781 | Debelak et al. | Mar 2011 | A1 |
20110094908 | Trieu et al. | Apr 2011 | A1 |
20110107611 | Desforges et al. | May 2011 | A1 |
20110107612 | Ferrari et al. | May 2011 | A1 |
20110107613 | Tait | May 2011 | A1 |
20110107614 | Champ | May 2011 | A1 |
20110111849 | Sprague et al. | May 2011 | A1 |
20110112786 | Desforges et al. | May 2011 | A1 |
20110119025 | Fetter et al. | May 2011 | A1 |
20110123097 | Van Coppenolle et al. | May 2011 | A1 |
20110164114 | Kobayashi et al. | Jul 2011 | A1 |
20110169924 | Haisty et al. | Jul 2011 | A1 |
20110173823 | Bailey et al. | Jul 2011 | A1 |
20110173827 | Bailey et al. | Jul 2011 | A1 |
20110173828 | York | Jul 2011 | A1 |
20110178755 | York | Jul 2011 | A1 |
20110178758 | Atwell et al. | Jul 2011 | A1 |
20110178762 | York | Jul 2011 | A1 |
20110178764 | York | Jul 2011 | A1 |
20110178765 | Atwell et al. | Jul 2011 | A1 |
20110192043 | Ferrari et al. | Aug 2011 | A1 |
20110273568 | Lagassey et al. | Nov 2011 | A1 |
20110282622 | Canter et al. | Nov 2011 | A1 |
20110288684 | Farlow et al. | Nov 2011 | A1 |
20120019806 | Becker et al. | Jan 2012 | A1 |
20120035788 | Trepagnier et al. | Feb 2012 | A1 |
20120035798 | Barfoot et al. | Feb 2012 | A1 |
20120044476 | Earhart et al. | Feb 2012 | A1 |
20120046820 | Allard et al. | Feb 2012 | A1 |
20120069325 | Schumann et al. | Mar 2012 | A1 |
20120069352 | Ossig et al. | Mar 2012 | A1 |
20120070077 | Ossig et al. | Mar 2012 | A1 |
20120113913 | Tiirola et al. | May 2012 | A1 |
20120140244 | Gittinger et al. | Jun 2012 | A1 |
20120154786 | Gosch et al. | Jun 2012 | A1 |
20120155744 | Kennedy et al. | Jun 2012 | A1 |
20120169876 | Reichert et al. | Jul 2012 | A1 |
20120181194 | McEwan et al. | Jul 2012 | A1 |
20120197439 | Wang et al. | Aug 2012 | A1 |
20120210678 | Alcouloumre et al. | Aug 2012 | A1 |
20120217357 | Franke | Aug 2012 | A1 |
20120229788 | Schumann et al. | Sep 2012 | A1 |
20120260512 | Kretschmer et al. | Oct 2012 | A1 |
20120260611 | Jones et al. | Oct 2012 | A1 |
20120262700 | Schumann et al. | Oct 2012 | A1 |
20120287265 | Schumann et al. | Nov 2012 | A1 |
20130010307 | Greiner et al. | Jan 2013 | A1 |
20130025143 | Bailey et al. | Jan 2013 | A1 |
20130025144 | Briggs et al. | Jan 2013 | A1 |
20130027515 | Vinther et al. | Jan 2013 | A1 |
20130062243 | Chang et al. | Mar 2013 | A1 |
20130070250 | Ditte et al. | Mar 2013 | A1 |
20130094024 | Ruhland et al. | Apr 2013 | A1 |
20130097882 | Bridges et al. | Apr 2013 | A1 |
20130125408 | Atwell et al. | May 2013 | A1 |
20130162472 | Najim et al. | Jun 2013 | A1 |
20130201487 | Ossig et al. | Aug 2013 | A1 |
20130205606 | Briggs et al. | Aug 2013 | A1 |
20130212889 | Bridges et al. | Aug 2013 | A9 |
20130222816 | Briggs et al. | Aug 2013 | A1 |
20130239424 | Tait | Sep 2013 | A1 |
20130300740 | Snyder et al. | Nov 2013 | A1 |
20140002608 | Atwell et al. | Jan 2014 | A1 |
20140012409 | McMurtry et al. | Jan 2014 | A1 |
20140049784 | Woloschyn et al. | Feb 2014 | A1 |
20140202016 | Bridges et al. | Jul 2014 | A1 |
20140240690 | Newman et al. | Aug 2014 | A1 |
20140259715 | Engel | Sep 2014 | A1 |
20140268108 | Grau | Sep 2014 | A1 |
20150002659 | Atwell et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
101024286 | Aug 2007 | CN |
101156043 | Apr 2008 | CN |
10026357 | Jan 2002 | DE |
10137241 | Sep 2002 | DE |
10155488 | May 2003 | DE |
10219054 | Nov 2003 | DE |
10326848 | Jan 2005 | DE |
10361870 | Jul 2005 | DE |
102004015668 | Sep 2005 | DE |
102004015111 | Oct 2005 | DE |
102004028090 | Dec 2005 | DE |
10114126 | Aug 2006 | DE |
102004010083 | Nov 2006 | DE |
102005036929 | Feb 2007 | DE |
102005060967 | Jun 2007 | DE |
102006023902 | Nov 2007 | DE |
102006024534 | Nov 2007 | DE |
102006035292 | Jan 2008 | DE |
102007037162 | Feb 2009 | DE |
102008039838 | Mar 2010 | DE |
102008062763 | Jul 2010 | DE |
102009001894 | Sep 2010 | DE |
102012109481 | Apr 2014 | DE |
0546784 | Jun 1993 | EP |
0667549 | Aug 1995 | EP |
0727642 | Aug 1996 | EP |
0767357 | May 2002 | EP |
2023077 | Feb 2009 | EP |
894320 | Apr 1962 | GB |
1112941 | May 1968 | GB |
2255648 | Nov 1992 | GB |
2336493 | Oct 1999 | GB |
2341203 | Mar 2000 | GB |
2388661 | Nov 2003 | GB |
2420241 | May 2006 | GB |
2447258 | Sep 2008 | GB |
2452033 | Feb 2009 | GB |
0357911 | Mar 1991 | JP |
04115108 | Apr 1992 | JP |
04225188 | Aug 1992 | JP |
04267214 | Sep 1992 | JP |
0572477 | Mar 1993 | JP |
06313710 | Nov 1994 | JP |
06331733 | Dec 1994 | JP |
06341838 | Dec 1994 | JP |
074950 | Jan 1995 | JP |
07128051 | May 1995 | JP |
07229963 | Aug 1995 | JP |
0815413 | Jan 1996 | JP |
0821714 | Jan 1996 | JP |
08129145 | May 1996 | JP |
08136849 | Jun 1996 | JP |
08262140 | Oct 1996 | JP |
09021868 | Jan 1997 | JP |
10213661 | Aug 1998 | JP |
8801924 | Mar 1988 | WO |
0014474 | Mar 2000 | WO |
0020880 | Apr 2000 | WO |
0034733 | Jun 2000 | WO |
0063681 | Oct 2000 | WO |
0177613 | Oct 2001 | WO |
02101323 | Dec 2002 | WO |
2004096502 | Nov 2004 | WO |
2005072917 | Aug 2005 | WO |
2005075875 | Aug 2005 | WO |
2005100908 | Oct 2005 | WO |
2006014445 | Feb 2006 | WO |
2006051264 | May 2006 | WO |
2007002319 | Jan 2007 | WO |
2007051972 | May 2007 | WO |
2007118478 | Oct 2007 | WO |
2007144906 | Dec 2007 | WO |
2008019856 | Feb 2008 | WO |
2008027588 | Mar 2008 | WO |
2008047171 | Apr 2008 | WO |
2008052348 | May 2008 | WO |
2008064276 | May 2008 | WO |
2008066896 | Jun 2008 | WO |
2008068791 | Jun 2008 | WO |
2008075170 | Jun 2008 | WO |
2009001165 | Dec 2008 | WO |
2009016185 | Feb 2009 | WO |
2009127526 | Oct 2009 | WO |
2009130169 | Oct 2009 | WO |
2009149740 | Dec 2009 | WO |
2010040742 | Apr 2010 | WO |
2010092131 | Aug 2010 | WO |
2010108089 | Sep 2010 | WO |
2010148525 | Dec 2010 | WO |
2011000955 | Jan 2011 | WO |
2011021103 | Feb 2011 | WO |
2011029140 | Mar 2011 | WO |
2011057130 | May 2011 | WO |
2011002908 | Jun 2011 | WO |
2011090829 | Jul 2011 | WO |
2011090895 | Jul 2011 | WO |
2012037157 | Mar 2012 | WO |
2012038446 | Mar 2012 | WO |
2012013525 | Aug 2012 | WO |
2012112683 | Aug 2012 | WO |
2013188026 | Dec 2013 | WO |
2013190031 | Dec 2013 | WO |
2014128498 | Aug 2014 | WO |
Entry |
---|
Bouvet, D., et al., “Precise 3-D Localization by Automatic Laser Theodolite an Odometer for Civil-Engineering Machines”, Proceedings of the 2001 IEEE International Conference on Robotics and Automation. ICRA 2001. Seoul, Korea, May 21-26, 2001; IEEE, US. |
Brenneke, C., et al., “Using 3D Laser Range Data for Slam in Outdoor Environments”, Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. (IROS 2003); Las Vegas, NV, Oct. 27-31, 2003; [IEEE/RSJ International Confer. |
Cho, et al., Implementation of a Precision Time Protocol over Low Rate Wireless Personal Area Networks, IEEE, 2008. |
Cooklev, et al., An Implementation of IEEE 1588 Over IEEE 802.11b for Syncrhonization of Wireless Local Area Network Nodes, IEEE Transactions on Instrumentation and Measurement, vol. 56, No. 5, Oct. 2007. |
Decision Revoking the European Patent (Art. 101(3)(b) EPC) dated Aug. 14, 2013, filed in Opposition re Application No. 07 785 873.6/Patent No. 2 062 069, Proprietor: Faro Technologies, Inc., filed by Leica Geosystem AG on Feb. 5, 2013, 12 pages. |
Elstrom, M.D., Stereo-Based Registration of LADAR and Color Imagery, Part of SPIE Conference on Intelligent Robots and Computer Vision XVII: Algorithms, Techniques, and Active Vision, Boston, MA, Nov. 1998, SPIE vol. 3522, 0277-786X/98. |
EO Edmund Optics “Silicon Detectors” (5 pages) 2013 Edmund Optics, Inc. http://www.edmundoptics.com/electro-optics/detector-components/silicon-detectors/1305[Oct. 15, 2013 10:14:53 AM]. |
Patrick Willoughby; “Elastically Averaged Precision Aligment”; In: “Doctoral Thesis”; Jun. 1, 2005; Massachusetts Institute of Technology; XP55005620; Abstract 1.1 Motivation; Chapter 3, Chapter 6. |
FARO Laserscanner LS, Presentation Forensic Package, Policeschool of Hessen, Wiesbaden, Germany, Dec. 14, 2005; FARO Technologies, Copyright 2008. |
FARO Product Catalog; Faro Arm; 68 pages; FARO Technologies Inc. 2009; printed Aug. 3, 2009. |
Franklin, Paul F., What IEEE 1588 Means for Your Next T&M System Design, Keithley Instruments, Inc., [on-line] Oct. 19, 2010, http://www.eetimes.com/General/DisplayPrintViewContent?contentItemId=4209746, [Retreived Oct. 21, 2010]. |
Gebre, et al. “Remotely Operated and Autonomous Mapping System (ROAMS).” Technologies for Practical Robot Applications, 2009. Tepra 2009. IEEE International Conference on IEEE, Piscataway, NJ, USA. Nov. 9, 2009, pp. 173-178. |
GHOST 3D Systems, Authorized MicroScribe Solution, FAQs—MicroScribe 3D Laser, MicroScan Tools, & related info, [online], [retrieved Nov. 29, 2011], http://microscribe.ghost3d.com/gt—microscan-3d—faqs.htm. |
Godin, G., et al., A Method for the Registration of Attributed Range Images, Copyright 2001, [Retrieved on Jan. 18, 2010 at 03:29 from IEEE Xplore]. |
Haag, et al., “Technical Overview and Application of 3D Laser Scanning for Shooting Reconstruction and Crime Scene Investigations”, Presented at the American Academy of Forensic Sciences Scientific Meeting, Washington, D.C., Feb. 21, 2008. |
Horn, B.K.P., Closed-Form Solution of Absolute Orientation Using Unit Quaternions, J. Opt. Soc. Am. A., vol. 4., No. 4, Apr. 1987, pp. 629-642, ISSN 0740-3232. |
Howard, et al., “Virtual Environments for Scene of Crime Reconstruction and Analysis”, Advanced Interfaces Group, Department of Computer Science, University of Manchester, Manchester, UK, Feb. 28, 2000. |
Huebner, Siegfried F. , “Sniper Shooting Techniques”, “Scharfschutzen-Schiesstechnik”, 1989, with English translation. |
HYDROpro Navigation, Hydropgraphic Survey Software, Trimble, www.trimble.com, Copyright 1997-2003. |
Information on Electro-Optical Information Systems; EOIS 3D Mini-Moire C.M.M. Sensor for Non-Contact Measuring & Surface Mapping; Direct Dimensions, Jun. 1995. |
Ingensand, H., Dr., “Introduction to Geodetic Metrology”, “Einfuhrung in die Geodatische Messtechnik”, Federal Institute of Technology Zurich, 2004, with English translation. |
P Ben-Tzvi, et al “Extraction of 3D Images Using Pitch-Actuated 2D Laser Range Finder for Robotic Vision” (6 pages) BNSDOCID <XP 31840390A—1—>, Oct. 15, 2010. |
IPRP dated Dec. 18, 2014 corresponding to PCT/US13/041826. |
IPRP dated Dec. 24, 2014 corresponding to PCT/US13/040309. |
IPRP dated Dec. 24, 2014 corresponding to PCT/US13/040321. |
iQsun Laserscanner Brochure, 2 Pages, Apr. 2005. |
Jasiobedzki, Piotr, “Laser Eye—A New 3D Sensor for Active Vision”, SPIE—Sensor Fusion VI, vol. 2059, Sep. 7, 1993, pp. 316-321, XP00262856, Boston, U.S.A., Retrieved from the Internet: URL:http://scitation.aip.org/getpdf/servlet/Ge. |
Jasperneite, et al., Enhancements to the Time Synchronization Standard IEEE-1588 for a System of Cascaded Bridges, IEEE, 2004. |
Jgeng “DLP-Based Structured Light 3D Imaging Technologies and Applications” (15 pages) Emerging Digital Micromirror Device Based Systems and Application III; edited by Michael R. Douglass, Patrick I. Oden, Proc. of SPIE, vol. 7932, 79320B; (2011) SPIE. |
Langford, et al., “Practical Skills in Forensic Science”, Pearson Education Limited, Essex, England, First Published 2005, Forensic Chemistry. |
Leica Geosystems, FBI Crime Scene Case Study. 2006. |
Leica Geosystems, TruStory Forensic Analysis by Albuquerque Police Department, 2006. |
Leica Geosystems: “Leica Rugby 55 Designed for Interior Built for Construction”, Jan. 1, 2009, XP002660558, Retrieved from the Internet: URL:http://www.leica-geosystems.com/downloads123/zz/lasers/Rugby%2055/brochures/Leica—Rugby—55—brochure—en.pdf. |
Leica TPS800 Performance Series—Equipment List, 2004. |
Merriam-Webster (m-w.com), “Interface”. 2012. http://www.merriam-webster.com/dictionary/interface. |
Merriam-Webster (m-w.com), “Parts”. 2012. http://www.merriam-webster.com/dictionary/parts. |
Merriam-Webster (m-w.com), “Traverse”. 2012. http://www.merriam-webster.com/dictionary/traverse. |
MG Lee; “Compact 3D LIDAR based on optically coupled horizontal and vertical Scanning mechanism for the autonomous navigation of robots” (13 pages) vol. 8037; downloaded from http://proceedings.spiedigitallibrary.org/ on Jul. 2, 2013. |
Romer “Romer Measuring Arms Portable CMMs for R&D and shop floor” (Mar. 2009) Hexagon Metrology (16 pages). |
MOOG Components Group; “Fiber Optic Rotary Joints; Product Guide” (4 pages) Dec. 2010; MOOG, Inc. 2010. |
Office Action dated Oct. 24, 2014 corresponding to GB1418273.7. |
RW Boyd “Radiometry and the Detection of Otpical Radiation” (pp. 20-23) 1983 Jon wiley & Sons, Inc. |
Sauter, et al., Towards New Hybrid Networks for Industrial Automation, IEEE, 2009. |
Williams, J.A., et al., Evaluation of a Novel Multiple Point Set Registration Algorithm, Copyright 2000, [Retrieved on Jan. 18, 2010 at 04:10 from IEEE Xplore]. |
Se, et al., “Instant Scene Modeler for Crime Scene Reconstruction”, MDA, Space Missions, Ontario, Canada, Copyright 2005, IEEE. |
Spada, et al., IEEE 1588 Lowers Integration Costs in Continuous Flow Automated Production Lines, XP-002498255, ARC Insights, Insight # 2003-33MD&H, Aug. 20, 2003. |
Surman et al. “An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor enviornments.” Robotics and Autonomous Systems vol. 45 No. 3-4, Dec. 31, 2003, pp. 181-198. Amsterdamn, Netherlands. |
Trimble—Trimble SPS630, SPS730 and SPS930 Universal Total Stations, [on-line] http://www.trimble.com/sps630—730—930.shtml (1 of 4), [Retreived Jan. 26, 2010 8:50:29AM]. |
14th International Forensic Science Symposium, Interpol—Lyon, France, Oct. 19-22, 2004, Review Papers, Edited by Dr. Niamh Nic Daeid, Forensic Science Unit, Univeristy of Strathclyde, Glasgow, UK. |
A. Hart; “Kinematic Coupling Interchangeability” Precision Engineering; vol. 28, No. 1; Jan. 1, 2004 pp. 1-15. |
Akca, Devrim, Full Automated Registration of Laser Scanner Point Clouds, Institute of Geodesy and Photogrammetry, Swiss Federal Institute of Technology, Zuerich, Switzerland; Published Dec. 2003. |
Anonymous: So wird's gemacht: Mit T-DSL and Windows XP Home Edition gemeinsam ins Internet (Teil 3) Internet Citation, Jul. 2003, XP002364586, Retrieved from Internet: URL:http://support.microsfot.com/kb/814538/DE/ [retrieved on Jan. 26, 2006]. |
Bornaz, L., et al., Multiple Scan Registration in Lidar Close-Range Applications, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIV, Part 5/W12, Jul. 2003, pp. 72-77, XP002590306. |
Umeda, K., et al., Registration of Range and Color Images Using Gradient Constraints and Ran Intensity Images, Proceedings of the 17th International Conference onPatern Recognition (ICPR'04), Copyright 2010 IEEE. [Retrieved online Jan. 28, 2010—IEEE. |
Davidson, A. et al., “MonoSLAM: Real-Time Single Camera SLAM”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, No. 6, Jun. 1, 2007, pp. 1052-1067, XP011179664. |
Gebre, Biruk A., et al., “Remotely Operated and Autonomous Mapping System (ROAMS)”, Technologies for Practical Robot Applications, TEPRA 2009, IEEE International Conference on Nov. 9, 2009, pp. 173-178, XP031570394. |
Harrison A. et al., “High Quality 3D Laser Ranging Under General Vehicle Motion”, 2008 IEEE International Conference on Robotics and Automation, May 19-23, 2008, pp. 7-12, XP031340123. |
May, S. et al., “Robust 3D-Mapping with Time-of-Flight Cameras”, Intelligent Robots and Systems, IROS 2009, IEEE/RSJ International Conference on Oct. 10, 2009, pp. 1673-1678, XP031581042. |
Ohno, K. et al., “Real-Time Robot Trajectory Estimation and 3D Map Construction Using 3D Camera”, Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on Oct. 1, 2006, pp. 5279-5285, XP031006974. |
Surmann, H. et al., “An Autonomous Mobile Robot with a 3D Laser Range Finder for 3D Exploration and Digitalization of Indoor Environments”, Robotics and Autonomous Systems, Elsevier Science Publishers, vol. 45, No. 3-4, Dec. 31, 2003, pp. 181-198. |
Yan, R., et al., “3D Point Cloud Map Construction Based on Line Segments with Two Mutually Perpendicular Laser Sensors”, 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013), IEEE, Oct. 20, 2013, pp. 1114-1116. |
Ye, C. et al., “Characterization of a 2-D Laser Scanner for Mobile Robot Obstacle Negotiation” Proceedings/2002 IEEE International Conference on Robotics and Automation, May 11-15, 2012, Washington, D.C., May 1, 2002, pp. 2512-2518, XP009169742. |
Office Action for Chinese Application No. 201180004746.4 date Jul. 21, 2015; 1-4 pages. |
Office Action for DE Application No. 11 2013 002 824.7 date Jul. 22, 2015; 1-6 pages. |
Office Action for DE Application No. 11 2013 003 076.4 date Jul. 23, 2015; 1-7 pages. |
Number | Date | Country | |
---|---|---|---|
20150075018 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
61296555 | Jan 2010 | US | |
61355279 | Jun 2010 | US | |
61351347 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14223067 | Mar 2014 | US |
Child | 14548528 | US | |
Parent | 13524028 | Jun 2012 | US |
Child | 14223067 | US | |
Parent | PCT/US2013/040321 | May 2013 | US |
Child | 13524028 | US |