CORE MASTER REGULATORS OF GLIOBLASTOMA STEM CELLS

Abstract
Provided methods of inhibiting a glioblastoma stem-like cell (GSC), methods of treating a subject with glioblastoma, and methods of reprogramming an astrocyte to a glioblastoma stem-like cell (GSC).
Description
BACKGROUND

GBMs are heterogeneous tumors that arise from astrocytes—the star-shaped cells that make up the “glue-like” or supportive tissue of the brain. Glioblastomas usually contain a mix of cell types. It is not unusual for these tumors to contain cystic mineral, calcium deposits, blood vessels, or a mixed grade of cells, and are nourished by an ample blood supply. Recent advances in treatment for patients with glioblastoma (GBM) have produced only a modest survival benefit with few long-term survivors. New effective and safe therapies are urgently needed to enhance outcomes for GBM patients.


BRIEF SUMMARY

Provided are compositions and methods for treating cancer. In one aspect, the cancer is a glioblastoma (GBM).


In one embodiment, a method of reprogramming an astrocyte to a glioblastoma stem-like cell (GSC) by introducing at least one master regulator selected from the group consisting of: NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, or OTP into a cell.


In another embodiment, a method of inhibiting a glioblastoma stem-like cell (GSC) by administering an immunotherapy composition that inhibits or reduces the expression of at least one master regulator selected from the group consisting of: NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, or OTP.


In another aspect, a method of treating a subject for glioblastoma by administering an immunotherapy composition that inhibits or reduces the expression of at least one master regulator selected from the group consisting of: NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, or OTP.


In another embodiment, an immunotherapy composition for treating a subject with a glioblastoma, comprising an inhibitor of at least one of NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, or OTP.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)

Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale.



FIG. 1 illustrates master regulators of GSCs identified using GeneRep-nSCORE.



FIG. 2 illustrates that NKX6-2 is preferentially expressed in slow cycling GSCs compared to fast cycling GSCs. ASCL1 is expressed in both GSC populations. Using fast-cycling and slow-cycling GSCs as model we explored the function of ASCL1 & NKX6.2 in GSCs proliferation and survival.



FIG. 3 illustrates NKX6.2 is essential for slow cycling, but not fast cycling GSCs.



FIG. 4 illustrates partial reprogramming of astrocytes to GSCs with ASCL1, BASP1, MYCN, SOX8 (ABMNS).



FIG. 5 illustrates master regulators to reprogram astrocytes to GSCs.



FIG. 6 illustrates expression of master regulators in GSCs.



FIG. 7 illustrates knockdown of master regulators leads to GSC death.



FIG. 8 illustrates knockdown of master regulators leads to GSC death.



FIG. 9 illustrates knockdown of master regulators leads to GSC death.



FIG. 10 illustrates double knockdown of master regulators leads to GSC death.



FIG. 11 illustrates single and double knockdown of master regulators leads to GSC death.



FIG. 12 illustrates survival curves in mice administered GSC cells with partial knockdown of mater regulators.





DEFINITIONS

A “master regulator” or “cancer master regulator” is a gene or protein that acts to drive one or more intermediary gene or proteins in a pathway or network important in initiating or maintaining a cancerous state or initiating or maintaining one or more deleterious cancerous behaviors. Some master regulators are involved in pathways in the transition to a cancer state.


A “master regulator network” refers to a master regulator and one or more genes downstream of the master regulator whose transcription level is dependent on or affected by the master regulator.


The terms “protein,” “polypeptide,” and “peptide,” used interchangeably herein, refer to polymeric forms of amino acids of any length, including coded and non-coded amino acids and chemically or biochemically modified or derivatized amino acids. The terms include polymers that have been modified, such as polypeptides having modified peptide backbones.


Proteins are said to have an “N-terminus” and a “C-terminus.” The term “N-terminus” relates to the start of a protein or polypeptide, terminated by an amino acid with a free amine group (—NH2). The term “C-terminus” relates to the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (—COOH).


The terms “nucleic acid” and “polynucleotide,” used interchangeably herein, refer to polymeric forms of nucleotides of any length, including ribonucleotides, deoxyribonucleotides, or analogs or modified versions thereof. They include single-, double-, and multi-stranded DNA or RNA, genomic DNA, cDNA, DNA-RNA hybrids, and polymers comprising purine bases, pyrimidine bases, or other natural, chemically modified, biochemically modified, non-natural, or derivatized nucleotide bases.


Nucleic acids are said to have “5′ ends” and “3′ ends” because mononucleotides are reacted to make oligonucleotides in a manner such that the 5′ phosphate of one mononucleotide pentose ring is attached to the 3′ oxygen of its neighbor in one direction via a phosphodiester linkage. An end of an oligonucleotide is referred to as the “5′ end” if its 5′ phosphate is not linked to the 3′ oxygen of a mononucleotide pentose ring. An end of an oligonucleotide is referred to as the “3′ end” if its 3′ oxygen is not linked to a 5′ phosphate of another mononucleotide pentose ring. A nucleic acid sequence, even if internal to a larger oligonucleotide, also may be said to have 5′ and 3′ ends. In either a linear or circular DNA molecule, discrete elements are referred to as being “upstream” or 5′ of the “downstream” or 3′ elements.


“Codon optimization” refers to a process of modifying a nucleic acid sequence for enhanced expression in particular host cells by replacing at least one codon of the native sequence with a codon that is more frequently or most frequently used in the genes of the host cell while maintaining the native amino acid sequence. For example, a polynucleotide encoding a fusion polypeptide can be modified to substitute codons having a higher frequency of usage in a given host cell as compared to the naturally occurring nucleic acid sequence. Codon usage tables are readily available, for example, at the “Codon Usage Database.” The optimal codons utilized by L. monocytogenes for each amino acid are shown US 2007/0207170, herein incorporated by reference in its entirety for all purposes. These tables can be adapted in a number of ways. See Nakamura et al. (2000) Nucleic Acids Research 28:292, herein incorporated by reference in its entirety for all purposes. Computer algorithms for codon optimization of a particular sequence for expression in a particular host are also available (see, e.g., Gene Forge).


“Sequence identity” or “identity” in the context of two polynucleotides or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. When sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences that differ by such conservative substitutions are said to have “sequence similarity” or “similarity.” Means for making this adjustment are well known to those of skill in the art. Typically, this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, Calif.).


“Percentage of sequence identity” refers to the value determined by comparing two optimally aligned sequences (greatest number of perfectly matched residues) over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity. Unless otherwise specified (e.g., the shorter sequence includes a linked heterologous sequence), the comparison window is the full length of the shorter of the two sequences being compared.


Unless otherwise stated, sequence identity/similarity values refer to the value obtained using GAP Version 10 using the following parameters: % identity and % similarity for a nucleotide sequence using GAP Weight of 50 and Length Weight of 3, and the nwsgapdna.cmp scoring matrix; % identity and % similarity for an amino acid sequence using GAP Weight of 8 and Length Weight of 2, and the BLOSUM62 scoring matrix; or any equivalent program thereof “Equivalent program” includes any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide or amino acid residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by GAP Version 10.


The term “conservative amino acid substitution” refers to the substitution of an amino acid that is normally present in the sequence with a different amino acid of similar size, charge, or polarity. Examples of conservative substitutions include the substitution of a non-polar (hydrophobic) residue such as isoleucine, valine, or leucine for another non-polar residue. Likewise, examples of conservative substitutions include the substitution of one polar (hydrophilic) residue for another such as between arginine and lysine, between glutamine and asparagine, or between glycine and serine. Additionally, the substitution of a basic residue such as lysine, arginine, or histidine for another, or the substitution of one acidic residue such as aspartic acid or glutamic acid for another acidic residue are additional examples of conservative substitutions. Examples of non-conservative substitutions include the substitution of a non-polar (hydrophobic) amino acid residue such as isoleucine, valine, leucine, alanine, or methionine for a polar (hydrophilic) residue such as cysteine, glutamine, glutamic acid or lysine and/or a polar residue for a non-polar residue. Typical amino acid categorizations are summarized below.



















Alanine
Ala
A
Nonpolar
Neutral
1.8


Arginine
Arg
R
Polar
Positive
−4.5


Asparagine
Asn
N
Polar
Neutral
−3.5


Asp artic acid
Asp
D
Polar
Negative
−3.5


Cysteine
Cys
C
Nonpolar
Neutral
2.5


Glutamic acid
Glu
E
Polar
Negative
−3.5


Glutamine
Gln
Q
Polar
Neutral
−3.5


Glycine
Gly
G
Nonpolar
Neutral
−0.4


Histidine
His
H
Polar
Positive
−3.2


Isoleucine
Ile
I
Nonpolar
Neutral
4.5


Leucine
Leu
L
Nonpolar
Neutral
3.8


Lysine
Lys
K
Polar
Positive
−3.9


Methionine
Met
M
Nonpolar
Neutral
1.9


Phenylalanine
Phe
F
Nonpolar
Neutral
2.8


Proline
Pro
P
Nonpolar
Neutral
−1.6


Serine
Ser
S
Polar
Neutral
−0.8


Threonine
Thr
T
Polar
Neutral
−0.7


Tryptophan
Trp
W
Nonpolar
Neutral
−0.9


Tyrosine
Tyr
Y
Polar
Neutral
−1.3


Valine
Val
V
Nonpolar
Neutral
4.2









A “homologous” sequence (e.g., nucleic acid sequence) refers to a sequence that is either identical or substantially similar to a known reference sequence, such that it is, for example, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical to the known reference sequence.


The term “fragment” when referring to a protein means a protein that is shorter or has fewer amino acids than the full length protein. The term “fragment” when referring to a nucleic acid means a nucleic acid that is shorter or has fewer nucleotides than the full length nucleic acid. A fragment can be, for example, an N-terminal fragment (i.e., removal of a portion of the C-terminal end of the protein), a C-terminal fragment (i.e., removal of a portion of the N-terminal end of the protein), or an internal fragment. A fragment can also be, for example, a functional fragment or an immunogenic fragment.


The term “in vitro” refers to artificial environments and to processes or reactions that occur within an artificial environment (e.g., a test tube).


The term “in vivo” refers to natural environments (e.g., a cell or organism or body) and to processes or reactions that occur within a natural environment.


Compositions or methods “comprising” or “including” one or more recited elements may include other elements not specifically recited. For example, a composition that “comprises” or “includes” a protein may contain the protein alone or in combination with other ingredients.


Designation of a range of values includes all integers within or defining the range, and all subranges defined by integers within the range.


Unless otherwise apparent from the context, the term “about” encompasses values within a standard margin of error of measurement (e.g., SEM) of a stated value or variations ±0.5%, 1%, 5%, or 10% from a specified value.


The singular forms of the articles “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “an antigen” or “at least one antigen” can include a plurality of antigens, including mixtures thereof.


Statistically significant means p≤0.05.


DETAILED DESCRIPTION

Various embodiments of the inventions now will be described more fully hereinafter, in which some, but not all embodiments of the inventions are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. The term “or” is used herein in both the alternative and conjunctive sense, unless otherwise indicated. The terms “illustrative” and “exemplary” are used to be examples with no indication of quality level.


Glioblastoma (GBM) is the most common and lethal form of adult human brain cancers. GBMs are formed by GBM stem-like cells (GSCs)—a major contributor to tumor recurrence and a natural focus for therapeutic development. There are two main reasons responsible for treatment failure: 1) high cellular and molecular heterogeneity; 2) GSCs have multiple redundant pathways requiring simultaneous targeting.


Details regarding various embodiments are described herein. By way of background, GBM is enriched in GBM stem-like cells (GSCs), a major contributor to tumor recurrence. Both GSCs and normal neuronal precursor cells (NPC) have the ability to form neurospheres when cultured in stem cell conditions. However, only GSCs can regenerate all cancer cells in the tumor when implanted in vivo (e.g., in vivo tumorigenicity). GSCs also can differentiate into other cells of the brain, however these cells are often not functional compared to those produced by NPCs. In a mouse model of GBM, elimination of self-renewal by genetic means led to a loss of GSCs and prolonged survival. However, as with other cancers, targeting GSCs has been a challenge because of the dearth of master regulators specific only to GSCs and not to NPCs or normal brain cells. The cell origin of GSCs remains unclear; both NPCs and normal astrocytes (NA) have been shown to contribute to GSCs. As a result, several survival and growth signals in GSCs share parallels in NPCs and NAs, increasing potential toxicity for therapies that target these pathways. Many of these targets are downstream signaling nodes with overlapping functions, allowing them to compensate for one another's blockade. Another challenge is the high intra- and inter-tumor heterogeneity in the GSC compartment, which necessitates the development of therapies that can target most, if not all, fractions of different subclones within and across many tumors. Recent genomics studies suggest that like other cancers, GBM originates from a founding GSC clone that emerged after sustaining a series of initiating and cooperative alterations that are passed on such that all subclones contain the founding alterations (i.e., the core common master regulators) and hence are targetable. As the number of potential founding alterations is surprisingly small, many founding alterations are expected to be common across different tumors of the same type or even of different types.


Founding alterations may produce “imprints” on the global gene regulatory network that may persist as the founding clone morphs into subclones and may be traceable across subclones. However, understanding the biological implications of these genomic alterations requires novel analytic tools that interrogate large-scale gene expression profiles to provide information on cancer cell's behaviors caused by interactions between the founding alterations and the tumor microenvironment. Gene expression profiles can then be used to infer the global and local networks that control such behaviors. This can be achieved using reverse engineering tools such as ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks), designed to scale up to the complexity of mammalian cells. ARACNe applies a theoretical information approach to infer gene networks using gene expression data, by calculating Mutual Information (MI).


In some embodiments, two computational engines GeneRep and nSCORE are applied to optimize the use of ARACNe and to quantitatively rank master regulators in any network, respectively. This strategy is greatly enhanced by the coupling with a multi-pronged compound-screening scheme.


Identification of Master Regulators of Gene Networks

GeneRep and nSCORE address two difficulties in computational biology: how to set a threshold cutoff level to maximize sensitivity while minimizing the false discovery rate (FDR) and how to incorporate various ranking parameters known individually to influence network hierarchy. GeneRep employs innovative coupling of bootstrapping with a random networks generation procedure from the real data. Networks generated at the gene level by GeneRep contain 20,000 nodes, while those generated at the transcript level contain 50,000 nodes. The number of edges ranges from 300,000 to 1 million, far higher than what is often obtained with current methods. nSCORE creates an automated node importance scoring framework that incorporates limitless sets of existing parameters and thus can be applied to any type of networks and node statistics inputs. GeneRep-nSCORE is described in WO-2018/069891, which is incorporated by reference in its entirety.


The master regulator identification and targeting workflow integrates key aspects to optimize success: GeneRep-nSCORE to rapidly identity GSC-specific master regulators at apices of signaling networks; intra- and inter-tumor heterogeneity analyses to identify master regulators common among GSC subclones; mutational and survival analyses to capture additional relevant master regulators; a two-pronged compound screening platform combining in silico and ultra-high throughput functional screens; evaluation of the clinical timeframe from surgery to drug identification; and development of a quantitative, network-based predictive biomarker for treatment response in GSCs.


We previously elucidated the roles of BASP1, NKX6.2, STOX2, MYCN, SOX8, OLIG2, HES6, and ASCL1 in reprogramming AST to GSC in WO 2018/211409, which is incorporated herein in its entirety.


Here we disclose further genes that play a role in reprogramming AST to GSC. FIG. 5 shows top ranking genes:ETV4, MLXIPL, MEOX2, PRKCB, OLIG2, RXRG, ZNF248, KCNIP3, NMI, NKX2-2, ACTN2, DDN, PEG3, OTP, BHLHE40, HLF, ATP5J2, CEBPB, TBX2, SOX10, SOD2, HOXA13, HOXD3, POU4F1, ATOH7, VDR, IL31RA, ASCL1, HOXD13, ATP5B, BATF2, PARGC1B, HOXA11, RPH3A, ETV1, THRB, and MNX1.


Additionally, we take a closer look at a subset of master regulators involved in reprograming astrocytes to GSCs, i.e., MEOX2, PRKCB, DDN, ETV4, MLXIPL, and OTP in combination with ASCL1, BASP1, MYCN, NKX6-2, and SOX8 (FIG. 6). These master regulators were selected either because they have the largest fold change between GSCs and GBM differentiating cells (GDCs) or because they have the highest frequency occurring in top ranked genes across multiple samples and patients.


NKX2-2 (NK2 Homeobox 2) encodes a protein that contains a homeobox domain and may be involved in the morphogenesis of the central nervous system. Diseases associated with NKX2-2 include Maturity-Onset Diabetes Of The Young and Cranial Nerve Malignant Neoplasm. Among its related pathways are Developmental Biology and Embryonic and Induced Pluripotent Stem Cell Differentiation Pathways and Lineage-specific Markers.


MEOX2 (Mesenchyme Homeobox 2) is a protein coding gene. Diseases associated with MEOX2 include Female Stress Incontinence and Low Compliance Bladder. Gene Ontology (GO) annotations related to this gene include DNA-binding transcription factor activity and RNA polymerase II proximal promoter sequence-specific DNA binding.


PRKCB (Protein Kinase C Beta) is a member of the protein kinase C (PKC) family of serine- and threonine-specific protein kinases that can be activated by calcium and second messenger diacylglycerol. PKC family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. PKC family members also serve as major receptors for phorbol esters, a class of tumor promoters. Each member of the PKC family has a specific expression profile and is believed to play a distinct role in cells. The protein encoded by this gene is one of the PKC family members. This protein kinase has been reported to be involved in many different cellular functions, such as B cell activation, apoptosis induction, endothelial cell proliferation, and intestinal sugar absorption. Studies in mice also suggest that this kinase may also regulate neuronal functions and correlate fear-induced conflict behavior after stress.


DDN (Dendrin) is a protein coding gene. The DDN protein has been associated with promoting apoptosis of kidney glomerular podocytes.


ETV4 (ETS Variant Transcription Factor 4) is a protein coding gene. Diseases associated with ETV4 include Ewing Sarcoma and Extraosseous Ewing Sarcoma. Among its related pathways are RET signaling and Transcriptional misregulation in cancer.


MLXIPL (MLX Interacting Protein Like) encodes a basic helix-loop-helix leucine zipper transcription factor of the Myc/Max/Mad superfamily. This protein forms a heterodimeric complex and binds and activates, in a glucose-dependent manner, carbohydrate response element (ChoRE) motifs in the promoters of triglyceride synthesis genes. The gene is deleted in Williams-Beuren syndrome, a multisystem developmental disorder caused by the deletion of contiguous genes at chromosome 7q11.23.


OTP (Orthopedia Homeobox) encodes a member of the homeodomain (HD) family. HD family proteins are helix-turn-helix transcription factors that play key roles in the specification of cell fates.


In embodiments, a method of reprogramming an astrocyte to a glioblastoma stem-like cell (GSC) by introducing at least one master regulator selected from the group consisting of: NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, or OTP into a cell. In embodiments, a method of reprogramming an astrocyte to a glioblastoma stem-like cell (GSC) by introducing at least one master regulator selected from the group consisting of: NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, or OTP and further comprising introducing at least one master regulator from the group consisting of: BASP1, NKX6.2, STOX2, MYCN, SOX8, OLIG2, HES6, and ASCL1 into a cell.


In embodiments, a method of reprogramming an astrocyte to a glioblastoma stem-like cell (GSC) by introducing at least two master regulators selected from the group consisting of: NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, or OTP and further comprising introducing at least one master regulator from the group consisting of: BASP1, NKX6.2, STOX2, MYCN, SOX8, OLIG2, HES6, and ASCL1 into a cell. In embodiments, a method of reprogramming an astrocyte to a glioblastoma stem-like cell (GSC) by introducing at least 3, 4, 5, 6, or 7 master regulators selected from the group consisting of: NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, or OTP and further comprising introducing at least one master regulator from the group consisting of: BASP1, NKX6.2, STOX2, MYCN, SOX8, OLIG2, HES6, and ASCL1 into a cell.


In embodiments, a method of reprogramming an astrocyte to a glioblastoma stem-like cell (GSC) by introducing at least one master regulator selected from the group consisting of: NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, or OTP and further comprising introducing at least two master regulators from the group consisting of: BASP1, NKX6.2, STOX2, MYCN, SOX8, OLIG2, HES6, and ASCL1 into a cell. In embodiments, a method of reprogramming an astrocyte to a glioblastoma stem-like cell (GSC) by introducing at least one master regulator selected from the group consisting of: NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, or OTP and further comprising introducing at least 3, 4, 5, 6, 7, or 8 master regulators from the group consisting of: BASP1, NKX6.2, STOX2, MYCN, SOX8, OLIG2, HES6, and ASCL1 into a cell.


In embodiments, a method of reprogramming an astrocyte to a glioblastoma stem-like cell (GSC) by introducing NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, or OTP and further comprising introducing BASP1, NKX6.2, STOX2, MYCN, SOX8, OLIG2, HES6, and ASCL1 into a cell.


Methods of Treatment

The presently disclosed subject matter provides master regulators, such as NKX2-2, MEOX2, PRKCB, DDN, ETV4, MLXIPL, and OTP that when inhibited, can reduce or inhibit GSCs. In some embodiments, inhibition of at least one of these master regulators can be used to inhibit GSCs. In some embodiments, inhibition of a combination of at least two of these master regulators can be used to inhibit GSCs. In some embodiments, inhibition of at least one of these master regulators can be used to treat a subject with glioblastoma. In some embodiments, a combination of inhibition of at least two of these master regulators can be used to treat a subject with glioblastoma. In some embodiments, the presently disclosed subject matter provides a method of reprogramming normal human astrocytes to GSCs by introducing a combination of the master regulators disclosed herein into a cell. In some embodiments, inhibition of a combination of the master regulators NKX2-2, MEOX2, PRKCB, DDN, ETV4, MLXIPL, and OTP can be used to inhibit GSCs or in therapeutic methods for treating glioblastoma.


In some embodiments, a method of inhibiting GSCs or treating glioblastoma comprising using or administering an immunotherapy composition against individual or combinations of the master regulators disclosed herein. Also provided are immunotherapy compositions that target at least one of the master regulators disclosed herein In one embodiment, the immunotherapy composition comprises a peptide formulation derived from at least one of the master regulators disclosed herein. In one embodiment, the immunotherapy composition comprises nanoparticle or dendritic cell containing peptides derived from at least one of the master regulators disclosed herein. In one embodiment, the immunotherapy composition comprises RNAs coding for at least one of the master regulators disclosed herein. In one embodiment, the immunotherapy composition comprises nanoparticles or dendritic cells containing RNAs coding for at least one master regulator disclosed herein. In one embodiment, the RNAs coding for master regulators are electroporated into dendritic cells.


Also provided are pharmaceutical compositions that inhibit at least one master regulator disclosed herein. In one embodiment, the inhibitor is a RNA interference agent or a small molecule.


In one embodiment, delivery of the composition is by direct injection into the brain. In one embodiment, delivery is by gene therapy, for example by adeno-associated virus (AAV) or retroviral replication vector (RRV) vector. In one embodiment, delivery is by systemic intravenous delivery.


In some embodiments, we describe methods of treating cancer comprising inhibiting one or more master regulators. Inhibiting one or more master regulators can comprise using or administering one or more master regulator antagonists or inhibitors. A master regulator can be inhibited at the gene level, such as by using or administering RNA interference agents or antisense oligonucleotides to inhibit expression of the gene. The master regulators can be inhibited at the protein level, such as by using or administering an immunotherapy composition that binds to the master regulator protein and inhibits activity of the protein or by using or administering a small molecule drug known to inhibit activity of the master regulator protein. In some embodiments, we described methods of treating cancer comprising using or administering an immunotherapy composition against a master regulator protein or a combination of master regulator proteins. An immunotherapy composition can comprise one or more antibodies having affinity for one or more master regulators. An antibody can be, but is not limited to, an immunoglobulin, an immunoglobulin fragment having affinity for the master regulator, a chimeric antibody, a bispecific antibody, an antibody conjugate, or the like.


In some embodiments, an immunotherapy composition comprises a peptide formulation derived from a master regulator. The peptide can be an immunogenic fragment of a master regulator protein. The peptide can be combined with an immune stimulating adjuvant. The immunotherapy composition can be administered locally (e.g., subcutaneously) or systemically (e.g., intravenously) with or without the presence of adjuvant. The immunotherapy composition can be used to stimulate the immune system to develop an immune reaction specifically against the master regulator. Development of an immune reaction can eliminate or aid in eliminating cancer cells expressing the master regulator.


In some embodiments, we describe methods of treating cancer comprising using or administering one or more small molecule drugs to inhibit activity of a master regulator protein or a combination of master regulator proteins. In embodiments, the method comprises administering immunotherapy compositions, small molecules, RNA interference agents, antisense oligonucleotides, or combinations thereof that target one or more of the master regulators associated with the cancer.


In some embodiments, we describe methods of treating cancer comprising using or administering one or more antisense oligonucleotides or RNA interference agents to knock down expression of a master regulator gene or a combination of master regulator genes. An antisense oligonucleotide is a single-stranded oligonucleotide having a nucleobase sequence that permits hybridization to a corresponding region or segment of a target nucleic acid. An RNA interference agent is an oligonucleotide that mediates the targeted cleavage of an RNA transcript in a sequence specific manner via an RNA-induced silencing complex (RISC) pathway.


In some embodiments, we describe methods of treating cancer comprising using or administering a combination of one or more master regulator antagonists or inhibitors.


In one embodiment, the master regulator is NKX2-2. In one embodiment, NKX2-2 has the sequence of SEQ ID No: 2 or NG 042186.1. In one embodiment, a method of treating a cancer or tumor by administering and inhibitor of NKX2-2 to a subject in need thereof. In one embodiment, the inhibitor that targets NKX2-2 targets SEQ ID No: 2 or NG 042186.1 or a fragment thereof.


In one embodiment, the master regulator is MLXIPL. In one embodiment, MLXIPL has the sequence of SEQ ID Nos: 4, 6, 8, 10, or NG 009307.1. In one embodiment, a method of treating a cancer or tumor by administering and inhibitor of MLXIPL to a subject in need thereof. In one embodiment, the inhibitor that targets MLXIPL targets SEQ ID Nos: 4, 6, 8, 10, NG 009307.1, or a fragment thereof.


In one embodiment, the master regulator is ETV4. In one embodiment, ETV4 has the sequence of SEQ ID No: 12, 14, 16, 18, 20, or NC_000017.11. In one embodiment, a method of treating a cancer or tumor by administering and inhibitor of ETV4 to a subject in need thereof. In one embodiment, the inhibitor that targets ETV4 targets SEQ ID No: 12, 14, 16, 18, 20, NC_000017.11, or a fragment thereof.


In one embodiment, the master regulator is MEOX2. In one embodiment, MEOX2 has the sequence of SEQ ID No: 22 or NG_032988.1. In one embodiment, a method of treating a cancer or tumor by administering and inhibitor of MEOX2 to a subject in need thereof. In one embodiment, the inhibitor that targets MEOX2 targets SEQ ID No: 22 or NG_032988.1 or a fragment thereof.


In one embodiment, the master regulator is PRKCB. In one embodiment, PRKCB has the sequence of SEQ ID No: 24 or 26 or NG_029003.2. In one embodiment, a method of treating a cancer or tumor by administering and inhibitor of PRKCB to a subject in need thereof. In one embodiment, the inhibitor that targets PRKCB targets SEQ ID No: 24 or 26 or NG_029003.2 or a fragment thereof.


In one embodiment, the master regulator is DDN. In one embodiment, DDN has the sequence of SEQ ID No: 28 or NC_000012.12. In one embodiment, a method of treating a cancer or tumor by administering and inhibitor of DDN to a subject in need thereof. In one embodiment, the inhibitor that targets DDN targets SEQ ID No: 28 or NC_000012.12 or a fragment thereof.


In one embodiment, the master regulator is OTP. In one embodiment, OTP has the sequence of SEQ ID No: 30 or NC_000005.10. In one embodiment, a method of treating a cancer or tumor by administering and inhibitor of OTP to a subject in need thereof. In one embodiment, the inhibitor that targets OTP targets SEQ ID No: 30 or NC_000005.10 or fragment thereof.


In one embodiment, a method of treating a subject with a cancer or tumor comprising administering a composition comprising an inhibitor of at least one master regulator disclosed herein. In one embodiment, the master regulator is selected from the group consisting of NKX2-2, MEOX2, PRKCB, DDN, ETV4, MLXIPL, and OTP.


In one embodiment, a method of treating a subject with a cancer or tumor. In one embodiment, the cancer or tumor is a glioblastoma. In one embodiment, the tumor is a glioma. In one embodiment, the tumor is from brain. In one embodiment, the cancer or tumor is non-small cell lung cancer or cancer where the cell type of origin are from neurodectoderm.


EXAMPLES
Example 1: Identification of Master Regulators for Slow-Cycling GSCs Versus Fast-Cycling GSCs

There are two different populations of GSCs, slow-cycling and fast-cycling. Slow-cycling GSCs are slow-dividing but they give rise to fast-cycling GSCs, which are fast-dividing. Fast-cycling GSC are more susceptible to therapeutics since they are target fast-dividing. Therefore, targeting the slow-cycling GSCs will destroy the tumor since slow-cycling GSCs replenish the fast-dividing GSCs which are dying off due to cancer therapeutics.


Here, we explore the GSCs master regulators NKX6.2 and ASCL1 and whether expression is specific to regulating slow-cycling GSCs or fast-cycling GSCs or both. We show that NKX6.2 preferentially expressed and is essential for slow cycling GSCs, but not fast cycling GSCs (FIGS. 2 and 3). Since slow-cycling GSCs give rise to fast-cycling GSCs and are necessary for tumor growth and maintenance, NKX6.2 is a promising target for treating GBM by specifically targeting slow-cycling GSCs. For example, inhibiting the expression of NKX6.2, e.g., either by genetic means (si/shRNA) or small molecule inhibitors, may have significant therapeutic potential as a treatment of GBM that specifically targets slow-cycling GSCs, and possibly for other cancers whose stem cells share similar regulatory pathways.


Master regulators are genes at the top of a gene network which can alter the expression of downstream genes in a network. Applying the tandem computational platform GeneRep-nSCORE that integrates large-scale gene expression profiles with genomic changes to identify common founding master regulators of GSCs spanning across most, if not all, GSC clones, we discovered set of common master regulators in GCSs that are outstanding targets for clinical development.


Example 2: In Vitro Single and Double Knockdown Experiments

We applied the GeneRep-nSCORE platform to gene expression profiles of GSCs and GBM differentiating cells (GDC), normal neuronal precursor cells (NPC), and normal human astrocytes (NHA) and predicted top genes involved in fate conversions between these cell types.


Here, we take a closer look at a subset of the master regulators: MEOX2, PRKCB, ETV4, along with NKX6-2.


We used lentiviruses encoding for shRNA specific for one or two master regulators and transduced 3 independent patient-derived GSC lines. These results confirmed that effective inhibition of one or two master regulators, either by genetic means (si/shRNA) or perhaps small molecule inhibitors, would have significant therapeutic potential as a GSC-specific treatment of GBM, and possibly for other cancers whose stem cells share similar regulatory pathways.



FIGS. 8 through 11 show the results of the in vitro knockdown experiments. FIGS. 8 and 9 shows that single knockdown of MEOX2, PRKCB, or ETV4 leads to GSC death. FIGS. 10 and 11 show that double knockdown of MEOX/PRKCB, MEOX/ETV4, or MEOX/NKX6-2 leads to GSC death.


These experiments were performed in 3 individual patient derived GSC cell lines (CA7, R24-03, or R24-01) and to the same result. Together, these findings show that these master regulators may serve as important pharmacologically targets that and may reduce tumorigenicity (i.e., reduced tumor size or number of tumors).


Example 3: In Vivo Experiments in Mice

Combinations of MEOX2 and PRKCB, MEOX2 and ETV4, MEOX2 and NKX6.2, and ASCL1 and NKX6.2 were tested in vivo in mice.


We depleted different combinations of master regulators using lentiviral shRNA in xenograft tumors in mice. The control shRNA contained a scrambled sequence. These xenografts were derived from several GSC lines that have been labeled with a bioluminescent.


Recurrent tumors in experimental mice grew from cells that did not have master regulators depleted. This shows that efficient depletion is crucial.


Results are shown in FIG. 12. MEOX2 and PRKCB showed increased survival. R24-01 is ongoing with all surviving mice showing no evidence of disease up to Day 450.


BRIEF DESCRIPTION OF THE SEQUENCES

The nucleotide and amino acid sequences listed in the accompanying sequence listing are shown using standard letter abbreviations for nucleotide bases, and three-letter code for amino acids. The nucleotide sequences follow the standard convention of beginning at the 5′ end of the sequence and proceeding forward (i.e., from left to right in each line) to the 3′ end. Only one strand of each nucleotide sequence is shown, but the complementary strand is understood to be included by any reference to the displayed strand. The amino acid sequences follow the standard convention of beginning at the amino terminus of the sequence and proceeding forward (i.e., from left to right in each line) to the carboxy terminus.










NKX2-2 RNA



(SEQ ID NO: 1)



ccattttttc ctcgccacca gccgccaccg cgcgccgagc ggccgccgga gcccgagctg






acgccgcctt ggcacccctc ctggagttag aaactaaggc cggggcccgc ggcgctcggc





gcgcaggccg cccggcttcc tgcgtccatt tccgcgtgct ttcaaagaag acagagagag





gcactgggtt gggcttcatt tttttcctcc ccatccccag tttctttctc tttttaaaaa





taataattat cccaataatt aaagccaatt cccccctccc ctcccccagt ccctcccccc





aactcccccc tcccccgccc gccggggcag gggagcgcca cgaattgacc aagtgaagct





acaactttgc gacataaatt ttggggtctc gaaccatgtc gctgaccaac acaaagacgg





ggttttcggt caaggacatc ttagacctgc cggacaccaa cgatgaggag ggctctgtgg





ccgaaggtcc ggaggaagag aacgaggggc ccgagccagc caagagggcc gggccgctgg





ggcagggcgc cctggacgcg gtgcagagcc tgcccctgaa gaaccccttc tacgacagca





gcgacaaccc gtacacgcgc tggctggcca gcaccgaggg ccttcagtac tccctgcacg





gtctggctgc cggggcgccc cctcaggact caagctccaa gtccccggag ccctcggccg





acgagtcacc ggacaatgac aaggagaccc cgggcggcgg gggggacgcc ggcaagaagc





gaaagcggcg agtgcttttc tccaaggcgc agacctacga gctggagcgg cgctttcggc





agcagcggta cctgtcggcg cccgagcgcg aacacctggc cagcctcatc cgcctcacgc





ccacgcaggt caagatctgg ttccagaacc accgctacaa gatgaagcgc gcccgggccg





agaaaggtat ggaggtgacg cccctgccct cgccgcgccg ggtggccgtg cccgtcttgg





tcagggacgg caaaccatgt cacgcgctca aagcccagga cctggcagcc gccaccttcc





aggcgggcat tcccttttct gcctacagcg cgcagtcgct gcagcacatg cagtacaacg





cccagtacag ctcggccagc accccccagt acccgacagc acaccccctg gtccaggccc





agcagtggac ttggtgagcg ccgccccaac gagactcgcg gccccaggcc caggccccac





cccggcggcg gtggcggcga ggaggcctcg gtccttatgg tggttattat tattattata





attattatta tggagtcgag ttgactctcg gctccactag ggaggcgccg ggaggttgcc





tgcgtctcct tggagtggca gattccaccc acccagctct gcccatgcct ctccttctga





accttgggag agggctgaac tctacgccgt gtttacagaa tgtttgcgca gcttcgcttc





tttgcctctc cccgggggga ccaaaccgtc ccagcgttaa tgtcgtcact tgaaaacgag





aaaaagaccg accccccacc cctgctttcg tgcattttgt aaaatatgtt tgtgtgagta





gcgatattgt cagccgtctt ctaaagcaag tggagaacac tttaaaaata cagagaattt





cttccttttt ttaaaaaaaa ataagaaaat gctaaatatt tatggccatg taaacgttct





gacaactggt ggcagatttc gcttttcgtt gtaaatatcg gtggtgattg ttgccaaaat





gaccttcagg accggcctgt ttcccgtctg ggtccaactc ctttctttgt ggcttgtttg





ggtttgtttt ttgttttgtt tttgtttttg cgttttcccc tgctttcttc ctttctcttt





ttattttatt gtgcaaacat ttctcaaata tggaaaagaa aaccctgtag gcagggagcc





ctctgccctg tcctccgggc cttcagcccc gaacttggag ctcagctatt cggcgcggtt





ccccaacagc gccgggcgca gaaagctttc gattttttaa ataagaattt taataaaaat





cctgtgttta aaaaagaaaa aaa





NKX2-2 PROTEIN


(SEQ ID NO: 2)



MSLTNTKTGF SVKDILDLPD TNDEEGSVAE GPEEENEGPE PAKRAGPLGQ GALDAVQSLP






LKNPFYDSSD NPYTRWLAST EGLQYSLHGL AAGAPPQDSS SKSPEPSADE SPDNDKETPG





GGGDAGKKRK RRVLFSKAQT YELERRFRQQ RYLSAPEREH LASLIRLTPT QVKIWFQNHR





YKMKRARAEK GMEVTPLPSP RRVAVPVLVR DGKPCHALKA QDLAAATFQA GIPFSAYSAQ





SLQHMQYNAQ YSSASTPQYP TAHPLVQAQQ WTW





MLXIPL RNA Isoform alpha


(SEQ ID NO: 3)



agggaccagg cggttgcggc ggcgacagcc atggccggcg cgctggcagg tctggccgcg






ggcttgcagg tcccgcgggt cgcgcccagc ccagactcgg actcggacac agactcggag





gacccgagtc tccggcgcag cgcgggcggc ttgctccgct cgcaggtcat ccacagcggt





cacttcatgg tgtcgtcgcc gcacagcgac tcgctgcccc ggcggcgcga ccaggagggg





tccgtggggc cctccgactt cgggccgcgc agtatcgacc ccacactcac acgcctcttc





gagtgcttga gcctggccta cagtggcaag ctggtgtctc ccaagtggaa gaatttcaaa





ggcctcaagc tgctctgcag agacaagatc cgcctgaaca acgccatctg gagggcctgg





tatatccagt atgtgaagcg gaggaagagc cccgtgtgtg gcttcgtgac ccccctgcag





gggcctgagg ctgatgcgca ccggaagccg gaggccgtgg tcctggaggg gaactactgg





aagcggcgca tcgaggtggt gatgcgggaa taccacaagt ggcgcatcta ctacaagaag





cggctccgta agcccagcag ggaagatgac ctcctggccc ctaagcaggc ggaaggcagg





tggccgccgc cggagcaatg gtgcaaacag ctcttctcca gtgtggtccc cgtgctgctg





ggggacccag aggaggagcc gggtgggcgg cagctcctgg acctcaattg ctttttgtcc





gacatctcag acactctctt caccatgact cagtccggcc cttcgcccct gcagctgccg





cctgaggatg cctacgtcgg caatgctgac atgatccagc cggacctgac gccactgcag





ccaagcctgg atgacttcat ggacatctca gatttcttta ccaactcccg cctcccacag





ccgcccatgc cttcaaactt cccagagccc cccagcttca gccccgtggt tgactccctc





ttcagcagtg ggaccctggg cccagaggtg cccccggctt cctcggccat gacccacctc





tctggacaca gccgtctgca ggctcggaac agctgccctg gccccttgga ctccagcgcc





ttcctgagtt ctgatttcct ccttcctgaa gaccccaagc cccggctccc accccctcct





gtacccccac ctctgctgca ttaccctccc cctgccaagg tgccaggcct ggagccctgc





cccccacctc ccttccctcc catggcacca cccactgctt tgctgcagga agagcctctc





ttctctccca ggtttccctt ccccaccgtc cctcctgccc caggagtgtc tccgctgcct





gctcctgcag ccttcccacc caccccacag tctgtcccca gcccagcccc cacccccttc





cccatagagc ttctaccctt ggggtattcg gagcctgcct ttgggccttg cttctccatg





cccagaggca agccccccgc cccatcccct aggggacaga aagccagccc ccctacctta





gcccctgcca ctgccagtcc ccccaccact gcggggagca acaacccctg cctcacacag





ctgctcacag cagctaagcc ggagcaagcc ctggagccac cacttgtatc cagcaccctc





ctccggtccc cagggtcccc gcaggagaca gtccctgaat tcccctgcac attccttccc





ccgaccccgg cccctacacc gccccggcca cctccaggcc cggccacatt ggccccttcc





aggcccctgc ttgtccccaa agcggagcgg ctctcacccc cagcgcccag cggcagtgaa





cggcggctgt caggggacct cagctccatg ccaggccctg ggactctgag cgtccgtgtc





tctcccccgc aacccatcct cagccggggc cgtccagaca gcaacaagac cgagaaccgg





cgtatcacac acatctccgc ggagcagaag cggcgcttca acatcaagct ggggtttgac





acccttcatg ggctcgtgag cacactcagt gcccagccca gcctcaaggt gagcaaagct





accacgctgc agaagacagc tgagtacatc cttatgctac agcaggagcg tgcgggcttg





caggaggagg cccagcagct gcgggatgag attgaggagc tcaatgccgc cattaacctg





tgccagcagc agctgcccgc cacaggggta cccatcacac accagcgttt tgaccagatg





cgagacatgt ttgatgacta cgtccgaacc cgtacgctgc acaactggaa gttctgggtg





ttcagcatcc tcatccggcc tctgtttgag tccttcaacg ggatggtgtc cacggcaagt





gtgcacaccc tccgccagac ctcactggcc tggctggacc agtactgctc tctgcccgct





ctccggccaa ctgtcctgaa ctccctacgc cagctgggca catctaccag tatcctgacc





gacccgggcc gcatccctga gcaagccaca cgggcagtca cagagggcac ccttggcaaa





cctttatagt cctggccaga ccctgctgct cactcagctg ccctgggggc tgctttccct





gggcacgggc tccagggatc atctctgggc actcccttcc tgccccaggc cctggctctg





cccttccctg gggggtggag cagggtccag gtttcacact tgccacctcc tggaggtcaa





gaagagcaga gtccccgtcc ctgctctgcc actgtgctcc agcaccgtga ccttgggtga





ctcgtccgct gtctttggac cgctgtgttt caatctgcaa aatggggatg gggaaggttc





aatcagcaga tgacccccag gccttggcag ctgtgacatt gggggcctag gctggcaact





ccgggggctc aacggtggaa agaggaggat gctgtttctc tgtcacctcc acttgctccc





cgacaggtgg ggcacagacc tctgttcctg agcagagaag cagaaaagga ggttccctct





ctctgctcct tcactgctga cccagagggg ctgcaggatg gtttcccctg ggagaggcca





ggagggcctg atcccaggag acaccagggc cagagtgacc acagcagggc aggcatcatg





tgtgtgtgtg tgtgtggatg tgtgtgtgtg ggttttgtaa agaattcttg accaataaaa





gcaaaaactg tc





MLXIPL Protein Isoform alpha


(SEQ ID NO: 4)



MAGALAGLAAGLQVPRVAPSPDSDSDTDSEDPSLRRSAGGLLRS






QVIHSGHFMVSSPHSDSLPRRRDQEGSVGPSDFGPRSIDPTLTRLFECLSLAYSGKLV





SPKWKNFKGLKLLCRDKIRLNNAIWRAWYIQYVKRRKSPVCGFVTPLQGPEADAHRKP





EAVVLEGNYWKRRIEVVMREYHKWRIYYKKRLRKPSREDDLLAPKQAEGRWPPPEQWC





KQLFSSVVPVLLGDPEEEPGGRQLLDLNCFLSDISDTLFTMTQSGPSPLQLPPEDAYV





GNADMIQPDLTPLQPSLDDFMDISDFFTNSRLPQPPMPSNFPEPPSFSPVVDSLFSSG





TLGPEVPPASSAMTHLSGHSRLQARNSCPGPLDSSAFLSSDFLLPEDPKPRLPPPPVP





PPLLHYPPPAKVPGLEPCPPPPFPPMAPPTALLQEEPLFSPRFPFPTVPPAPGVSPLP





APAAFPPTPQSVPSPAPTPFPIELLPLGYSEPAFGPCFSMPRGKPPAPSPRGQKASPP





TLAPATASPPTTAGSNNPCLTQLLTAAKPEQALEPPLVSSTLLRSPGSPQETVPEFPC





TFLPPTPAPTPPRPPPGPATLAPSRPLLVPKAERLSPPAPSGSERRLSGDLSSMPGPG





TLSVRVSPPQPILSRGRPDSNKTENRRITHISAEQKRRFNIKLGFDTLHGLVSTLSAQ





PSLKVSKATTLQKTAEYILMLQQERAGLQEEAQQLRDEIEELNAAINLCQQQLPATGV





PITHQRFDQMRDMFDDYVRTRTLHNWKFWVFSILIRPLFESFNGMVSTASVHTLRQTS





LAWLDQYCSLPALRPTVLNSLRQLGTSTSILTDPGRIPEQATRAVTEGTLGKPL





MLXIPL RNA Isoform beta


(SEQ ID NO: 5)



agggaccagg cggttgcggc ggcgacagcc atggccggcg cgctggcagg tctggccgcg






ggcttgcagg tcccgcgggt cgcgcccagc ccagactcgg actcggacac agactcggag





gacccgagtc tccggcgcag cgcgggcggc ttgctccgct cgcaggtcat ccacagcggt





cacttcatgg tgtcgtcgcc gcacagcgac tcgctgcccc ggcggcgcga ccaggagggg





tccgtggggc cctccgactt cgggccgcgc agtatcgacc ccacactcac acgcctcttc





gagtgcttga gcctggccta cagtggcaag ctggtgtctc ccaagtggaa gaatttcaaa





ggcctcaagc tgctctgcag agacaagatc cgcctgaaca acgccatctg gagggcctgg





tatatccagt atgtgaagcg gaggaagagc cccgtgtgtg gcttcgtgac ccccctgcag





gggcctgagg ctgatgcgca ccggaagccg gaggccgtgg tcctggaggg gaactactgg





aagcggcgca tcgaggtggt gatgcgggaa taccacaagt ggcgcatcta ctacaagaag





cggctccgta agcccagcag ggaagatgac ctcctggccc ctaagcaggc ggaaggcagg





tggccgccgc cggagcaatg gtgcaaacag ctcttctcca gtgtggtccc cgtgctgctg





ggggacccag aggaggagcc gggtgggcgg cagctcctgg acctcaattg ctttttgtcc





gacatctcag acactctctt caccatgact cagtccggcc cttcgcccct gcagctgccg





cctgaggatg cctacgtcgg caatgctgac atgatccagc cggacctgac gccactgcag





ccaagcctgg atgacttcat ggacatctca gatttcttta ccaactcccg cctcccacag





ccgcccatgc cttcaaactt cccagagccc cccagcttca gccccgtggt tgactccctc





ttcagcagtg ggaccctggg cccagaggtg cccccggctt cctcggccat gacccacctc





tctggacaca gccgtctgca ggctcggaac agctgccctg gccccttgga ctccagcgcc





ttcctgagtt ctgatttcct ccttcctgaa gaccccaagc cccggctccc accccctcct





gtacccccac ctctgctgca ttaccctccc cctgccaagg tgccaggcct ggagccctgc





cccccacctc ccttccctcc catggcacca cccactgctt tgctgcagga agagcctctc





ttctctccca ggtttccctt ccccaccgtc cctcctgccc caggagtgtc tccgctgcct





gctcctgcag ccttcccacc caccccacag tctgtcccca gcccagcccc cacccccttc





cccatagagc ttctaccctt ggggtattcg gagcctgcct ttgggccttg cttctccatg





cccagaggca agccccccgc cccatcccct aggggacaga aagccagccc ccctacctta





gcccctgcca ctgccagtcc ccccaccact gcggggagca acaacccctg cctcacacag





ctgctcacag cagctaagcc ggagcaagcc ctggagccac cacttgtatc cagcaccctc





ctccggtccc cagggtcccc gcaggagaca gtccctgaat tcccctgcac attccttccc





ccgaccccgg cccctacacc gccccggcca cctccaggcc cggccacatt ggccccttcc





aggcccctgc ttgtccccaa agcggagcgg ctctcacccc cagcgcccag cggcagtgaa





cggcggctgt caggggacct cagctccatg ccaggccctg ggactctgag cgtccgtgtc





tctcccccgc aacccatcct cagccggggc cgtccagaca gcaacaagac cgagaaccgg





cgtatcacac acatctccgc ggagcagaag cggcgcttca acatcaagct ggggtttgac





acccttcatg ggctcgtgag cacactcagt gcccagccca gcctcaagga gcgtgcgggc





ttgcaggagg aggcccagca gctgcgggat gagattgagg agctcaatgc cgccattaac





ctgtgccagc agcagctgcc cgccacaggg gtacccatca cacaccagcg ttttgaccag





atgcgagaca tgtttgatga ctacgtccga acccgtacgc tgcacaactg gaagttctgg





gtgttcagca tcctcatccg gcctctgttt gagtccttca acgggatggt gtccacggca





agtgtgcaca ccctccgcca gacctcactg gcctggctgg accagtactg ctctctgccc





gctctccggc caactgtcct gaactcccta cgccagctgg gcacatctac cagtatcctg





accgacccgg gccgcatccc tgagcaagcc acacgggcag tcacagaggg cacccttggc





aaacctttat agtcctggcc agaccctgct gctcactcag ctgccctggg ggctgctttc





cctgggcacg ggctccaggg atcatctctg ggcactccct tcctgcccca ggccctggct





ctgcccttcc ctggggggtg gagcagggtc caggtttcac acttgccacc tcctggaggt





caagaagagc agagtccccg tccctgctct gccactgtgc tccagcaccg tgaccttggg





tgactcgtcc gctgtctttg gaccgctgtg tttcaatctg caaaatgggg atggggaagg





ttcaatcagc agatgacccc caggccttgg cagctgtgac attgggggcc taggctggca





actccggggg ctcaacggtg gaaagaggag gatgctgttt ctctgtcacc tccacttgct





ccccgacagg tggggcacag acctctgttc ctgagcagag aagcagaaaa ggaggttccc





tctctctgct ccttcactgc tgacccagag gggctgcagg atggtttccc ctgggagagg





ccaggagggc ctgatcccag gagacaccag ggccagagtg accacagcag ggcaggcatc





atgtgtgtgt gtgtgtgtgg atgtgtgtgt gtgggttttg taaagaattc ttgaccaata





aaagcaaaaa ctgtc





MLXIPL protein Isoform beta


(SEQ ID NO: 6)



MAGALAGLAAGLQVPRVAPSPDSDSDTDSEDPSLRRSAGGLLRS






QVIHSGHFMVSSPHSDSLPRRRDQEGSVGPSDFGPRSIDPTLTRLFECLSLAYSGKLV





SPKWKNFKGLKLLCRDKIRLNNAIWRAWYIQYVKRRKSPVCGFVTPLQGPEADAHRKP





EAVVLEGNYWKRRIEVVMREYHKWRIYYKKRLRKPSREDDLLAPKQAEGRWPPPEQWC





KQLFSSVVPVLLGDPEEEPGGRQLLDLNCFLSDISDTLFTMTQSGPSPLQLPPEDAYV





GNADMIQPDLTPLQPSLDDFMDISDFFTNSRLPQPPMPSNFPEPPSFSPVVDSLFSSG





TLGPEVPPASSAMTHLSGHSRLQARNSCPGPLDSSAFLSSDFLLPEDPKPRLPPPPVP





PPLLHYPPPAKVPGLEPCPPPPFPPMAPPTALLQEEPLFSPRFPFPTVPPAPGVSPLP





APAAFPPTPQSVPSPAPTPFPIELLPLGYSEPAFGPCFSMPRGKPPAPSPRGQKASPP





TLAPATASPPTTAGSNNPCLTQLLTAAKPEQALEPPLVSSTLLRSPGSPQETVPEFPC





TFLPPTPAPTPPRPPPGPATLAPSRPLLVPKAERLSPPAPSGSERRLSGDLSSMPGPG





TLSVRVSPPQPILSRGRPDSNKTENRRITHISAEQKRRFNIKLGFDTLHGLVSTLSAQ





PSLKERAGLQEEAQQLRDEIEELNAAINLCQQQLPATGVPITHQRFDQMRDMFDDYVR





TRTLHNWKFWVFSILIRPLFESFNGMVSTASVHTLRQTSLAWLDQYCSLPALRPTVLN





SLRQLGTSTSILTDPGRIPEQATRAVTEGTLGKPL





MLXIPL RNA Isoform gamma


(SEQ ID NO: 7)



agggaccagg cggttgcggc ggcgacagcc atggccggcg cgctggcagg tctggccgcg






ggcttgcagg tcccgcgggt cgcgcccagc ccagactcgg actcggacac agactcggag





gacccgagtc tccggcgcag cgcgggcggc ttgctccgct cgcaggtcat ccacagcggt





cacttcatgg tgtcgtcgcc gcacagcgac tcgctgcccc ggcggcgcga ccaggagggg





tccgtggggc cctccgactt cgggccgcgc agtatcgacc ccacactcac acgcctcttc





gagtgcttga gcctggccta cagtggcaag ctggtgtctc ccaagtggaa gaatttcaaa





ggcctcaagc tgctctgcag agacaagatc cgcctgaaca acgccatctg gagggcctgg





tatatccagt atgtgaagcg gaggaagagc cccgtgtgtg gcttcgtgac ccccctgcag





gggcctgagg ctgatgcgca ccggaagccg gaggccgtgg tcctggaggg gaactactgg





aagcggcgca tcgaggtggt gatgcgggaa taccacaagt ggcgcatcta ctacaagaag





cggctccgta agcccagcag ggaagatgac ctcctggccc ctaagcaggc ggaaggcagg





tggccgccgc cggagcaatg gtgcaaacag ctcttctcca gtgtggtccc cgtgctgctg





ggggacccag aggaggagcc gggtgggcgg cagctcctgg acctcaattg ctttttgtcc





gacatctcag acactctctt caccatgact cagtccggcc cttcgcccct gcagctgccg





cctgaggatg cctacgtcgg caatgctgac atgatccagc cggacctgac gccactgcag





ccaagcctgg atgacttcat ggacatctca gatttcttta ccaactcccg cctcccacag





ccgcccatgc cttcaaactt cccagagccc cccagcttca gccccgtggt tgactccctc





ttcagcagtg ggaccctggg cccagaggtg cccccggctt cctcggccat gacccacctc





tctggacaca gccgtctgca ggctcggaac agctgccctg gccccttgga ctccagcgcc





ttcctgagtt ctgatttcct ccttcctgaa gaccccaagc cccggctccc accccctcct





gtacccccac ctctgctgca ttaccctccc cctgccaagg tgccaggcct ggagccctgc





cccccacctc ccttccctcc catggcacca cccactgctt tgctgcagga agagcctctc





ttctctccca ggtttccctt ccccaccgtc cctcctgccc caggagtgtc tccgctgcct





gctcctgcag ccttcccacc caccccacag tctgtcccca gcccagcccc cacccccttc





cccatagagc ttctaccctt ggggtattcg gagcctgcct ttgggccttg cttctccatg





cccagaggca agccccccgc cccatcccct aggggacaga aagccagccc ccctacctta





gcccctgcca ctgccagtcc ccccaccact gcggggagca acaacccctg cctcacacag





ctgctcacag cagctaagcc ggagcaagcc ctggagccac cacttgtatc cagcaccctc





ctccggtccc cagggtcccc gcaggagaca gtccctgaat tcccctgcac attccttccc





ccgaccccgg cccctacacc gccccggcca cctccaggcc cggccacatt ggccccttcc





aggcccctgc ttgtccccaa agcggagcgg ctctcacccc cagcgcccag cggcagtgaa





cggcggctgt caggggacct cagctccatg ccaggccctg ggactctgag cgtccgtgtc





tctcccccgc aacccatcct cagccggggc cgtccagaca gcaacaagaa ccggcgtatc





acacacatct ccgcggagca gaagcggcgc ttcaacatca agctggggtt tgacaccctt





catgggctcg tgagcacact cagtgcccag cccagcctca aggtgagcaa agctaccacg





ctgcagaaga cagctgagta catccttatg ctacagcagg agcgtgcggg cttgcaggag





gaggcccagc agctgcggga tgagattgag gagctcaatg ccgccattaa cctgtgccag





cagcagctgc ccgccacagg ggtacccatc acacaccagc gttttgacca gatgcgagac





atgtttgatg actacgtccg aacccgtacg ctgcacaact ggaagttctg ggtgttcagc





atcctcatcc ggcctctgtt tgagtccttc aacgggatgg tgtccacggc aagtgtgcac





accctccgcc agacctcact ggcctggctg gaccagtact gctctctgcc cgctctccgg





ccaactgtcc tgaactccct acgccagctg ggcacatcta ccagtatcct gaccgacccg





ggccgcatcc ctgagcaagc cacacgggca gtcacagagg gcacccttgg caaaccttta





tagtcctggc cagaccctgc tgctcactca gctgccctgg gggctgcttt ccctgggcac





gggctccagg gatcatctct gggcactccc ttcctgcccc aggccctggc tctgcccttc





cctggggggt ggagcagggt ccaggtttca cacttgccac ctcctggagg tcaagaagag





cagagtcccc gtccctgctc tgccactgtg ctccagcacc gtgaccttgg gtgactcgtc





cgctgtcttt ggaccgctgt gtttcaatct gcaaaatggg gatggggaag gttcaatcag





cagatgaccc ccaggccttg gcagctgtga cattgggggc ctaggctggc aactccgggg





gctcaacggt ggaaagagga ggatgctgtt tctctgtcac ctccacttgc tccccgacag





gtggggcaca gacctctgtt cctgagcaga gaagcagaaa aggaggttcc ctctctctgc





tccttcactg ctgacccaga ggggctgcag gatggtttcc cctgggagag gccaggaggg





cctgatccca ggagacacca gggccagagt gaccacagca gggcaggcat catgtgtgtg





tgtgtgtgtg gatgtgtgtg tgtgggtttt gtaaagaatt cttgaccaat aaaagcaaaa





actgtc





MLXIPL Protein Isoform gamma


(SEQ ID NO: 8)



MAGALAGLAAGLQVPRVAPSPDSDSDTDSEDPSLRRSAGGLLRS






QVIHSGHFMVSSPHSDSLPRRRDQEGSVGPSDFGPRSIDPTLTRLFECLSLAYSGKLV





SPKWKNFKGLKLLCRDKIRLNNAIWRAWYIQYVKRRKSPVCGFVTPLQGPEADAHRKP





EAVVLEGNYWKRRIEVVMREYHKWRIYYKKRLRKPSREDDLLAPKQAEGRWPPPEQWC





KQLFSSVVPVLLGDPEEEPGGRQLLDLNCFLSDISDTLFTMTQSGPSPLQLPPEDAYV





GNADMIQPDLTPLQPSLDDFMDISDFFTNSRLPQPPMPSNFPEPPSFSPVVDSLFSSG





TLGPEVPPASSAMTHLSGHSRLQARNSCPGPLDSSAFLSSDFLLPEDPKPRLPPPPVP





PPLLHYPPPAKVPGLEPCPPPPFPPMAPPTALLQEEPLFSPRFPFPTVPPAPGVSPLP





APAAFPPTPQSVPSPAPTPFPIELLPLGYSEPAFGPCFSMPRGKPPAPSPRGQKASPP





TLAPATASPPTTAGSNNPCLTQLLTAAKPEQALEPPLVSSTLLRSPGSPQETVPEFPC





TFLPPTPAPTPPRPPPGPATLAPSRPLLVPKAERLSPPAPSGSERRLSGDLSSMPGPG





TLSVRVSPPQPILSRGRPDSNKNRRITHISAEQKRRFNIKLGFDTLHGLVSTLSAQPS





LKVSKATTLQKTAEYILMLQQERAGLQEEAQQLRDEIEELNAAINLCQQQLPATGVPI





THQRFDQMRDMFDDYVRTRTLHNWKFWVFSILIRPLFESFNGMVSTASVHTLRQTSLA





WLDQYCSLPALRPTVLNSLRQLGTSTSILTDPGRIPEQATRAVTEGTLGKPL





MLXIPL RNA Isoform delta


(SEQ ID NO: 9)



agggaccagg cggttgcggc ggcgacagcc atggccggcg cgctggcagg tctggccgcg






ggcttgcagg tcccgcgggt cgcgcccagc ccagactcgg actcggacac agactcggag





gacccgagtc tccggcgcag cgcgggcggc ttgctccgct cgcaggtcat ccacagcggt





cacttcatgg tgtcgtcgcc gcacagcgac tcgctgcccc ggcggcgcga ccaggagggg





tccgtggggc cctccgactt cgggccgcgc agtatcgacc ccacactcac acgcctcttc





gagtgcttga gcctggccta cagtggcaag ctggtgtctc ccaagtggaa gaatttcaaa





ggcctcaagc tgctctgcag agacaagatc cgcctgaaca acgccatctg gagggcctgg





tatatccagt atgtgaagcg gaggaagagc cccgtgtgtg gcttcgtgac ccccctgcag





gggcctgagg ctgatgcgca ccggaagccg gaggccgtgg tcctggaggg gaactactgg





aagcggcgca tcgaggtggt gatgcgggaa taccacaagt ggcgcatcta ctacaagaag





cggctccgta agcccagcag ggaagatgac ctcctggccc ctaagcaggc ggaaggcagg





tggccgccgc cggagcaatg gtgcaaacag ctcttctcca gtgtggtccc cgtgctgctg





ggggacccag aggaggagcc gggtgggcgg cagctcctgg acctcaattg ctttttgtcc





gacatctcag acactctctt caccatgact cagtccggcc cttcgcccct gcagctgccg





cctgaggatg cctacgtcgg caatgctgac atgatccagc cggacctgac gccactgcag





ccaagcctgg atgacttcat ggacatctca gatttcttta ccaactcccg cctcccacag





ccgcccatgc cttcaaactt cccagagccc cccagcttca gccccgtggt tgactccctc





ttcagcagtg ggaccctggg cccagaggtg cccccggctt cctcggccat gacccacctc





tctggacaca gccgtctgca ggctcggaac agctgccctg gccccttgga ctccagcgcc





ttcctgagtt ctgatttcct ccttcctgaa gaccccaagc cccggctccc accccctcct





gtacccccac ctctgctgca ttaccctccc cctgccaagg tgccaggcct ggagccctgc





cccccacctc ccttccctcc catggcacca cccactgctt tgctgcagga agagcctctc





ttctctccca ggtttccctt ccccaccgtc cctcctgccc caggagtgtc tccgctgcct





gctcctgcag ccttcccacc caccccacag tctgtcccca gcccagcccc cacccccttc





cccatagagc ttctaccctt ggggtattcg gagcctgcct ttgggccttg cttctccatg





cccagaggca agccccccgc cccatcccct aggggacaga aagccagccc ccctacctta





gcccctgcca ctgccagtcc ccccaccact gcggggagca acaacccctg cctcacacag





ctgctcacag cagctaagcc ggagcaagcc ctggagccac cacttgtatc cagcaccctc





ctccggtccc cagggtcccc gcaggagaca gtccctgaat tcccctgcac attccttccc





ccgaccccgg cccctacacc gccccggcca cctccaggcc cggccacatt ggccccttcc





aggcccctgc ttgtccccaa agcggagcgg ctctcacccc cagcgcccag cggcagtgaa





cggcggctgt caggggacct cagctccatg ccaggccctg ggactctgag cgtccgtgtc





tctcccccgc aacccatcct cagccggggc cgtccagaca gcaacaagaa ccggcgtatc





acacacatct ccgcggagca gaagcggcgc ttcaacatca agctggggtt tgacaccctt





catgggctcg tgagcacact cagtgcccag cccagcctca aggagcgtgc gggcttgcag





gaggaggccc agcagctgcg ggatgagatt gaggagctca atgccgccat taacctgtgc





cagcagcagc tgcccgccac aggggtaccc atcacacacc agcgttttga ccagatgcga





gacatgtttg atgactacgt ccgaacccgt acgctgcaca actggaagtt ctgggtgttc





agcatcctca tccggcctct gtttgagtcc ttcaacggga tggtgtccac ggcaagtgtg





cacaccctcc gccagacctc actggcctgg ctggaccagt actgctctct gcccgctctc





cggccaactg tcctgaactc cctacgccag ctgggcacat ctaccagtat cctgaccgac





ccgggccgca tccctgagca agccacacgg gcagtcacag agggcaccct tggcaaacct





ttatagtcct ggccagaccc tgctgctcac tcagctgccc tgggggctgc tttccctggg





cacgggctcc agggatcatc tctgggcact cccttcctgc cccaggccct ggctctgccc





ttccctgggg ggtggagcag ggtccaggtt tcacacttgc cacctcctgg aggtcaagaa





gagcagagtc cccgtccctg ctctgccact gtgctccagc accgtgacct tgggtgactc





gtccgctgtc tttggaccgc tgtgtttcaa tctgcaaaat ggggatgggg aaggttcaat





cagcagatga cccccaggcc ttggcagctg tgacattggg ggcctaggct ggcaactccg





ggggctcaac ggtggaaaga ggaggatgct gtttctctgt cacctccact tgctccccga





caggtggggc acagacctct gttcctgagc agagaagcag aaaaggaggt tccctctctc





tgctccttca ctgctgaccc agaggggctg caggatggtt tcccctggga gaggccagga





gggcctgatc ccaggagaca ccagggccag agtgaccaca gcagggcagg catcatgtgt





gtgtgtgtgt gtggatgtgt gtgtgtgggt tttgtaaaga attcttgacc aataaaagca





aaaactgtc





MLXIPL Protein Isoform delta


(SEQ ID NO: 10)



MAGALAGLAAGLQVPRVAPSPDSDSDTDSEDPSLRRSAGGLLRS






QVIHSGHFMVSSPHSDSLPRRRDQEGSVGPSDFGPRSIDPTLTRLFECLSLAYSGKLV





SPKWKNFKGLKLLCRDKIRLNNAIWRAWYIQYVKRRKSPVCGFVTPLQGPEADAHRKP





EAVVLEGNYWKRRIEVVMREYHKWRIYYKKRLRKPSREDDLLAPKQAEGRWPPPEQWC





KQLFSSVVPVLLGDPEEEPGGRQLLDLNCFLSDISDTLFTMTQSGPSPLQLPPEDAYV





GNADMIQPDLTPLQPSLDDFMDISDFFTNSRLPQPPMPSNFPEPPSFSPVVDSLFSSG





TLGPEVPPASSAMTHLSGHSRLQARNSCPGPLDSSAFLSSDFLLPEDPKPRLPPPPVP





PPLLHYPPPAKVPGLEPCPPPPFPPMAPPTALLQEEPLFSPRFPFPTVPPAPGVSPLP





APAAFPPTPQSVPSPAPTPFPIELLPLGYSEPAFGPCFSMPRGKPPAPSPRGQKASPP





TLAPATASPPTTAGSNNPCLTQLLTAAKPEQALEPPLVSSTLLRSPGSPQETVPEFPC





TFLPPTPAPTPPRPPPGPATLAPSRPLLVPKAERLSPPAPSGSERRLSGDLSSMPGPG





TLSVRVSPPQPILSRGRPDSNKNRRITHISAEQKRRFNIKLGFDTLHGLVSTLSAQPS





LKERAGLQEEAQQLRDEIEELNAAINLCQQQLPATGVPITHQRFDQMRDMFDDYVRTR





TLHNWKFWVFSILIRPLFESFNGMVSTASVHTLRQTSLAWLDQYCSLPALRPTVLNSL





RQLGTSTSILTDPGRIPEQATRAVTEGTLGKPL





ETV4 RNA isoform 1


(SEQ ID NO: 11)



gctcacaact gtctgctgcg cccgaaaaac aagtcggtgc gctggggacc cggggccggg






gccgccttac tccggcctag ccccgcggcc ctcggtgcgg gctccagggc atgctcggga





ccccccgcgg ctccagccca gacgccccgg cctcaggtct cggcccccgc ttggggcccc





ggccgtgcgg ccggagggag cggccggatg gagcggagga tgaaagccgg atacttggac





cagcaagtgc cctacacctt cagcagcaaa tcgcccggaa atgggagctt gcgcgaagcg





ctgatcggcc cgctggggaa gctcatggac ccgggctccc tgccgcccct cgactctgaa





gatctcttcc aggatctaag tcacttccag gagacgtggc tcgctgaagc tcaggtacca





gacagtgatg agcagtttgt tcctgatttc cattcagaaa acctagcttt ccacagcccc





accaccagga tcaagaagga gccccagagt ccccgcacag acccggccct gtcctgcagc





aggaagccgc cactccccta ccaccatggc gagcagtgcc tttactccag tgcctatgac





ccccccagac aaatcgccat caagtcccct gcccctggtg cccttggaca gtcgccccta





cagccctttc cccgggcaga gcaacggaat ttcctgagat cctctggcac ctcccagccc





caccctggcc atgggtacct cggggaacat agctccgtct tccagcagcc cctggacatt





tgccactcct tcacatctca gggagggggc cgggaacccc tcccagcccc ctaccaacac





cagctgtcgg agccctgccc accctatccc cagcagagct ttaagcaaga ataccatgat





cccctgtatg aacaggcggg ccagccagcc gtggaccagg gtggggtcaa tgggcacagg





tacccagggg cgggggtggt gatcaaacag gaacagacgg acttcgccta cgactcagat





gtcaccgggt gcgcatcaat gtacctccac acagagggct tctctgggcc ctctccaggt





gacggggcca tgggctatgg ctatgagaaa cctctgcgac cattcccaga tgatgtctgc





gttgtccctg agaaatttga aggagacatc aagcaggaag gggtcggtgc atttcgagag





gggccgccct accagcgccg gggtgccctg cagctgtggc aatttctggt ggccttgctg





gatgacccaa caaatgccca tttcattgcc tggacgggcc ggggaatgga gttcaagctc





attgagcctg aggaggtcgc caggctctgg ggcatccaga agaaccggcc agccatgaat





tacgacaagc tgagccgctc gctccgatac tattatgaga aaggcatcat gcagaaggtg





gctggtgagc gttacgtgta caagtttgtg tgtgagcccg aggccctctt ctctttggcc





ttcccggaca atcagcgtcc agctctcaag gctgagtttg accggcctgt cagtgaggag





gacacagtcc ctttgtccca cttggatgag agccccgcct acctcccaga gctggctggc





cccgcccagc catttggccc caagggtggc tactcttact agcccccagc ggctgttccc





cctgccgcag gtgggtgctg ccctgtgtac atataaatga atctggtgtt ggggaaacct





tcatctgaaa cccacagatg tctctggggc agatccccac tgtcctacca gttgccctag





cccagactct gagctgctca ccggagtcat tgggaaggaa aagtggagaa atggcaagtc





tagagtctca gaaactcccc tgggggtttc acctgggccc tggaggaatt cagctcagct





tcttcctagg tccaagcccc ccacaccttt tccccaacca cagagaacaa gagtttgttc





tgttctgggg gacagagaag gcgcttccca acttcatact ggcaggaggg tgaggaggtt





cactgagctc cccagatctc ccactgcggg gagacagaag cctggactct gccccacgct





gtggccctgg agggtcccgg tttgtcagtt cttggtgctc tgtgttccca gaggcaggcg





gaggttgaag aaaggaacct gggatgaggg gtgctgggta taagcagaga gggatgggtt





cctgctccaa gggacccttt gcctttcttc tgccctttcc taggcccagg cctgggtttg





tacttccacc tccaccacat ctgccagacc ttaataaagg cccccacttc tccca





ETV4 protein isoform 1


(SEQ ID NO: 12)



MERRMKAGYLDQQVPYTFSSKSPGNGSLREALIGPLGKLMDPGS






LPPLDSEDLFQDLSHFQETWLAEAQVPDSDEQFVPDFHSENLAFHSPTTRIKKEPQSP





RTDPALSCSRKPPLPYHHGEQCLYSSAYDPPRQIAIKSPAPGALGQSPLQPFPRAEQR





NFLRSSGTSQPHPGHGYLGEHSSVFQQPLDICHSFTSQGGGREPLPAPYQHQLSEPCP





PYPQQSFKQEYHDPLYEQAGQPAVDQGGVNGHRYPGAGVVIKQEQTDFAYDSDVTGCA





SMYLHTEGFSGPSPGDGAMGYGYEKPLRPFPDDVCVVPEKFEGDIKQEGVGAFREGPP





YQRRGALQLWQFLVALLDDPTNAHFIAWTGRGMEFKLIEPEEVARLWGIQKNRPAMNY





DKLSRSLRYYYEKGIMQKVAGERYVYKFVCEPEALFSLAFPDNQRPALKAEFDRPVSE





EDTVPLSHLDESPAYLPELAGPAQPFGPKGGYSY





ETV4 RNA isoform 2


(SEQ ID NO: 13)



gctcacaact gtctgctgcg cccgaaaaac aagtcggtgc gctggggacc cggggccggg






gccgccttac tccggcctag ccccgcggcc ctcggtgcgg gctccagggc atgctcggga





ccccccgcgg ctccagccca gacgccccgg cctcagaaat cgcccggaaa tgggagcttg





cgcgaagcgc tgatcggccc gctggggaag ctcatggacc cgggctccct gccgcccctc





gactctgaag atctcttcca ggatctaagt cacttccagg agacgtggct cgctgaagct





caggtaccag acagtgatga gcagtttgtt cctgatttcc attcagaaaa cctagctttc





cacagcccca ccaccaggat caagaaggag ccccagagtc cccgcacaga cccggccctg





tcctgcagca ggaagccgcc actcccctac caccatggcg agcagtgcct ttactccagt





gcctatgacc cccccagaca aatcgccatc aagtcccctg cccctggtgc ccttggacag





tcgcccctac agccctttcc ccgggcagag caacggaatt tcctgagatc ctctggcacc





tcccagcccc accctggcca tgggtacctc ggggaacata gctccgtctt ccagcagccc





ctggacattt gccactcctt cacatctcag ggagggggcc gggaacccct cccagccccc





taccaacacc agctgtcgga gccctgccca ccctatcccc agcagagctt taagcaagaa





taccatgatc ccctgtatga acaggcgggc cagccagccg tggaccaggg tggggtcaat





gggcacaggt acccaggggc gggggtggtg atcaaacagg aacagacgga cttcgcctac





gactcagatg tcaccgggtg cgcatcaatg tacctccaca cagagggctt ctctgggccc





tctccaggtg acggggccat gggctatggc tatgagaaac ctctgcgacc attcccagat





gatgtctgcg ttgtccctga gaaatttgaa ggagacatca agcaggaagg ggtcggtgca





tttcgagagg ggccgcccta ccagcgccgg ggtgccctgc agctgtggca atttctggtg





gccttgctgg atgacccaac aaatgcccat ttcattgcct ggacgggccg gggaatggag





ttcaagctca ttgagcctga ggaggtcgcc aggctctggg gcatccagaa gaaccggcca





gccatgaatt acgacaagct gagccgctcg ctccgatact attatgagaa aggcatcatg





cagaaggtgg ctggtgagcg ttacgtgtac aagtttgtgt gtgagcccga ggccctcttc





tctttggcct tcccggacaa tcagcgtcca gctctcaagg ctgagtttga ccggcctgtc





agtgaggagg acacagtccc tttgtcccac ttggatgaga gccccgccta cctcccagag





ctggctggcc ccgcccagcc atttggcccc aagggtggct actcttacta gcccccagcg





gctgttcccc ctgccgcagg tgggtgctgc cctgtgtaca tataaatgaa tctggtgttg





gggaaacctt catctgaaac ccacagatgt ctctggggca gatccccact gtcctaccag





ttgccctagc ccagactctg agctgctcac cggagtcatt gggaaggaaa agtggagaaa





tggcaagtct agagtctcag aaactcccct gggggtttca cctgggccct ggaggaattc





agctcagctt cttcctaggt ccaagccccc cacacctttt ccccaaccac agagaacaag





agtttgttct gttctggggg acagagaagg cgcttcccaa cttcatactg gcaggagggt





gaggaggttc actgagctcc ccagatctcc cactgcgggg agacagaagc ctggactctg





ccccacgctg tggccctgga gggtcccggt ttgtcagttc ttggtgctct gtgttcccag





aggcaggcgg aggttgaaga aaggaacctg ggatgagggg tgctgggtat aagcagagag





ggatgggttc ctgctccaag ggaccctttg cctttcttct gccctttcct aggcccaggc





ctgggtttgt acttccacct ccaccacatc tgccagacct taataaaggc ccccacttct





ccca





ETV4 protein isoform 2


(SEQ ID NO: 14)



MDPGSLPPLDSEDLFQDLSHFQETWLAEAQVPDSDEQFVPDFHS






ENLAFHSPTTRIKKEPQSPRTDPALSCSRKPPLPYHHGEQCLYSSAYDPPRQIAIKSP





APGALGQSPLQPFPRAEQRNFLRSSGTSQPHPGHGYLGEHSSVFQQPLDICHSFISQG





GGREPLPAPYQHQLSEPCPPYPQQSFKQEYHDPLYEQAGQPAVDQGGVNGHRYPGAGV





VIKQEQTDFAYDSDVTGCASMYLHTEGFSGPSPGDGAMGYGYEKPLRPFPDDVCVVPE





KFEGDIKQEGVGAFREGPPYQRRGALQLWQFLVALLDDPTNAHFIAWTGRGMEFKLIE





PEEVARLWGIQKNRPAMNYDKLSRSLRYYYEKGIMQKVAGERYVYKFVCEPEALFSLA





FPDNQRPALKAEFDRPVSEEDTVPLSHLDESPAYLPELAGPAQPFGPKGGYSY





ETV4 RNA isoform 3


(SEQ ID NO: 15)



gcttgcccag cccccgctgc tgccttccat ggcctcagcc gcagccctca agttgaggag






gggttccagc atcacactcc ctctgggtga actttccctg ggattttgtg gttggcaggc





aacctgggca aagaacagtc accaggaagc aggctggaag gaagaaattc ttgaatgtgg





ataggacttc ctcctcccct gccctcgagc tccaccccaa gccacttctc acatcacccc





ttcttccccc acagatgtca ccgggtgcgc atcaatgtac ctccacacag agggcttctc





tgggccctct ccaggtgacg gggccatggg ctatggctat gagaaacctc tgcgaccatt





cccagatgat gtctgcgttg tccctgagaa atttgaagga gacatcaagc aggaaggggt





cggtgcattt cgagaggggc cgccctacca gcgccggggt gccctgcagc tgtggcaatt





tctggtggcc ttgctggatg acccaacaaa tgcccatttc attgcctgga cgggccgggg





aatggagttc aagctcattg agcctgagga ggtcgccagg ctctggggca tccagaagaa





ccggccagcc atgaattacg acaagctgag ccgctcgctc cgatactatt atgagaaagg





catcatgcag aaggtggctg gtgagcgtta cgtgtacaag tttgtgtgtg agcccgaggc





cctcttctct ttggccttcc cggacaatca gcgtccagct ctcaaggctg agtttgaccg





gcctgtcagt gaggaggaca cagtcccttt gtcccacttg gatgagagcc ccgcctacct





cccagagctg gctggccccg cccagccatt tggccccaag ggtggctact cttactagcc





cccagcggct gttccccctg ccgcaggtgg gtgctgccct gtgtacatat aaatgaatct





ggtgttgggg aaaccttcat ctgaaaccca cagatgtctc tggggcagat ccccactgtc





ctaccagttg ccctagccca gactctgagc tgctcaccgg agtcattggg aaggaaaagt





ggagaaatgg caagtctaga gtctcagaaa ctcccctggg ggtttcacct gggccctgga





ggaattcagc tcagcttctt cctaggtcca agccccccac accttttccc caaccacaga





gaacaagagt ttgttctgtt ctgggggaca gagaaggcgc ttcccaactt catactggca





ggagggtgag gaggttcact gagctcccca gatctcccac tgcggggaga cagaagcctg





gactctgccc cacgctgtgg ccctggaggg tcccggtttg tcagttcttg gtgctctgtg





ttcccagagg caggcggagg ttgaagaaag gaacctggga tgaggggtgc tgggtataag





cagagaggga tgggttcctg ctccaaggga ccctttgcct ttcttctgcc ctttcctagg





cccaggcctg ggtttgtact tccacctcca ccacatctgc cagaccttaa taaaggcccc





cacttctccc a





ETV4 protein isoform 3


(SEQ ID NO: 16)



MYLHTEGFSGPSPGDGAMGYGYEKPLRPFPDDVCVVPEKFEGDI






KQEGVGAFREGPPYQRRGALQLWQFLVALLDDPINAHFIAWTGRGMEFKLIEPEEVAR





LWGIQKNRPAMNYDKLSRSLRYYYEKGIMQKVAGERYVYKFVCEPEALFSLAFPDNQR





PALKAEFDRPVSEEDTVPLSHLDESPAYLPELAGPAQPFGPKGGYSY





ETV4 RNA isoform 4


(SEQ ID NO: 17)



gcagaaagca gaaacggcga gcccggctcc tgggagcagg tctcggcccc cgcttggggc






cccggccgtg cggccggagg gagcggccgg atggagcgga ggatgaaagc cggatacttg





gaccagcaag tgccctacac cttcagcagc aaatcgcccg gaaatgggag cttgcgcgaa





gcgctgatcg gcccgctggg gaagctcatg gacccgggct ccctgccgcc cctcgactct





gaagatctct tccaggatct aagtcacttc caggagacgt ggctcgctga agctcaggta





ccagacagtg atgagcagtt tgttcctgat ttccattcag aaaacccttt ccacagcccc





accaccagga tcaagaagga gccccagagt ccccgcacag acccggccct gtcctgcagc





aggaagccgc cactccccta ccaccatggc gagcagtgcc tttactccag tgcctatgac





ccccccagac aaatcgccat caagtcccct gcccctggtg cccttggaca gtcgccccta





cagccctttc cccgggcaga gcaacggaat ttcctgagat cctctggcac ctcccagccc





caccctggcc atgggtacct cggggaacat agctccgtct tccagcagcc cctggacatt





tgccactcct tcacatctca gggagggggc cgggaacccc tcccagcccc ctaccaacac





cagctgtcgg agccctgccc accctatccc cagcagagct ttaagcaaga ataccatgat





cccctgtatg aacaggcggg ccagccagcc gtggaccagg gtggggtcaa tgggcacagg





tacccagggg cgggggtggt gatcaaacag gaacagacgg acttcgccta cgactcagat





gtcaccgggt gcgcatcaat gtacctccac acagagggct tctctgggcc ctctccaggt





gacggggcca tgggctatgg ctatgagaaa cctctgcgac cattcccaga tgatgtctgc





gttgtccctg agaaatttga aggagacatc aagcaggaag gggtcggtgc atttcgagag





gggccgccct accagcgccg gggtgccctg cagctgtggc aatttctggt ggccttgctg





gatgacccaa caaatgccca tttcattgcc tggacgggcc ggggaatgga gttcaagctc





attgagcctg aggaggtcgc caggctctgg ggcatccaga agaaccggcc agccatgaat





tacgacaagc tgagccgctc gctccgatac tattatgaga aaggcatcat gcagaaggtg





gctggtgagc gttacgtgta caagtttgtg tgtgagcccg aggccctctt ctctttggcc





ttcccggaca atcagcgtcc agctctcaag gctgagtttg accggcctgt cagtgaggag





gacacagtcc ctttgtccca cttggatgag agccccgcct acctcccaga gctggctggc





cccgcccagc catttggccc caagggtggc tactcttact agcccccagc ggctgttccc





cctgccgcag gtgggtgctg ccctgtgtac atataaatga atctggtgtt ggggaaacct





tcatctgaaa cccacagatg tctctggggc agatccccac tgtcctacca gttgccctag





cccagactct gagctgctca ccggagtcat tgggaaggaa aagtggagaa atggcaagtc





tagagtctca gaaactcccc tgggggtttc acctgggccc tggaggaatt cagctcagct





tcttcctagg tccaagcccc ccacaccttt tccccaacca cagagaacaa gagtttgttc





tgttctgggg gacagagaag gcgcttccca acttcatact ggcaggaggg tgaggaggtt





cactgagctc cccagatctc ccactgcggg gagacagaag cctggactct gccccacgct





gtggccctgg agggtcccgg tttgtcagtt cttggtgctc tgtgttccca gaggcaggcg





gaggttgaag aaaggaacct gggatgaggg gtgctgggta taagcagaga gggatgggtt





cctgctccaa gggacccttt gcctttcttc tgccctttcc taggcccagg cctgggtttg





tacttccacc tccaccacat ctgccagacc ttaataaagg cccccacttc tccca





ETV4 potein isoform 4


(SEQ ID NO: 18)



MERRMKAGYLDQQVPYTFSSKSPGNGSLREALIGPLGKLMDPGS






LPPLDSEDLFQDLSHFQETWLAEAQVPDSDEQFVPDFHSENPFHSPTTRIKKEPQSPR





TDPALSCSRKPPLPYHHGEQCLYSSAYDPPRQIAIKSPAPGALGQSPLQPFPRAEQRN





FLRSSGTSQPHPGHGYLGEHSSVFQQPLDICHSFTSQGGGREPLPAPYQHQLSEPCPP





YPQQSFKQEYHDPLYEQAGQPAVDQGGVNGHRYPGAGVVIKQEQTDFAYDSDVTGCAS





MYLHTEGFSGPSPGDGAMGYGYEKPLRPFPDDVCVVPEKFEGDIKQEGVGAFREGPPY





QRRGALQLWQFLVALLDDPTNAHFIAWTGRGMEFKLIEPEEVARLWGIQKNRPAMNYD





KLSRSLRYYYEKGIMQKVAGERYVYKFVCEPEALFSLAFPDNQRPALKAEFDRPVSEE





DTVPLSHLDESPAYLPELAGPAQPFGPKGGYSY





ETV4 RNA isoform 5


(SEQ ID NO: 19)



gcagaaagca gaaacggcga gcccggctcc tgggagcagg tctcggcccc cgcttggggc






cccggccgtg cggccggagg gagcggccgg atggagcgga ggatgaaagc cggatacttg





gaccagcaag tgccctacac cttcagcagc aaatcgcccg gaaatgggag cttgcgcgaa





gcgctgatcg gcccgctggg gaagctcatg gacccgggct ccctgccgcc cctcgactct





gaagatctct tccaggatct aagtcacttc caggagacgt ggctcgctga agctcaggta





ccagacagtg atgagcagtt tgttcctgat ttccattcag aaaacctagc tttccacagc





cccaccacca ggatcaagaa ggagccccag agtccccgca cagacccggc cctgtcctgc





agcaggaagc cgccactccc ctaccaccat ggcgagcagt gcctttactc cagtgcctat





gaccccccca gacaaatcgc catcaagtcc cctgcccctg gtgcccttgg acagtcgccc





ctacagccct ttccccgggc agagcaacgg aatttcctga gatcctctgg cacctcccag





ccccaccctg gccatgggta cctcggggaa catagctccg tcttccagca gcccctggac





atttgccact ccttcacatc tcagggaggg ggccgggaac ccctcccagc cccctaccaa





caccagctgt cggagccctg cccaccctat ccccagcaga gctttaagca agaataccat





gatcccctgt atgaacaggc gggccagcca gccgtggacc agggtggggt caatgggcac





aggtacccag gggcgggggt ggtgatcaaa caggaacaga cggacttcgc ctacgactca





gatgtcaccg ggtgcgcatc aatgtacctc cacacagagg gcttctctgg gccctctcca





ggctatggct atgagaaacc tctgcgacca ttcccagatg atgtctgcgt tgtccctgag





aaatttgaag gagacatcaa gcaggaaggg gtcggtgcat ttcgagaggg gccgccctac





cagcgccggg gtgccctgca gctgtggcaa tttctggtgg ccttgctgga tgacccaaca





aatgcccatt tcattgcctg gacgggccgg ggaatggagt tcaagctcat tgagcctgag





gaggtcgcca ggctctgggg catccagaag aaccggccag ccatgaatta cgacaagctg





agccgctcgc tccgatacta ttatgagaaa ggcatcatgc agaaggtggc tggtgagcgt





tacgtgtaca agtttgtgtg tgagcccgag gccctcttct ctttggcctt cccggacaat





cagcgtccag ctctcaaggc tgagtttgac cggcctgtca gtgaggagga cacagtccct





ttgtcccact tggatgagag ccccgcctac ctcccagagc tggctggccc cgcccagcca





tttggcccca agggtggcta ctcttactag cccccagcgg ctgttccccc tgccgcaggt





gggtgctgcc ctgtgtacat ataaatgaat ctggtgttgg ggaaaccttc atctgaaacc





cacagatgtc tctggggcag atccccactg tcctaccagt tgccctagcc cagactctga





gctgctcacc ggagtcattg ggaaggaaaa gtggagaaat ggcaagtcta gagtctcaga





aactcccctg ggggtttcac ctgggccctg gaggaattca gctcagcttc ttcctaggtc





caagcccccc acaccttttc cccaaccaca gagaacaaga gtttgttctg ttctggggga





cagagaaggc gcttcccaac ttcatactgg caggagggtg aggaggttca ctgagctccc





cagatctccc actgcgggga gacagaagcc tggactctgc cccacgctgt ggccctggag





ggtcccggtt tgtcagttct tggtgctctg tgttcccaga ggcaggcgga ggttgaagaa





aggaacctgg gatgaggggt gctgggtata agcagagagg gatgggttcc tgctccaagg





gaccctttgc ctttcttctg ccctttccta ggcccaggcc tgggtttgta cttccacctc





caccacatct gccagacctt aataaaggcc cccacttctc cca





ETV4 protein isoform 5


(SEQ ID NO: 20)



MERRMKAGYLDQQVPYTFSSKSPGNGSLREALIGPLGKLMDPGS






LPPLDSEDLFQDLSHFQETWLAEAQVPDSDEQFVPDFHSENLAFHSPTTRIKKEPQSP





RTDPALSCSRKPPLPYHHGEQCLYSSAYDPPRQIAIKSPAPGALGQSPLQPFPRAEQR





NFLRSSGTSQPHPGHGYLGEHSSVFQQPLDICHSFTSQGGGREPLPAPYQHQLSEPCP





PYPQQSFKQEYHDPLYEQAGQPAVDQGGVNGHRYPGAGVVIKQEQTDFAYDSDVTGCA





SMYLHTEGFSGPSPGYGYEKPLRPFPDDVCVVPEKFEGDIKQEGVGAFREGPPYQRRG





ALQLWQFLVALLDDPTNAHFIAWTGRGMEFKLIEPEEVARLWGIQKNRPAMNYDKLSR





SLRYYYEKGIMQKVAGERYVYKFVCEPEALFSLAFPDNQRPALKAEFDRPVSEEDTVP





LSHLDESPAYLPELAGPAQPFGPKGGYSY





MEOX2 RNA


(SEQ ID NO: 21)



gaaagcagtt ctctgggacc accttctttt ggcttcaacc tctcccactc ttgacatctg






agtagctcag ggaagctctt ccaggtccga ctgttcatat gtaaaggaga ctggccgctg





gggctcagga ccgggattat ccgagctctg cagaagtgca ccgctattgc tttgggaggt





taaaaaaaaa atcacacggt ttccagtgaa aaagtgacag agggtggtgg cctttggaac





cgccgtgaag tcttctgcct ggaacccgaa acttgcatgc tatggaacac ccgctctttg





gctgcctgcg cagccctcac gccacggcgc aaggcttgca cccgttctcc caatcctctc





tcgccctcca tggaagatct gaccatatgt cttaccccga gctctctact tcttcctcat





cttgcataat cgcgggatac cccaacgaag agggcatgtt tgccagccag catcacaggg





ggcaccacca ccaccaccac caccaccacc atcaccacca tcagcagcag cagcaccagg





ctctgcaaac caactggcac ctcccgcaga tgtcttcccc accgagtgcg gctcggcaca





gcctctgcct ccagcccgac tctggagggc ccccagagtt ggggagcagc ccgcccgtcc





tgtgctccaa ctcttccagc ttgggctcca gcaccccgac tggggccgcg tgcgcgccgg





gggactacgg ccgccaggca ctgtcacctg cggaggcgga gaagcgaagc ggcggcaaga





ggaaaagcga cagctcagac tcccaggaag gaaattacaa gtcagaagtc aacagcaaac





ccaggaaaga aaggacagca tttaccaaag agcaaatcag agaacttgaa gcagaatttg





cccatcataa ttatctcacc agactgaggc gatacgagat agcagtgaat ctggatctca





ctgaaagaca ggtgaaagtc tggttccaaa acaggcggat gaagtggaag agggtaaagg





gtggacagca aggagctgcg gctcgggaaa aggaactggt gaatgtgaaa aagggaacac





ttctcccatc agagctgtcg ggaattggtg cagccaccct ccagcaaaca ggggactcta





tagcaaatga agacagtcac gacagtgacc acagctcaga gcatgcgcac ttatgatata





aacagaggac cagctccatt ctcaggaaag aaatgttgtg atggcaagcc ttacccaaat





atcgtttaca cagagagatg actatggcag tgatgtttaa tattattaaa tccaggcatt





tcgaatctgt ttttcatgat ttatagaggg tttacacaaa gtgccactta ttaaagagct





tccacagtga agatggagaa ggtgaacttg ctttgaatat tccagatgtg tttggtcgtg





cgtatggcag tgagcaggta tgtgtttgct tttgcttgca ctgaaaatta aattgctatc





aagagcaaac tatgaacggt tttttattca agatgtctcc agagtgaaga tgccgaggat





gaacttgcat tgaacattcc agatgtgtga gatcatgtgt attacagtgg gcaggtattt





gcttttgctt gcactgaaaa ttaaattgct atcaagaata aaccatgaaa cattttatcc





tgaacagcca cagtgcctga attcactcaa gtggataaaa agtgtatttt aactctgtat





atattaccct taagtcattt tcctgtcttc actaatttag caatgcattc atattagctg





atgaaaatag gcactcacaa tgacaaccag agccagtttc ttgtcttttt tatacatttt





gtcatcccag agacaatcag tatgtgctta cctgtgttca agtagagaaa aatacagtag





agtctgatag gacatattct tgtaccacag acaaaacaaa tcttatgttg catttactat





caactgctgc taatacgtta ttataaaact tacctagctc ctgaattctt cctatcttat





agcttaaaac aattaggatc ataggcaaat cagttacctt gcagaaagag ctttgtatga





cagacattgt cttattttat ttctgtaaaa tattagctgt atgaatatga tttaattaac





aagaaaacat ttcttcctga ttgacaacag tgttagacaa ggtgcaaagc gaaactggtt





gctcaagttg atagaaaaca aaattctgaa tatcttcaaa ttaaattcgg taaaaacaca





ttattttttc atatgtgatg tattcatgca gaacaactat ctttgtattt tgtttttaaa





atgtgtttaa taaatgatcc tttgtaaata a





MEOX2 Protein


(SEQ ID NO: 22)



MEHPLFGCLRSPHATAQGLHPFSQSSLALHGRSDHMSYPELSTS






SSSCIIAGYPNEEGMFASQHHRGHHHHHHHHHHHHHQQQQHQALQTNWHLPQMSSPPS





AARHSLCLQPDSGGPPELGSSPPVLCSNSSSLGSSTPTGAACAPGDYGRQALSPAEAE





KRSGGKRKSDSSDSQEGNYKSEVNSKPRKERTAFTKEQIRELEAEFAHHNYLTRLRRY





EIAVNLDLTERQVKVWFQNRRMKWKRVKGGQQGAAAREKELVNVKKGTLLPSELSGIG





AATLQQTGDSIANEDSHDSDHSSEHAHL





PRKCB RNA isoform 1


(SEQ ID NO: 23)



ggacgagcgg cagcagctgg gcgagtgaca gccccggctc cgcgcgccgc ggccgccaga






gccggcgcag gggaagcgcc cgcggccccg ggtgcagcag cggccgccgc ctcccgcgcc





tccccggccc gcagcccgcg gtcccgcggc cccggggccg gcacctctcg ggctccggct





ccccgcgcgc aagatggctg acccggctgc ggggccgccg ccgagcgagg gcgaggagag





caccgtgcgc ttcgcccgca aaggcgccct ccggcagaag aacgtgcatg aggtcaagaa





ccacaaattc accgcccgct tcttcaagca gcccaccttc tgcagccact gcaccgactt





catctggggc ttcgggaagc agggattcca gtgccaagtt tgctgctttg tggtgcacaa





gcggtgccat gaatttgtca cattctcctg ccctggcgct gacaagggtc cagcctccga





tgacccccgc agcaaacaca agtttaagat ccacacgtac tccagcccca cgttttgtga





ccactgtggg tcactgctgt atggactcat ccaccagggg atgaaatgtg acacctgcat





gatgaatgtg cacaagcgct gcgtgatgaa tgttcccagc ctgtgtggca cggaccacac





ggagcgccgc ggccgcatct acatccaggc ccacatcgac agggacgtcc tcattgtcct





cgtaagagat gctaaaaacc ttgtacctat ggaccccaat ggcctgtcag atccctacgt





aaaactgaaa ctgattcccg atcccaaaag tgagagcaaa cagaagacca aaaccatcaa





atgctccctc aaccctgagt ggaatgagac atttagattt cagctgaaag aatcggacaa





agacagaaga ctgtcagtag agatttggga ttgggatttg accagcagga atgacttcat





gggatctttg tcctttggga tttctgaact tcagaaagcc agtgttgatg gctggtttaa





gttactgagc caggaggaag gcgagtactt caatgtgcct gtgccaccag aaggaagtga





ggccaatgaa gaactgcggc agaaatttga gagggccaag atcagtcagg gaaccaaggt





cccggaagaa aagacgacca acactgtctc caaatttgac aacaatggca acagagaccg





gatgaaactg accgatttta acttcctaat ggtgctgggg aaaggcagct ttggcaaggt





catgctttca gaacgaaaag gcacagatga gctctatgct gtgaagatcc tgaagaagga





cgttgtgatc caagatgatg acgtggagtg cactatggtg gagaagcggg tgttggccct





gcctgggaag ccgcccttcc tgacccagct ccactcctgc ttccagacca tggaccgcct





gtactttgtg atggagtacg tgaatggggg cgacctcatg tatcacatcc agcaagtcgg





ccggttcaag gagccccatg ctgtatttta cgctgcagaa attgccatcg gtctgttctt





cttacagagt aagggcatca tttaccgtga cctaaaactt gacaacgtga tgctcgattc





tgagggacac atcaagattg ccgattttgg catgtgtaag gaaaacatct gggatggggt





gacaaccaag acattctgtg gcactccaga ctacatcgcc cccgagataa ttgcttatca





gccctatggg aagtccgtgg attggtgggc atttggagtc ctgctgtatg aaatgttggc





tgggcaggca ccctttgaag gggaggatga agatgaactc ttccaatcca tcatggaaca





caacgtagcc tatcccaagt ctatgtccaa ggaagctgtg gccatctgca aagggctgat





gaccaaacac ccaggcaaac gtctgggttg tggacctgaa ggcgaacgtg atatcaaaga





gcatgcattt ttccggtata ttgattggga gaaacttgaa cgcaaagaga tccagccccc





ttataagcca aaagctagag acaagagaga cacctccaac ttcgacaaag agttcaccag





acagcctgtg gaactgaccc ccactgataa actcttcatc atgaacttgg accaaaatga





atttgctggc ttctcttata ctaacccaga gtttgtcatt aatgtgtagg tgaatgcaaa





ctccatcgtt gagcctgggg tgtaagactt caagccaagc gtatgtatca attctagtct





tccaggattc acggtgcaca tgctggcatt caacatgtgg aaagcttgtc ttagagggct





tttctttgta tgtgtagctt gctagtttgt tttctacatt tgaaaatgtt tagtttagaa





taagcgcatt atccaattat agaggtacaa ttttccaaac ttccagaaac tcatcaaatg





aacagacaat gtcaaaacta ctgtgtctga taccaaaatg cttcagtatt tgtaattttt





caagtcagaa gctgatgttc ctggtaaaag tttttacagt tattctataa tatcttcttt





gaatgctaag catgagcgat atttttaaaa attgtgagta agctttgcag ttactgtgaa





ctattgtctc ttggaggaag ttttttgttt aagaattgat atgattaaac tgaattaata





tatgcaa





PRKCB protein isoform 1


(SEQ ID NO: 24)



MADPAAGPPPSEGEESTVRFARKGALRQKNVHEVKNHKFTARFF






KQPIFCSHCIDFIWGFGKQGFQCQVCCFVVHKRCHEFVTFSCPGADKGPASDDPRSKH





KFKIHTYSSPTFCDHCGSLLYGLIHQGMKCDTCMMNVHKRCVMNVPSLCGTDHTERRG





RIYIQAHIDRDVLIVLVRDAKNLVPMDPNGLSDPYVKLKLIPDPKSESKQKIKTIKCS





LNPEWNETFRFQLKESDKDRRLSVEIWDWDLTSRNDFMGSLSFGISELQKASVDGWFK





LLSQEEGEYFNVPVPPEGSEANEELRQKFERAKISQGTKVPEEKTINTVSKFDNNGNR





DRMKLIDFNFLMVLGKGSFGKVMLSERKGIDELYAVKILKKDVVIQDDDVECTMVEKR





VLALPGKPPFLTQLHSCFQTMDRLYFVMEYVNGGDLMYHIQQVGRFKEPHAVFYAAEI





AIGLFFLQSKGIIYRDLKLDNVMLDSEGHIKIADFGMCKENIWDGVTIKTFCGTPDYI





APEIIAYQPYGKSVDWWAFGVLLYEMLAGQAPFEGEDEDELFQSIMEHNVAYPKSMSK





EAVAICKGLMTKHPGKRLGCGPEGERDIKEHAFFRYIDWEKLERKEIQPPYKPKARDK





RDTSNFDKEFTRQPVELTPTDKLFIMNLDQNEFAGFSYTNPEFVINV





PRKCB RNA isoform 2


(SEQ ID NO: 25)



ggacgagcgg cagcagctgg gcgagtgaca gccccggctc cgcgcgccgc ggccgccaga






gccggcgcag gggaagcgcc cgcggccccg ggtgcagcag cggccgccgc ctcccgcgcc





tccccggccc gcagcccgcg gtcccgcggc cccggggccg gcacctctcg ggctccggct





ccccgcgcgc aagatggctg acccggctgc ggggccgccg ccgagcgagg gcgaggagag





caccgtgcgc ttcgcccgca aaggcgccct ccggcagaag aacgtgcatg aggtcaagaa





ccacaaattc accgcccgct tcttcaagca gcccaccttc tgcagccact gcaccgactt





catctggggc ttcgggaagc agggattcca gtgccaagtt tgctgctttg tggtgcacaa





gcggtgccat gaatttgtca cattctcctg ccctggcgct gacaagggtc cagcctccga





tgacccccgc agcaaacaca agtttaagat ccacacgtac tccagcccca cgttttgtga





ccactgtggg tcactgctgt atggactcat ccaccagggg atgaaatgtg acacctgcat





gatgaatgtg cacaagcgct gcgtgatgaa tgttcccagc ctgtgtggca cggaccacac





ggagcgccgc ggccgcatct acatccaggc ccacatcgac agggacgtcc tcattgtcct





cgtaagagat gctaaaaacc ttgtacctat ggaccccaat ggcctgtcag atccctacgt





aaaactgaaa ctgattcccg atcccaaaag tgagagcaaa cagaagacca aaaccatcaa





atgctccctc aaccctgagt ggaatgagac atttagattt cagctgaaag aatcggacaa





agacagaaga ctgtcagtag agatttggga ttgggatttg accagcagga atgacttcat





gggatctttg tcctttggga tttctgaact tcagaaagcc agtgttgatg gctggtttaa





gttactgagc caggaggaag gcgagtactt caatgtgcct gtgccaccag aaggaagtga





ggccaatgaa gaactgcggc agaaatttga gagggccaag atcagtcagg gaaccaaggt





cccggaagaa aagacgacca acactgtctc caaatttgac aacaatggca acagagaccg





gatgaaactg accgatttta acttcctaat ggtgctgggg aaaggcagct ttggcaaggt





catgctttca gaacgaaaag gcacagatga gctctatgct gtgaagatcc tgaagaagga





cgttgtgatc caagatgatg acgtggagtg cactatggtg gagaagcggg tgttggccct





gcctgggaag ccgcccttcc tgacccagct ccactcctgc ttccagacca tggaccgcct





gtactttgtg atggagtacg tgaatggggg cgacctcatg tatcacatcc agcaagtcgg





ccggttcaag gagccccatg ctgtatttta cgctgcagaa attgccatcg gtctgttctt





cttacagagt aagggcatca tttaccgtga cctaaaactt gacaacgtga tgctcgattc





tgagggacac atcaagattg ccgattttgg catgtgtaag gaaaacatct gggatggggt





gacaaccaag acattctgtg gcactccaga ctacatcgcc cccgagataa ttgcttatca





gccctatggg aagtccgtgg attggtgggc atttggagtc ctgctgtatg aaatgttggc





tgggcaggca ccctttgaag gggaggatga agatgaactc ttccaatcca tcatggaaca





caacgtagcc tatcccaagt ctatgtccaa ggaagctgtg gccatctgca aagggctgat





gaccaaacac ccaggcaaac gtctgggttg tggacctgaa ggcgaacgtg atatcaaaga





gcatgcattt ttccggtata ttgattggga gaaacttgaa cgcaaagaga tccagccccc





ttataagcca aaagcttgtg ggcgaaatgc tgaaaacttc gaccgatttt tcacccgcca





tccaccagtc ctaacacctc ccgaccagga agtcatcagg aatattgacc aatcagaatt





cgaaggattt tcctttgtta actctgaatt tttaaaaccc gaagtcaaga gctaagtaga





tgtgtagatc tccgtccttc atttctgtca ttcaagctca acggctattg tggtgacatt





tttatgtttt tcattgccaa gttgcatcca tgtttgattt tctgatgaga ctagagtgac





agtgtttcag aacccaaatg tcctcaggta gtttggagca tctctatgag atgggattat





gcagatggcc tatggaaaat gcagctgcat aattaacaca ttatcaaagt cctcttacaa





tttattttcc gcagcatgtc agctaagtag acccaatggg gagagaaaat gcctgctttc





tttccctctt tttctgcact gccatattca cccccaacca tccaatctgt ggataattgg





atgttagcgg tactcttcca cttccgggcc tggagcttgg cttgtatcca agtgtatggt





tgctttgcct aagaggaatc cctctatttc acctgttctg gaggcaccag accttgaaaa





gaacatgctc aaaataaaat gttatctgtt atttttgtaa actcaaagtt aagatgatca





aagttctaaa attccaagaa tgtgctttta gacggtctca atctaaaagc acttcaaggg





gtcaaagggc aaccagcttg ggtgctacct cagtgttgta gtttctgata ctttatgtct





ttgctcaccc tcatccccaa actacttgaa aagggcattt ggcaccactc tctgaaacaa





cacagtcact ctagcaaggc ccccaaaggg ccctggtttt acattacatt tcaaacttta





tttgctttgg ggttttgttt ctgttgttgt tcaaatgcaa aaaaaagaaa aaaaaagaaa





aaaaaaggtg actcacattg ttacacatgc tttaaaatat gtattcaaat gttattaacc





acaatgacga cctgctttga tttaaccaag aagacggctg cggagcctag cagactcagg





cctgtgggaa tgggatttgt tacaaatcta ggtttgttac tggcttcaga aagctaatta





agtgctctga aaaagacacc gtttcttgaa acaaagatgg ttgtattcct cactttgatg





ttgttttgca agatgtttgt ggaaatgttc atttgtatct ggatctctgt tatgtgccat





ttttcttcta gcatcgagat acaataaaaa aaaaaaaaaa gaaaagaaga agaaatacta





tttcaaggaa aactgctctt tttgagaaac gtggacctaa actacaaagt gggaactgag





gagggaactc aggagaaagg aactaactgc ggagctttaa tcttggcccc agtgttcagc





cactcggagg ggcgggggct gtggcccatt caggggctgc tggtgggctg tagtggggtg





ggatgacctg gccagagcca acgaggatac tggagcccaa agtcaagttt agagaccagc





tgggaacgtg aatggggctc ttgattttct tatcaaaatc accactcctc ccagcttgga





ctaaatattc tttctagcaa gcagctttgt gagctccctg aagcccaagg aaacccttcg





gtgggagaaa tttcatttct gtctgagagg attaaggcag caggtgactc cccctcctcg





cctgccgtgt cctgctattc tcaggcagct ctaaggagaa ttcttatcac agttcaagtg





atttccagaa gttccagggc ttctgagaga ccatcaaggg aactttaaca acttgacaaa





tgtccttgaa gtaagatgcc tcatctttag ggaaaaatgg ggtttggatt tctgcttagg





caaagtctcc tgcagttcat ccttctctgt cctcttcttg cttcaggctt ggggaccgtc





cctgctgtcc ccactgtggt ggcaatcagg acctaaggtg aagcaaactt gaagttctat





ctgacaagtt taggcagtaa gagaaggagg gaaatcggag caaagctccc tcactttatt





gttgagaaac tggcatctgg aaagaggaag gaatttgccc aaagtcagtc agctgggata





aaaacctggg tgtcctgtcc agaaagtgca gggtgctttc tgctctgtag caaggcagca





gacatctctg agccaggccc accaacaggc ccttatctgg tggttggatc atgatcccat





tttgcttgga catgctctca ggaagataaa aaccatggag aaacactagg ccattgacaa





atgatctgag acaactttag aaaacaatgt aggatgaatg gaaagagaaa gaaaggaaag





aaagaagaaa aagaaagaag gaaagaaaga aagagaaagg aaggaaggaa agaaggaagg





aaaagaagga aggaaggaag gaatatagtg ttataaatac tgcactcaac attttccaaa





ttcttgccat tatttttcaa aagtttaata gtttgcagaa atagatactc aagccaaagt





ctgttttaga gaaactttcc atggaaagtc agaatttcta ccacttcctt ttctatccac





atttccagtg cagaagaaac tgagaaacag agctttttga agagaggaca gggccatagc





aacaaggacc ttcttggggg attaatggga ggtcagtaga attaataacc ctccttggat





gagtgctact gttttcacat ggcttcagat gctatcaacc tcaaagaaat gatctcaaca





gagaagctta ttctctccca acttctacgg taaaatccag gagtattttc tctggggatc





tgcccacagg acaaagtcca taaaagcaag tcctgtctgg accatgtggt tatctgaagc





attagccatc accagcacaa caaacggggc agggctttcc aaggtggggc tggtcagaag





ggaatctttg ataagaggcc cacaggcagg gaaagcgaaa tagggttgat gagaccaggg





gagacctaaa aaaaaggcag ctttgtgtct tctagctcca aatatacctg ccttttagct





cacacactgt cctggagttc tcagaccttt aggggcccta acacagttca gttcatacag





gggttcaaaa gggacagtgg cccatttggg agacctttag gatcaatggg aatcaattcc





attgttttgc ctcagagtaa agtttctggc tcggggacaa ttataagttg caaaaaggat





agaggcatat cccaagtctt ccttcattcc acaaataatt acaaacaacc tactgtgtgc





caggcactat tcttagcact ggaaatacac tagtgaagaa gcagatgagg accctgttta





ttgtttctct ccaagaaatt ctccaagaat attgtttctt ggagagaaat aataaataaa





caagacaatt tctgaaagca ataagtgcaa tcaagataat taaaggatgc taaagtgtga





cttgtgggga ttgggagaga gatgcacaga caatattaaa gaggaggcat tcgagctttg





ttgtgaacac cggaagtaac atgccgagcg cctgggggat ggaaactcct atagcacccc





acaggctaac agcaagcagg acaagacaaa aagggcaggt gggacatggt agagatggac





cctacccagg aaacagctcc atcagcatct tagcctgccc cactctagcc acacataccc





acgtgtgctc ctgagttcag tgtgcccacc tcactcccac accctcacat agacttggca





agagtaagga gggaactcca tagagacatt ttacctatct caggggagca gccacaaaga





agcaagtctt gtaaaaggtc ttttgcaaag gagagtgaac ccagcaatga gagatcctta





acagctagtg cccattaggg ggctaaacct aaagcctggg tggtgatggc tcaaacgcta





atgagtcagt gaatccttac cgaccccctg gcctttataa tctgaggcaa ctttggctgc





agcccgggaa tgtgcagggc actagggaat acaaggcctt cttccctggt tgtcttgtaa





taaaacagcc atggggttgt ccctccagtc cgagagactg tgatgaggcc tacatagcag





cgatgtggtc aggtaaaaat caggaaccca ctgaaatctt gggcaagcca ccctgcctgc





ttgtgcctcg gttctctcat atgtcatata taggaggtga ggactccagc tccacctgcc





ccaggtgggt gtggtgatga tgaggaaaga caagaggctt gcaaggaccc tgaagaggtc





ggagcatcat acagattcct ttattagccc acattctgat gttccctggt gagacttgcc





ccaagcaatt gctagtaaat gggggttaat ttcttctcca cctccctact gaacaaaaaa





agaaatgcca gacttactag gagaatcgag ttgctttgag tttcttttgt tttgttttgt





tttgttttgt tttaaggctc cccttacaca ccctccttta agctttgggt tttctctctt





atagtttgtt gacacatgct aaaaatgtct ttggagagaa cttctgcctg ataaacaccc





aattctagac tgtgggtgga ttttcgagct gacggtggtc aattcctttc attaagcagt





gatctgattt ctccacatgg ccattctgcc ttcttggggg cagagtagat gggcagcagt





tcaccttttc agagaaagag gtcttctagc cacctgggct gctactgaat ggttttctcc





aggacgctct acctaatgat tatttctata acattaagca tggtaataag tagcttccaa





ttcaattcat cctaaagcca aagaaaatac agcaacacac acacacacac acacacacac





acacacacac acacacacac accactttat ggcaattctt aactgacatt caatgactta





cttcttttct tagaaaattt ccaccacatt tctatcccca agccaacata caatgtgaaa





tgaaagccag tgcgtggagt gcagctgcta aaaattttca gcacagggct ctttctgact





ctgctcatga gatggtatca gccacccaat gactggcgta tcttggtcct gtgtctttct





tcttacgctg tgttaatgtg tttactttcc atttggcaga gagacaagag agacacctcc





aacttcgaca aagagttcac cagacagcct gtggaactga cccccactga taaactcttc





atcatgaact tggaccaaaa tgaatttgct ggcttctctt atactaaccc agagtttgtc





attaatgtgt aggtgaatgc aaactccatc gttgagcctg gggtgtaaga cttcaagcca





agcgtatgta tcaattctag tcttccagga ttcacggtgc acatgctggc attcaacatg





tggaaagctt gtcttagagg gcttttcttt gtatgtgtag cttgctagtt tgttttctac





atttgaaaat gtttagttta gaataagcgc attatccaat tatagaggta caattttcca





aacttccaga aactcatcaa atgaacagac aatgtcaaaa ctactgtgtc tgataccaaa





atgcttcagt atttgtaatt tttcaagtca gaagctgatg ttcctggtaa aagtttttac





agttattcta taatatcttc tttgaatgct aagcatgagc gatattttta aaaattgtga





gtaagctttg cagttactgt gaactattgt ctcttggagg aagttttttg tttaagaatt





gatatgatta aactgaatta atatatgcaa





PRKCB Protein isoform 2


(SEQ ID NO: 26)



MADPAAGPPPSEGEESTVRFARKGALRQKNVHEVKNHKFTARFF






KQPIFCSHCIDFIWGFGKQGFQCQVCCFVVHKRCHEFVTFSCPGADKGPASDDPRSKH





KFKIHTYSSPTFCDHCGSLLYGLIHQGMKCDTCMMNVHKRCVMNVPSLCGTDHTERRG





RIYIQAHIDRDVLIVLVRDAKNLVPMDPNGLSDPYVKLKLIPDPKSESKQKIKTIKCS





LNPEWNETFRFQLKESDKDRRLSVEIWDWDLTSRNDFMGSLSFGISELQKASVDGWFK





LLSQEEGEYFNVPVPPEGSEANEELRQKFERAKISQGTKVPEEKTINTVSKFDNNGNR





DRMKLIDFNFLMVLGKGSFGKVMLSERKGIDELYAVKILKKDVVIQDDDVECTMVEKR





VLALPGKPPFLTQLHSCFQTMDRLYFVMEYVNGGDLMYHIQQVGRFKEPHAVFYAAEI





AIGLFFLQSKGIIYRDLKLDNVMLDSEGHIKIADFGMCKENIWDGVTIKTFCGTPDYI





APEIIAYQPYGKSVDWWAFGVLLYEMLAGQAPFEGEDEDELFQSIMEHNVAYPKSMSK





EAVAICKGLMTKHPGKRLGCGPEGERDIKEHAFFRYIDWEKLERKEIQPPYKPKACGR





NAENFDRFFTRHPPVLIPPDQEVIRNIDQSEFEGFSFVNSEFLKPEVKS





DDN RNA


(SEQ ID NO: 27)



ggctctgcag tgggcgccgg ctccctgggc tgggaggggg ctcctggggc gggtgggagg






gtggggggcc ggggtggggt ggggcaggat gctggatggc ccactgttct ccgaggggcc





tgacagcccc cgggagctcc aggatgagga gtctggcagc tgcctctggg tgcagaagtc





caagctattg gtgatagaag tgaagactat ttcctgtcat tatagtcgcc gcgccccttc





tcgacagccc atggacttcc aggccagcca ctgggctcgc gggttccaga accgcacgtg





tgggccgcgc ccgggatccc cacagccgcc gccccgccgg ccctgggcct ccagggtgct





gcaggaggcg accaactggc gggcggggcc cctggccgag gtccgagctc gggagcaaga





gaaaaggaaa gcggcgtcgc aggagcggga ggccaaggag accgagcgaa aaaggcgcaa





ggctggtggg gcccgacgga gccccccggg tcgaccccgc ccggagcccc gcaacgcccc





tcgggtggcc cagctggcag ggctccctgc tcccttgcgg ccggagcgcc tggcgcctgt





ggggcgagcg ccccgtccat ccgcgcagcc gcagagcgac ccagggtcgg cgtgggcggg





gccctgggga ggtcggcggc ccgggccccc aagctacgag gctcacctgc tgctgagagg





ttctgccggg accgccccac gacgccgctg ggaccggccg ccaccctacg tggctccacc





ttcttacgaa ggcccccata ggaccttggg gactaagaga ggccccggga actctcaggt





gcccacttca tcagccccag ctgcgactcc agccaggaca gacggagggc gcacaaagaa





gaggctggat cctcggatct accgggacgt cctcggggct tggggtctcc gacaggggca





aggtctcttg gggggatccc caggctgtgg agcggccaga gcaaggccag agcccggcaa





gggggtcgtg gagaaaagcc tggggctggc tgctgctgac ctgaacagtg gtagcgacag





ccatccccaa gccaaagcta cagggagcgc aggcaccgag atagctcctg cggggtctgc





aactgcggct ccctgtgccc cgcatcccgc tcccagatcc aggcaccacc tcaagggctc





gagggaaggg aaagaaggag aacagatctg gtttcccaaa tgctggattc cctcccctaa





aaagcagccg ccccgccata gccagacact ccccagaccc tgggctcccg gaggcaccgg





atggagagaa tctctgggtc ttggagaggg ggcaggaccg gagaccctgg agggttggaa





ggcgacccgc cgtgcccaca ccttgccccg cagttcccag ggcctgtccc gtggggaagg





cgtctttgtc attgacgcca cgtgcgtagt gatacgatcc caatatgttc caaccccccg





aacccagcag gtgcagcttt tgccctctgg ggtgacacgc gtggtggggg attcccccag





ccaatcgaag cccggcaagg aggagggtga aggggccacg gtctttcctt ccccttgtca





aaagcggctg tcgagcagtc gccttttaca ccagcccggc gggggccgcg ggggcgaagc





tgagggcggg aggccggggg actccacact ggaggagcgc actttccgca tcttggggct





cccggccccc gaagtaaacc tgcgggacgc ccccacgcag ccaggtagcc cagagcacca





agccttaggc ccagcagctt cgggagccca gggcagagcc gaggggtcgg aagtggcggt





ggtccagcgg cgcgccggcc ggggctgggc gcggacccca gggccctacg ccggggccct





gcgagaagcc gtgtcccgta tccgccgcca cacagcccct gactcggaca cggacgaagc





tgaggagctc agcgtccata gcggctcctc tgatggaagc gacacagaag ccccgggcgc





ctcctggcgg aatgagagga ccctgcccga ggttggaaac agttcgccag aggaagatgg





gaagacagcg gaactgagcg acagtgtcgg ggagatccta gatgtcataa gccaaaccga





ggaggtcctc ttcggggtga gggacatcag agggacccaa cagggaaata ggaagaggca





gtgagaggcc ccttcttgta tttgtgtccc caacgcatcc atccttgggt ccactggtcc





ccattcttcc ccacagactt cctttgcttc tcttttcctt gtatctttac ccatacctgt





tctcatcctt gaaatataaa tgaaaggaag ggaagcatat gcccattaat gattttgttt





caggagaggt gagaatgagc agatttaatt aatgtctgtt atgttcaggg cacaagggtg





agctcttcgc aggggctgat gcactgggtg tggagctgag cagagaggcc taaccaggat





caggcaggag ggcagggatg gtggcagcca taggagggca gggtagggta gggcctctga





ggaggaggga aaaagtgaag gagaggcttt ggacctggtg acagagtgat cagatgacag





aggggttctt gggagaagag gcataggtcc agcaacaacc aacaaagcag aaggagggct





caccttggtg tcacaagtct tggatttcaa tcccaactct gccactgagt tgctggttga





ctgaggccag tcactttccc tctccaggcc tccaggcctc ctggtatata aaatgatggt





attctaaggt ccatccttcc gtctctgaca ttttgagatc tttggaaagg actctatctc





atcctcccct cgacaagcca agaatgagaa ttgggaataa gtgaacagag tttgagggtt





tctgggcggc ctccgtgtca cccaaagtca tgatcaattc aggagactgc ccaaggcttg





cagaagaggt aagggagtga ggcactccta tcccagtctc ccaggtttgg ttgagggctc





cccaaggcag ggcaagatag cggccctgtc actgaccctg gcctgtggtg gtctgagctg





gggagggaag gacaccaatg aatcagcttg ggacctcttt aggccttccc cttttcctcc





accccgatgc tccttagtga tgctctgagg cgtggccacg atctccctcc caggtggtat





cgcccacctg aaaaaatcct gagaatttct cccatcttgg cctcttccag aaaccggcca





ggcaaggaaa gaggccggtc accagaagcc agcaggcgtg gggtgtgata ctctctatag





ccactacagg gcgcgcgcag gtcgcggatc tccccagttg ctaatcccgg ctctgccact





caatcctatc cctagttccc gagcgcgggt cccccgcctt gcagtctcca gccgtgcggg





gccgggagca ggcctccggc ctcccagact tctagagccc gccgggccca tctttgtact





catccacccc agccggcttg ggactcagac accgaagtct tttttttttt ctctccgatc





cttggacacc tcctctgtct gccatttatt agccatgtga acttggccac atcacttcac





ctccctgagc ctcagtttcc tcatctgtca aatgggggtt tataaacacc tacctcgcag





ggttgttgtg aggatttaat gcgataatgt atgtaaagcg ccttgcacac tgcctggcac





acagtaggcg ctcaataaat ctaagcttcc cttta





DDN Protein


(SEQ ID NO: 28)



MLDGPLFSEGPDSPRELQDEESGSCLWVQKSKLLVIEVKTISCH






YSRRAPSRQPMDFQASHWARGFQNRICGPRPGSPQPPPRRPWASRVLQEATNWRAGPL





AEVRAREQEKRKAASQEREAKETERKRRKAGGARRSPPGRPRPEPRNAPRVAQLAGLP





APLRPERLAPVGRAPRPSAQPQSDPGSAWAGPWGGRRPGPPSYEAHLLLRGSAGTAPR





RRWDRPPPYVAPPSYEGPHRTLGTKRGPGNSQVPTSSAPAATPARTDGGRTKKRLDPR





IYRDVLGAWGLRQGQGLLGGSPGCGAARARPEPGKGVVEKSLGLAAADLNSGSDSHPQ





AKATGSAGTEIAPAGSATAAPCAPHPAPRSRHHLKGSREGKEGEQIWFPKCWIPSPKK





QPPRHSQTLPRPWAPGGTGWRESLGLGEGAGPETLEGWKATRRAHTLPRSSQGLSRGE





GVFVIDATCVVIRSQYVPTPRTQQVQLLPSGVTRVVGDSPSQSKPGKEEGEGATVFPS





PCQKRLSSSRLLHQPGGGRGGEAEGGRPGDSTLEERTFRILGLPAPEVNLRDAPTQPG





SPEHQALGPAASGAQGRAEGSEVAVVQRRAGRGWARTPGPYAGALREAVSRIRRHTAP





DSDTDEAEELSVHSGSSDGSDTEAPGASWRNERTLPEVGNSSPEEDGKTAELSDSVGE





ILDVISQTEEVLFGVRDIRGTQQGNRKR





OTP mRNA


(SEQ ID NO: 29)



attataatgc aagaagcccc ctttttaacc acaaaccgaa ttttctttca tttaggtgat






ctatatatat ctatatcgta tagcttatag cttatatcta ttttaaataa cttaaagccg





ctaaaatttg ggggggaaca gctttcgccc tggagcggtg cgcgatgctg tctcatgccg





acctcctgga cgccaggcta ggtatgaaag atgccgccga gcttctgggc caccgggagg





cggtgaagtg taggctgggc gtggggggct ccgaccccgg gggccatccg ggggacctgg





cgcccaactc tgacccagtg gagggagcca ctctgctgcc cggggaggac atcaccacag





tgggctctac tccggcctcg ctggcggtga gcgccaaaga cccggacaag cagcccgggc





cccagggcgg cccgaacccc agccaagccg gccagcagca gggccaacag aagcagaagc





gccaccggac gcgcttcacc cccgcacagc tcaacgagtt ggagaggagc ttcgccaaga





ctcactaccc cgacatcttt atgcgtgagg agctggcact gcgtatcggg ctgaccgagt





cccgagtgca ggtctggttc cagaaccgac gcgccaagtg gaagaagcgc aaaaagacga





ccaacgtgtt ccgtgcgccc ggcacactgc tgcccacgcc aggcctgcct cagttcccgt





cggctgccgc cgccgctgcc gccgccatgg gcgacagcct gtgctctttc cacgccaacg





acacccgctg ggcggcggcc gccatgcctg gcgtgtcaca gctgcctctg ccgccggcgc





tgggcaggca gcaggccatg gcgcagtcgc tgtcccagtg cagcctggcg gccggtccgc





cgcccaactc catgggcctg tccaacagcc tggcgggttc caacggcgcg gggctgcagt





cgcacctcta ccagcccgcc ttccccggca tggtgcccgc ctccctcccc ggccccagca





acgtctccgg ttcgccccag ctctgcagct ccccggacag cagcgacgtg tggcggggca





ccagcatcgc ctccctccgc cgcaaggcgc tagagcacac agtctctatg agcttcactt





aatgcagccg cgccccggcc cgctccgccc ccagcaccgc cccgggggcc gccccgaggc





ccttccggcg cgcacccgga ccccggcgcc ctgccccgtc ccgccccggc cttcgccccg





tctcgtttcg tcctcgcctc tctcctccac tcgctcgggc tcaccccaag ccccagcccg





cgaggcctcc cctccgcctg atttcgatcg cccgcggtcc cccgtctccc ggccgcccct





cttcccttcc cacccagctg cgccctcggc tcggtctcca gcgcctcagc ccacccttcc





cgccaccctg gcctccctgc ttgcgctggc cgtgctcgcg ccctcctcct ggccttctga





cgggcggcgt tcccacccac accttcgacg cgacgcctac gacccccctc gcccgccgcc





tcccctccgg tcccctcttt ccccacactt cgcgaccctc ctcccgcgcc cggcaaaaag





tatccttccc gccattttac gtaccaggga gtcgactcag gatctgaaat cagacaccaa





tggactggtt tgtgggcaga aacacacaca ctcgcactct cgctcacgct cagacgctac





acacgcgcgc gcacagacac ggtgcaccta ggtcacacac ggacgtgttc aagggacagc





acaatgttag ggatttttgt cttaaaggag gacaagcatt gctaccaacc gcctcatctg





agggcccaac tgatatgatt tgatttatcc ttgtactctc caagctcctg tctttctttc





ctctcccacc acgctaccct tgcccagtcc acccagtcac atccgtgcag ccctctcttg





gcttgcaaga taacgctttt atttttattt tatcttattt tcattttctt aagcacaact





gtgtgagagt gtagaaggga aggcttctca ggaggaacgt gacagtggat tgggtggctg





gagtagacta aagcagtcat gtgacgagga agaggtgatc tgacccattt tgataagtct





ttataaggaa gaataaaata aacgtgtaag caaaattttc ttttgtaaaa gcaaaagcca





catctctttt ctggatcctt caggactggg gtttgtttgc ttccttttct gtttctgtct





tctcgctgct ctgtgccctt ggttgttttg tggtggtcct gtcgtccctc gtgcccctcg





gccacctgct ggcagccgat gggggcactc ggacatctac aaccctgcaa ctttgtacag





agaaacacaa tcagctcttt ctgcatgtgc tggtcaaatc caaacccaga gaacagaagc





gctttctaag aatgaacaaa tatgtgaaat aggatgtttt gtgtagataa agcattcttg





ttacatactg gtcaatttgt gatatgtttt aacttaatgt ctgtgtttat ttatggaatt





cggttttctt aataaatgtt tgagctaata taaagcatat tatttgactt ttccggacaa





gtttatatca agttaaatgt aaatggataa aataaaatca ttttcagtat gtga





OTP Protein


(SEQ ID NO: 30)



MLSHADLLDARLGMKDAAELLGHREAVKCRLGVGGSDPGGHPGD






LAPNSDPVEGATLLPGEDITTVGSTPASLAVSAKDPDKQPGPQGGPNPSQAGQQQGQQ





KQKRHRTRFTPAQLNELERSFAKTHYPDIFMREELALRIGLTESRVQVWFQNRRAKWK





KRKKTTNVFRAPGTLLPTPGLPQFPSAAAAAAAAMGDSLCSFHANDTRWAAAAMPGVS





QLPLPPALGRQQAMAQSLSQCSLAAGPPPNSMGLSNSLAGSNGAGLQSHLYQPAFPGM





VPASLPGPSNVSGSPQLCSSPDSSDVWRGTSIASLRRKALEHTVSMSFT






Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which the inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims
  • 1. A method of reprogramming an astrocyte to a glioblastoma stem-like cell (GSC) by introducing at least one master regulator selected from the group consisting of: NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, or OTP into a cell.
  • 2. The method of claim 1, wherein the master regulator is MEOX2, PRKCB, or ETV4.
  • 3. The method of claim 1, wherein the master regulator is MEOX2, and further comprises introducing NKX6-2.
  • 4. The method of claim 1, wherein the master regulators are MEOX2 and PRKCB, MEOX2 and ETV4.
  • 5. The method of claim 1, wherein the master regulators are NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, and OTP.
  • 6. The method of claim 1, further comprising introducing at least one master regulator selected from the group consisting of: BASP1, NKX6.2, STOX2, MYCN, SOX8, OLIG2, HES6, and ASCL1.
  • 7. A method of inhibiting a glioblastoma stem-like cell (GSC) by administering an immunotherapy composition that inhibits or reduces the expression of at least one master regulator selected from the group consisting of: NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, or OTP.
  • 8. A method of treating a subject for glioblastoma by administering an immunotherapy composition that inhibits or reduces the expression of at least one master regulator selected from the group consisting of: NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, or OTP.
  • 9. The method of any one of claims 7-8, wherein the master regulator is MEOX2, PRKCB, or ETV4.
  • 10. The method of any one of claims 7-8, wherein the immunotherapy composition targets at least two master regulators.
  • 11. The method of claim 10, wherein the master regulators are MEOX2 and PRKCB or MEOX2 and ETV4.
  • 12. The method of claim 9, wherein the master regulator is MEOX2 and the immunotherapy composition further comprises an inhibitor of NKX6-2.
  • 13. The method of any one of claim 10, wherein the immunotherapy composition targets NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, and OTP.
  • 14. The method of any one of claims 7-8, wherein the immunotherapy composition comprises a peptide formulation derived from at least one master regulator, nanoparticles containing peptides derived from at least one master regulator, dendritic cells containing peptides derived from at least one master regulator, RNA coding at least one master regulator, nanoparticles containing RNA coding at least one master regulator, or dendritic cells containing RNA coding at least one master regulator.
  • 15. The method of any one of claims 7-8, wherein, the inhibitor is a RNA interference agent or a small molecule.
  • 16. An immunotherapy composition for treating a subject with a glioblastoma, comprising an inhibitor of at least one of NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, or OTP.
  • 17. The immunotherapy composition of claim 16, wherein the composition comprises an inhibitor of MEOX2, PRKCB, or ETV4.
  • 18. The immunotherapy composition of claim 17, wherein the composition comprises an inhibitor of MEOX2, and further comprises an inhibitor of NKX6-2.
  • 19. The immunotherapy composition of claim 18, wherein the composition comprises inhibitors of MEOX2 and PRKCB, MEOX2 and ETV4, or MEOX2 and NKX6-2.
  • 20. The immunotherapy composition of claim 18, where the composition comprises inhibitors of NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, and OTP.
  • 21. A kit, comprising a first container and a second container, wherein the first container comprises at least one dose of a composition comprising an inhibitor of at least one master regulator selected from the group consisting of: NKX2-2, ETV4, MLXIPL, MEOX2, PRKCB, DDN, or OTP.
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support K08CA160824 awarded by National Institute of Health (NIH). The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US20/17090 2/6/2020 WO 00
Provisional Applications (1)
Number Date Country
62802554 Feb 2019 US