Information
-
Patent Grant
-
6807044
-
Patent Number
6,807,044
-
Date Filed
Thursday, May 1, 200321 years ago
-
Date Issued
Tuesday, October 19, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 361 230
- 361 212
- 361 220
- 361 225
- 361 231
- 361 213
-
International Classifications
-
Abstract
An ionizer bar includes upper and lower housings having aerodynamically-shaped exterior surfaces to support laminar air flow over the structure. The upper housing forms an upper interior chamber for electrical circuitry isolated from a lower chamber within the lower housing that confines fluid under pressure therein. Outlets spaced along the length of the structure include ionizing electrodes that are disposed within fluid conduits and that are connected to a source of ionizing voltage mounted in the upper chamber. Fluid passages at the outlets release fluid under pressure within the lower chamber around associated ionizing electrodes mounted at the outlets.
Description
FIELD OF THE INVENTION
This invention relates to air ionizing apparatus and more particularly to an elongated structure including a plurality of nozzles and ion emitter electrodes arranged along the length of the structure for delivering air ions toward a statically charged object.
BACKGROUND OF THE INVENTION
Certain known devices for delivering air ions include elongated structures including multiple outlets spaced along the structure to promote release of air or other gas under pressure around an ion-emitting electrode in order to carry generated ion away from the outlet in a stream of flowing air. Such structures are commonly referred to as ionizer or corona discharge bars and are conventionally mounted overhead above regions where objects such as semiconductor wafers are positioned during fabrication processes. Such corona discharge bars commonly include an elongated channel that carries air or other gas under pressure, and that is arrayed at regular intervals with outlets or nozzles for the gas under pressure. Additionally, each such outlet includes a high-voltage electrode structure disposed in or around the outlet to receive ionizing high voltage for generating ions of one or other polarity in the outlet flow of the gas under pressure. Such conventional corona discharge bars commonly require selective shaping of the outlet for directing the outlet gas flow that compromises the ion-generating efficiency of the emitter electrodes. Similarly, selective shaping of the emitter electrodes for efficient ion generation commonly disrupts laminar air flow through the outlets. Also, such conventional corona discharge bars commonly incorporate high-voltage circuitry within the channel for delivering gas under pressure in order to conserve space and to facilitate convenient assembly and connection of the emitter electrodes with the internal high-voltage circuitry. Since the emitter electrodes erode and require periodic replacement, removal of the emitter electrodes from the outlets commonly exposes the delivery channel to ambient air and associated contaminants that tend to electrostatically adhere to the internal high voltage circuitry, with concomitant potential for undesirable random disbursement of contaminant particles from the outlets.
SUMMARY OF THE INVENTION
In accordance with one embodiment of the corona discharge bar of the present invention, component chambers of the bar for air flow and high-voltage circuitry are separated in an elongated structure that is easily assembled and that promotes close spacing of outlets along the length of the bar for efficient ion generation and delivery. An upper chamber includes high-voltage circuitry isolated from a lower chamber that forms a supply channel for gas under pressure, and the upper and lower chambers are latched together in assembled configuration by an exterior, non-ionizing electrode. Insulative support housings for the emitter electrodes include gas-flow outlets that promote laminar flow therethrough of air or other gas under pressure surrounding the emitter electrodes, and those support housings conveniently protrude from openings periodically spaced along the length of the air-flow chamber. The entire structure is aerodynamically configured to facilitate air flow downwardly over the structure without disturbing laminar air flow, for example, from overhead HEPA filtration of downdraft air flow.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is an end sectional view of one embodiment of corona discharge bar;
FIG. 2
is an end sectional view of another embodiment of the embodiment of
FIG. 1
modified to aerodynamic configuration and manufacturing convenience;
FIG. 3
is a partial frontal sectional view of the embodiment of
FIG. 1
;
FIG. 4
is a partial cutaway and sectional view of the embodiment of
FIG. 3
; and
FIG. 5
is a partial frontal view of another embodiment of FIG.
3
.
DETAILED DESCRIPTION OF THE INVENTION
Referring now to the end sectional view of
FIG. 1
, there is shown an upper shell
11
that extends normal to the plane of the figure, and that confines a chamber A for assemblage therein of control circuitry, high-voltage power supplies, and the like, associated with generating ions in air or other gas. A lower shell
23
extends along the upper shell
11
to form chamber B for the delivery of air or other gas under pressure to outlets selectively disposed along the length of the chamber B. The upper shell
11
and lower shell
23
snap or slide together at the joints
9
that extend along their common lengths to form substantial unions between the shells
11
,
23
that are sufficiently air tight to preclude contaminants from entering or leaving the upper chamber A.
The lower shell
23
includes a trench
25
in the upper wall thereof that extends along the length of the shell, and supports therein at least one conductor
27
that is connected via soldering or welding or crimping to electrode connectors
4
at selected spaced intervals in alignment with outlets in the chamber B along the length of the structure. The conductor
27
and connectors
4
are sealed within the trench
25
by an insulative potting material
29
such as silicone rubber or epoxy. The conductor
27
is connected to a high-voltage power supply, as later described herein for energizing each emitter electrode
13
that is inserted in and is attached to a connector
4
at each outlet. In such circuit configuration, each emitter electrode
13
generates ions of one polarity determined by the polarity at a given time of an ionizing high voltage applied thereto, in a manner as described later herein. Potting material
29
disposed in trench
25
over the conductors
27
thus provides insulation from other circuitry assembled within chamber A, and provides fluid-tight seal around each connector
4
that protrudes into the trench
25
from chamber B. In this configuration, the succession of emitter electrodes
13
disposed along the length of the structure, as illustrated in the front view of
FIG. 3
, generate ions at the spaced intervals of the outlets along the length of the structure.
Each outlet from chamber B is formed at an aperture
31
in the lower shell
23
and includes a threaded block or ring
33
positioned in the aperture
31
. In one embodiment, the upper shell
11
and lower shell
23
may be extrusions of non-conductive polymer materials, with apertures
31
formed in the lower shell
23
at selected intervals therealong. A threaded block or ring
33
is positioned in each aperture
31
. A non-conductive supporting body
14
of hollow, substantially cylindrical configuration can be matingly threaded into the threaded block
33
, and sealed therein by a surrounding O-ring
15
. An upper end of the supporting body
14
includes a shoulder
35
that engages and supports a flange on an electrode mounting element
39
. This element
39
caps an expansion chamber
18
within the supporting body
14
, and abuts against the underside surface of trench
25
for sealed engagement therewith via O-ring
16
. An emitter electrode
13
is press-fitted coaxially into the mounting element
39
to retain the electrode
13
in coaxial orientation within the hollow supporting body
14
. In addition, the mounting element
39
includes a plurality of passages
41
disposed above the flange
37
for fluid communication between chamber B and the expansion chamber
18
within the hollow interior of the supporting body
14
. Thus, air or other gas under pressure within chamber B exits through passages
41
into the expansion chamber
18
that promotes smooth air flow around emitter electrode
13
and out into the environment.
An outer shell
5
of conductive material spans the outer underside of lower shell
23
and snaps or slides into the serpentine joints
9
on opposite sides along the length of the structure to hold the upper and lower shells together. In addition, the outer shell
5
forms a non-emitting electrode (e.g., for connection to ground) that includes large apertures
43
disposed about each of the supporting bodies
14
to establish an electric field about each energized electrode
13
sufficient to generate ions of one polarity that are carried away in the flowing gas stream through the supporting body
14
. In one embodiment, the surrounding edge of each aperture
43
may be shaped to be substantially equidistant from the tip of the emitter electrode
13
to promote stable generation of ions of each emitter electrode
13
.
In another embodiments of the present invention, as illustrated in
FIG. 5
, the edges of each aperture
43
disposed along the sides of the non-emitter electrode
5
may be spaced closer to the tip of the corresponding emitter electrode
13
than the edges of the aperture
43
that are disposed near the apex of curvature of the non-emitting electrodes. This promotes enhanced generation of ions near the sides of the non-emitting electrode
5
for conveyance into the environment in a laminar air stream flowing down over the sides, as later described herein.
The assembled structure is shaped substantially over the entire length thereof as an aerodynamic form to facilitate downwardly-directed laminar air flow
50
over its surfaces with minimal drag or turbulence or disruption of laminar flow. And, the supporting bodies
14
and mounting element
39
may be easily unscrewed or otherwise removed to retrieve and replace an emitter electrode
13
within a mounting element
39
.
Referring now to the partial sectional view of
FIG. 2
, there is shown another embodiment of a corona discharge bar similar to the embodiment as previously described with reference to
FIG. 1
, including in this embodiment a non-conductive shroud
22
disposed in the aperture
43
within electrode
5
to preserve the aerodynamic shape of the structure, even about the supporting bodies
14
. In addition, the upper shell
11
in this embodiment may also include a snap-fitting or slide fitting seam
45
along the length of shell sections
7
,
8
that conveniently assemble to form the upper shell
11
.
Referring now to
FIG. 4
, there is shown a partially sectioned and cutaway view of an assembled corona discharge bar in accordance with the embodiments of
FIGS. 1-3
. The chamber A in the upper shell is separated from the lower chamber B by the trenched upper surface of the lower shell
23
. Electrical control circuitry
1
and high voltage DC power supply
2
may be assembled into this upper chamber A and sealed therein against the environment and chamber B via the serpentine joints
9
on opposite sides along the length of the shells
11
,
23
between end sections
12
that are attached thereto. Mounting channels
57
are formed as part of the extruded shape of the upper shell
11
to accommodate mounting chips (not shown) from an overhead support snapping or sliding into attachment with the channel
57
in the upper shell
11
. Also, screws
59
disposed through the end sections
12
into the mounting channels
57
facilitate easy attachment of the end sections to the coextensive ends of the upper and lower shells
11
,
23
. A multiple-conductor connector
49
mounted in the upper shell
11
provides power and control connections to the internal circuitry
1
,
2
that may also include various annunciator lights
51
for operations in conventional manner. A high-voltage conductor
53
connects the high-voltage supply
2
to conductor
27
within the trench
25
and a ground or reference conductor
52
connects the ground or reference conductors of circuits
1
,
2
with the non-emitting electrode
5
. In one embodiment of the present invention, DC power supplies
2
for producing positive and negative ionizing voltages may be switched alternately into connection with the conductor
27
at a repetition rate in a range of, for example, about 0.1 to about 30 Hertz. This embodiment alternately generates ions at each emitter electrode
13
with a polarity determined by the polarity of the applied DC ionizing voltage during a given interval of a supply-switching cycle.
Fluid-pressure fittings
55
are attached in fluid-tight communication with the chamber B that passes through the structure from end to end. The fittings
55
protrude through the end sections
12
that are attached to the structure to close the Chamber A. A plug
56
may be disposed in a fitting
55
for single-ended operation on air or other gas supplied thereto. The lower shell
5
serves as the non-emitting electrode and includes an aperture
43
about each of the outlets including a supporting body
14
. For improved aerodynamic flow of air
50
downwardly over the structure, a non-conductive shroud
22
may be incorporated into each aperture
43
to preserve the smooth air flow surfaces of the structure without adversely affecting the electrostatic field about each emitter electrode and, each shroud
22
may be attached to the lower shell
23
not in contact with either the supporting body
14
or the non-emitting electrode
5
. In this way, any accumulation of contaminants over time are not likely to form a bridging circuit that might adversely affect the electrical field pattern around each emitter electrode
13
.
Referring now to
FIG. 5
, there is shown another embodiment of the corona discharge bar of the present invention in which apertures
44
in the non-emitting electrode
5
include longitudinal or side edges
46
that are more closely spaced relative to emitter electrode
13
within a support body
14
than the lateral edges
48
. Electrodes thus configured generate more ions in the region of higher electric field density (i.e., along the sides) than in the region near the lateral edges
48
. For installations in which laminar air flows over the structure from above and down along the sides, ion generation in this manner promotes more efficient delivery of the generated ions within the flowing air stream.
Therefore, the corona discharge bar according to the present invention greatly facilitates ease of manufacture from extruded components and machine parts to preserve high integrity against contamination and easy maintenance for replacement of emitter electrodes. Fluid-pressure fittings at each end of the structure promotes concatenated connections of similar units where desired. Aerodynamic shape diminishes disruption of downward laminar flow of air over the exterior surfaces.
Claims
- 1. A structure for generating ions, comprising:an elongated upper housing for forming an upper chamber substantially between ends thereof for containing electrical apparatus therein; an elongated lower housing coextending along the upper housing and attached thereto and including a lower chamber for containing gas under pressure therein, the lower housing including a plurality of outlets therein at selected locations along the length thereof in fluid communication with the lower chamber for releasing gas under pressure therethrough, an ionizing electrode disposed at each outlet to extend for electrical connection thereto within the upper chamber; and an elongated non-ionizing electrode extending along the lower housing and configured to overlay the lower housing along a portion of the length thereof, said non-ionizing electrode including apertures therein disposed at the selected locations with the ionizing electrodes protruding therethrough for establishing an ionizing electric field between electrodes in response to ionizing potential applied thereto.
- 2. A structure according to claim 1 including at each outlet a support body having an internal bore and including an ionizing electrode disposed within the bore and including a passage in fluid communication between the bore and the lower chamber.
- 3. A structure according to claim 1 including an electrical connector oriented at each outlet to protrude through the lower housing into the upper chamber;a conductor attached to each of the electrical connectors for receiving an ionizing voltage thereon; and insulating material disposed over the electrical connectors and conductor in the upper chamber, and forming a fluid-tight seal about each protrusion of an electrical connector into the upper chamber.
- 4. A structure according to claim 2 including a source of ionizing voltage disposed within the upper chamber and connected to the conductor attached to each of the ionizing electrodes.
- 5. A structure according to claim 2 in which each ionizing electrode is disposed within a support element that is retained in the outlet by a support body with the ionizing electrode disposed substantially coaxially within the bore in the support body, the support element including a passage for fluid communication between the lower chamber and the bore in the support body.
- 6. A structure according to claim 1 including an exterior shape of the upper and lower housing establishing diminished drag or turbulence and reduced disruption of laminar air flow over the housings in a direction from upper toward lower housings.
- 7. A structure according to claim 6 including the non-ionizing electrode substantially conforming to the exterior shape of the lower housing for establishing diminished drag or turbulence and reduced disruption of laminar air flow in said flow direction.
- 8. A structure according to claim 7 including a non-conductive shroud disposed about each outlet, the shroud having an exterior shape substantially conforming to the exterior shape of the adjacent non-ionizing electrode.
- 9. A structure according to claim 1 including edges of the apertures in the non-emitting electrode being disposed at substantially equal distances from the associated emitter electrode.
- 10. A structure according to claim 1 including edges of the apertures along side segments of the non-emitting electrode being disposed at closer spacing to the associated emitter electrode than the spacing to the associated emitter electrode of the segments of the edge of the apertures between support bodies.
- 11. A structure according to claim 2 in which the support body includes screw threaded attachment to mating threaded aperture within the lower housing.
- 12. A structure according to claim 1 including end members disposed at the ends of the upper and lower housings and forming fluid-tight seals with at least the lower chamber.
- 13. A structure according to claim 12 including a pressurized fluid fitting attached to an end member in fluid communication with the lower chamber.
- 14. A structure according to claim 13 including a pressurized fluid fitting attached to each end member in fluid communication with the lower chamber.
- 15. A structure according to claim 4 including a multi-conductor electrical connector disposed within the upper chamber and connected to supply electrical signal to the ionizing voltage source.
- 16. A structure according to claim 5 in which the lower chamber includes apertures therein at the selected locations along the length of the outlet bar, each of the apertures including threads therein for mating with threads on a support body disposed therein in fluid-tight sealing engagement within the lower housing.
- 17. A structure according to claim 5 including an expansion chamber within the bore in the support body for altering a parameter of flow of gas under pressure through the passage into the expansion chamber.
- 18. A structure according to claim 1 in which the non-emitting electrode overlays the lower housing to the attachment thereof with the upper housing for retaining the attachment of the upper and lower housings.
- 19. A structure according to claim 18 in which the attachment of the upper and lower housings is formed substantially along opposite sides of the co-extensive lengths thereof, with the non-emitting electrode disposed within the attachment at least along portions of the opposite sides.
US Referenced Citations (37)